
Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

40

EFFECTIVE BRANCH AND DU COVERAGE TESTING

THROUGH TESTCASE PRIORITIZATION USING GENETIC

ALGORITHM

1
P.VELMURUGAN,

 2
RAJENDRA PRASAD MAHAPATRA

1
Research Scholar, Department of CSE, SRM University, India

2
Professor / HOD, Department of CSE, SRM University, India

E-mail:
1
velmtechce2007@gmail.com,

2
hod.cse@srmuniv.ac.in

ABSTRACT

Software testing is all about ensuring an error free execution of the system or module being developed. The

testing procedure initially consists of a large number of test cases that are needed to be reduced so that the

execution time needed for testing could be minimized. After the reduction has been done, a few test cases

are left. Here an important factor becomes the order of the execution of the obtained number of test cases.

This ordering is called as test case prioritization. Prioritization of test cases is a process in which test cases

are executed in an ordered fashion so as to increase the fault detection rate. There are many types of

prioritization techniques used for statement coverage that have been used in past. In this paper, the testcase

prioritization technique used for branch coverage and DU pair coverage to improve the effectiveness of

testing process. The proposed methodology uses genetic process for prioritizing the test cases to detect the

fault as earlier as possible to improve the effectiveness of branch and DU pair testing.

Keywords: Test case reduction, prioritization, genetic algorithm, DU pair testing, branch testing

1. INTRODUCTION

Software testing is basically a set of activities

conducted with the intent of finding errors in

software. Also, software testing is the process that

validates and verifies that a program functions

properly. One straight forward approach used for

testing is to re-run all the existing test cases and

detect if there are any errors. But it is practically

impossible under the project deadline and also

requires a lot of effort. Other alternative is to

prioritize test cases according to their relevance for

error detection and find an ordered sequence of test

cases which contains those test cases first, which is

more likely to find errors. Despite software testing

being a very important process to be executed,

often there is not enough time or resources to

execute all planned test cases. In this case, it is

desirable to prioritize the test cases in a way that

the most important ones are in the first positions in

an attempt to guarantee their execution. One of the

many ways to perform testing is to order the test

case based on some criteria to meet some

performance goal. Testers may want to order their

test cases so that the test cases with the highest

priority (according to some criterion) are run first.

So test case prioritization technique do not discard

test cases, they can only avoid the drawback of test

case minimization techniques.

To optimize the time and cost spent on testing,

prioritization of test cases in a test suite can be

beneficial [2, 3, 9, 10, 17, 18]. Test case

prioritization (TCP) involves the explicit planning

of the execution of test cases in a specific order

with the intention of increasing the effectiveness of

software testing activities by improving the fault

detection rate earlier in the software process [17,

18].

Furthermore, Gregg Rothermel [15] has proven that

prioritizing and scheduling test cases are one of the

most critical tasks performed during the software

testing process. He referred to the industrial

collaborators reports, which shows that there are

approximately 20,000 lines of code, running the

entire test cases requires seven weeks. In this

situation, test engineers may want to prioritize and

schedule the test cases in order that those test cases

with higher priority are executed first. Additionally,

he [13], [16] stated that test case prioritization

methods and process are required, because: (a) the

regression testing phase consumes a lot of time and

cost to run, and (b) there is not enough time or

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

41

resources to run the entire test suite (c) there is a

need to decide which test cases to run first.

In this paper, genetic algorithm is being used for

the prioritization of the test cases. Genetic

algorithm is stochastic search technique, which is

based on the idea of selection of the fittest

chromosome. It is basically a probabilistic search

method based on the mechanics of natural selection

and natural genetics. GA applied to natural

selection and natural genetics in artificial

intelligence to find the globally optimal solution to

the optimization problem from the feasible

solutions. Nowadays GA’s have been applied to

various domains, including timetable, scheduling,

robot control, signature verification, image

processing, packing, routing, pipeline control

systems, machine learning, and information

retrieval.

GA’s are characterized by 5 basic components as

follow:

1) Chromosome representation for the feasible

solutions to the optimization problem.

2) Initial population of the feasible solutions.

3) A fitness function that evaluates each solution.

4) Genetic operators that generate a new population

from the existing population.

5) Control parameters such as population size,

probability of genetic operators, number of

generation etc.

The major differences between one Genetic

Algorithm and another lie within the schemes used

to represent chromosomes, the semantics of the

genetic operators, and the measures used to

evaluate their fitness. Yet, these very differences

make Genetic Algorithms so complex to design and

implement when opposed with most real-world

optimization problems.

Always in genetic algorithm a small number of

initial population is taken randomly from the

whole solutions from which best is to be found

out. Only some of the solutions are taken and rest

are automatically generated and out of range

solutions are rejected. Fitness function is made

according to the problem. Like in knapsack

problem fitness is evaluated by summing the

benefit or value of the selected item in a solution.

In simple real number search problem ,where best

solution is the number with maximum value. Value

of the number serves as the fitness function. In

traveling salesman problem the distance of the

whole tour acts as fitness function.

In the process of implementing genetic algorithm

the first thing that needs to be done is deriving the

fitness function. In this paper fitness evaluation is

done using the function:

Fitness value (ti) = (1)

Genetic operators are basically three:

1. selection

2. crossover

3. mutation

1. After we evaluate population’s fitness, the next

step is chromosome selection. Selection embodies

the principle of ‘survival of the fittest’. Selection

procedure in this paper is accomplished using the

Rowlett wheel.

2. Crossover is the genetic operator that mixes two

chromosomes together to form new offspring.

Crossover occurs only with some probability

(crossover probability). Chromosomes are not

subjected to crossover remain unmodified. The

intuition behind crossover is exploration of new

solutions and exploitation of old solutions. GA’s

construct a better solution by mixing good

characteristic of chromosomes together.

3. Mutation involves the modification of the values

of each gene of a solution with some probability

(mutation probability). In accordance with

changing some bit values of chromosomes, give the

different breeds. Chromosomes may be better or

poorer than old chromosomes. If they are poorer

than old chromosomes, they are eliminated in

selection step. The objective of mutation is

restoring lost and exploring variety of data.

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

42

2. LITERATURE SURVEY

In various research works performed over test case

prioritization a number of techniques have been

introduced.

Yu-Chi Huang et al has proposed a cost cognizant

test case prioritization technique which is based on

the use of historic records and genetic algorithm

[1]. They run a controlled experiment to evaluate

the effectiveness of the proposed technique. The

technique however does not take care of the test

cases similarity.

Sayogita Chaturvedi, A. Kulothungan has proposed

a fault detection capability for statement coverage

through test case prioritization using genetic

algorithm. But in this paper, they are not considered

branch and DU pair coverage [19].

Another method is a Coverage-based technique that

consists of methods to prioritize test cases based on

coverage criteria, such as requirement coverage,

total requirement coverage, additional requirement

coverage and statement coverage. Many researchers

have researched in this area, such as Leon [4],

Rothermel [5], [7] and Bryce [11].

There is a technique known as the code coverage

based TCP Strategies. Coverage based TCP done

their prioritization based on their coverage of

statements [6]. For Prioritizing statement coverage

the test cases are ordered for execution based on the

number of statements executed or covered by the

test case such that the test cases covering maximum

number of statements would be executed first.

Some of the other techniques used are branch

coverage and function coverage. In this method test

cases are prioritized based on their number of

branch or function coverage by a test case

respectively.

3. PROBLEM DESCRIPTION

3.1. Existing Problem

Previous work on test case prioritization

demonstrates that prioritization techniques are

effective for improving rate of fault detection.

However, these approaches do not consider test

suites that contain functional dependencies between

tests. Functional dependencies are the interactions

and relationships among system functionality

determining their run sequence. As test cases mirror

this functionality, they also inherit these

dependencies; therefore, executing some test cases

requires executing other test cases first. Such

techniques which do not consider the existence of

functional dependencies among test cases uses any

order like breadth first search or random order for

the prioritization of test cases. Using these

techniques the achieved fault detection rate is not

high and so these prove to be inefficient as the main

goal of a testing case prioritization is to find

maximum number of faults in least possible time.

But many of the existing techniques haven’t used

testcase prioritization for branch and DU pair

coverage technique.

3.2. Proposed Solution

In this paper, prioritization of test cases is to be

done using genetic algorithm where the fitness

function is calculated using the initial population

which basically tells about the branch and DU pair

statements executed by each test case and the

weight assigned to each statement. The weight is

assigned depending upon the criticality of the

statement of introducing an error. The basic

operators of genetic algorithm, i.e selection,

crossover & mutation are used in order to receive

the prioritized list of test cases. When the execution

of test cases is done in the order as in the prioritized

list, it is expected to give an increased rate of fault

detection in branch and DU pair coverage testing.

4. BLOCK DIAGRAM OF A PROPOSED SYSTEM

Figure1. Block Diagram

Figure 1. shows that overall module of this

proposed approach. Initially Both branch and DU

pair coverage uses randomly ordered testcases and

find number of branches and Definitions and Use

(DU) pair covered by random ordered testcases.

These random ordered testcases of both branch and

DU pair prioritized by genetic algorithm. The

proposed technique finding the effective ordered

testcases for both branch and DU pair by

combining prioritization of both.

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

43

5. PROPOSED TECHNIQUE

In this paper, genetic algorithm has been used for

the prioritization of the test cases existing in a

reduced test suite. Firstly a small code is taken

which performs few simple operations. A reduced

test suite consisting of very few numbers of test

cases that are needed to be executed is then

obtained. These reduced test cases are then allotted

with their initial population which is decided on the

basis of the statements executed by each test case.

Then after fitness value for every test case is

calculated. The fitness value depends on the initial

population and the weight of every statement in the

source code taken.

Further all of the test cases are placed in a Rowlett

wheel and in every cycle,

1. A pair of test cases is taken out, XOR

operation is performed over them.

2. If the result of XOR does not give all 1’s

then firstly crossover operation is

performed on both the test cases and then

they are again checked for all 1’s applying

the XOR operation.

• If the result of XOR after crossover give

all 1’s then the case with higher fitness

value is put in the prioritized list and

the other is put back in the Rowlett

wheel(If both the test case have same

fitness value then any one of them is

chosen randomly to be sent in the

prioritized list while the other is held

back to be XORed with the test case

received in next cycle).Goto 1.

• If the result of XOR after crossover does

not give all 1’s then both the test cases

are operated with mutation.Then again

XOR operation is performed to check

for receiving all 1’s.

• If the result of XOR after mutation give all

1’s then the case with higher fitness

value is put in the prioritized list and

the other is put back in the Rowlett

wheel(If both the test case have same

fitness value then any one of them is

chosen randomly to be sent in the

prioritized list while the other is held

back to be XORed with the test case

received in next cycle). Goto 1.

• If the result of XOR after mutation does

not give all 1’s then the test case with

higher fitness value is put in the

prioritized list and the other is put back

in the Rowlett wheel. Goto 1.

3. If a success occurs ,i.e result of XOR give

all 1’s then both the cases are taken out of

the Rowlett wheel. Any one of both the

cases is randomly sent in the prioritized

list and the other is kept to perform XOR

operation with a test case received in a

later cycle of the above stated operation.

The above operation continues to be performed

until the Rowlett wheel becomes completely empty

which means all the test cases are placed in

prioritized list. Then the execution of the test cases

is done based on the order defined in the prioritized

list of the test cases.

5.1. Algorithm for Branch Coverage

1. Ordered test suite, toc=ɸ

2. while(trc != ɸ)

3. {for trc= 1 to n

 toc=ɸ

4. {for j=1 to n

5. { if val[j]==1

6. Ti= {t Ụ s[j] ; if seen(trc)

 { ɸ ; otherwise

 } }

7. No. of statements executed by trc = trc}

8. max toc = find max[{trc}]

9. Toc =toc Ụ max toc

10. if(trc ==max toc || trc Є toc)

11. trc=seen(trc)

12. Goto 2}

where trc = random test cases{1….n}

 j=branch no.

5.2. Algorithm for DU Pair Coverage

1. Find variable in function

2. For every statement (Si) in program

 do

 for every variable (Vj)

 do list DU statement

 for every DUk statement

 if(DUk is covered by Tm)

 mark executed

 else

 mark failed

 end loop

 end loop end loop

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

44

Si = Set of Statements (S1…Sn)

Vi = Use of variable for every statement (V1 … Vn)

Ti = List of testcases (T1…Tn)

6. CASE STUDY

In this paper, a small code is taken which performs

simple operation and three input variables are

needed namely A, B and C. In this case study we

have taken six different testcases and ordered

randomly. Then unordered testcases is effectively

ordered with genetic algorithm to decide the

priority of each test case so that the execution of

test cases could be done according to the assigned

priority. This ordered execution helps in increased

rate of fault detection in least possible time.

Every statement in the source code is assigned a

weight depending upon its possibility of

introducing an error. This weight is used in

calculation of fitness value of the test case.

6.1. Source Code:

Figure2. Source Code with Statement and weight

The test suite taken is:

T={t1,t2,t3,t4,t5,t6}

Table 1.Testcase and Values

Testcase Test value for a, b, c

T1 3, 3, 5

T2 1, 2, 3

T3 3, 2 ,1

T4 5, 5, 5

T5 5, 3, 4

T6 2, 1 ,1

6.2. Branch Coverage for randomly ordered

testcase

Table2. Individual Testcases Branch Coverage

Branch

statement
T1 T2 T3 T4 T5 T6

Start 1 1 1 1 1 1

3T 1 1 0 0 1 1

3F 0 0 1 1 0 0

4T 0 1 0 0 0 0

4F 1 0 0 0 1 1

6T 1 0 0 0 0 1

6F 0 0 0 0 1 0

9T 0 0 1 0 0 0

9F 0 0 0 1 0 0

11T 0 0 0 0 0 0

11F 0 0 0 1 0 0

T – True branch

F – False branch

If Ti is executed then 1 otherwise 0

6.3. DU Pair Coverage for randomly ordered

testcase

Table3.Individual Tetscases DU Pair Coverage

Statement

No

DU

statement

T

1

T

2

T

3

T

4

T

5

T

6

1 1, 2, c 1 1 1 1 1 1

2 1, 3, b 1 1 1 1 1 1

3 1, 3, c 1 1 1 1 1 1

4 1, 4, a 1 0 0 0 0 1

5 1, 4, b 1 0 0 0 0 1

6 1, 5, b 0 0 0 0 0 0

7 1, 6, a 1 0 0 0 1 1

8 1, 6, c 1 0 0 0 1 1

9 1, 7, a 1 0 0 0 0 1

10 1, 9, a 0 0 1 1 0 0

11 1, 9, b 0 0 1 1 0 0

12 1, 10, b 0 0 1 0 0 0

13 1, 11,a 0 0 0 1 0 0

14 1, 11, c 0 0 0 1 0 0

15 1, 12, a 0 0 0 0 0 0

16 2, 13, n 0 0 0 1 1 0

17 5, 13, n 0 1 0 0 0 0

18 7, 13, n 1 0 0 0 0 1

19 10, 13, n 0 1 0 0 0 0

20 12, 13, n 0 0 0 0 0 0

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

45

6.4. Initial Population for Branch Coverage

Initial population of every test case is calculated

which is basically the output that shows what are

the statements that are being executed by each test

case. If a test case executes a statement then a value

1 is assigned to that test case corresponding to the

respective statement else a value 0 is assigned. The

Initial population of the test cases is given below:

Table4. Initial Population (Branch Coverage)

Test

case

Statements

S

1

S

2

S

3

S

4

S

5

S

6

S

7

S

8

S

9

S

10

S

11

T1 1 1 0 0 1 1 0 0 0 0 0

T2 1 1 0 1 0 0 0 0 0 0 0

T3 1 0 1 0 0 0 1 1 0 0 0

T4 1 0 1 0 0 0 0 0 1 0 1

T5 1 1 0 0 1 0 0 0 0 0 0

T6 1 1 0 0 1 0 0 0 0 0 0

6.5. Initial Population for DU Pair Coverage

Table4. Initial Population (DU Coverage)

6.6. Fitness value calculation for branch

The next step is to calculate the fitness value of

every test case. It is calculated using the formula

given:

 (2)

Table5. Fitness function Value (Branch)

TestCase T1 T2 T3 T4 T5 T6

Fitness

Value
2.3 2.0 2.1 2.1 2.4 2.0

6.7. Fitness value calculation for DU pair

coverage

 (3)

Table6. Fitness function Value (DU Pair)

TestCase T1 T2 T3 T4 T5 T6

Fitness

Value
11.7 5.9 8.2 10.7 8.7 11.7

6.8. Genetic Loop for branch coverage

After the initial population and fitness value is

calculated, all of the test cases are put in Rowlett

wheel. In every genetic cycle, a pair of test case is

taken out from the Rowlett wheel. Both of the test

cases are operated with XOR operator taking their

respective initial population. In the end of every

loop a test case is received which is put in the

prioritized list. The test case being included in the

list earlier has a higher priority while the one

included later has a lower priority. The genetic loop

runs until the Rowlett wheel becomes completely

empty which means none of the test cases are left in

the wheel and all of them are placed in the

prioritized list of test cases.

Firstly, test case t1 and t6 are taken out of the

Rowlett wheel and OR operation is performed over

their initial population.

t1 11001100000

OR = OR = 11001100000

 t6 11001000000

Now, since the output received does not consist of

complete 1’s or target is not achieved, both the test

cases are sent for crossover operation.

11001100| 000

110 | 01000000

After crossover:

11001100110

 OR = 11001100110

00001000000

Since the resultant output does not have complete

1’s or target not achieved, mutation operation is

performed over cross over result.

Mutation applied on 9
th

 and 10
th

 bit of cross over

result: 11001100110

Hence, there is an output with all 1’s not came and

target not achieved and so the test case with higher

fitness value is send to the prioritized list. Then

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

46

lower fitness value testcase and one new testcase

from Rowlett wheel will go for next genetic loop.

This process will continue until there is no test case

left.

According to our testcase after the completion of

entire process the test case in the prioritized list are

as:

Priority List1 = {t5 > t4 > t2 > t1 > t3 > t6}.

The list obtained shown above denotes the order in

which the test cases are needed to be executed in

order to improve the fault detection rate of the

testing process.

6.9. Genetic Loop for DU pair coverage

After the initial population and fitness value is

calculated, all of the test cases are put in Rowlett

wheel same as genetic loop for branch coverage.

For Example

Firstly, test case t1 and t5 are taken out of the

Rowlett wheel and OR operation is performed over

their initial population.

t1 11111011100000000100

OR = OR =

11111011100000010100

 t5 11100011000000010000

Now, since the output received does not consist of

complete 1’s or target is not achieved, both the test

cases are sent for crossover operation.

111 | 11011100000000100

11100011000000010 | 000

After crossover:

00011011100000000100

 OR = 11111011100000010111

11100011000000010111

Since the resultant output does not have complete

1’s or target not achieved, mutation operation is

performed over cross over result.

Mutation applied on 9
th

 and 10
th

 bit of cross over

result:

11111011110000010111

Hence, there is an output where all 1’s did not come

hence target not achieved, so the test case with

higher fitness value is send to the prioritized list.

Then lower fitness value testcase and one new

testcase from Rowlett wheel will go for next

genetic loop. This process will continue until there

is no testcase left.

According to our testcase after the completion of

entire process the test case in the prioritized list PL

are as:

Priority List 2= {t5 > t6 > t4 > t2 > t3 > t1}.

The list obtained shown above denotes the order in

which the test cases are needed to be executed in

order to improve the fault detection rate of the

testing process.

6.10. Finding effective order for DU and Branch

Coverage

Priority List 1 = {t5 > t4 > t2 > t1 > t3 > t6}.

Priority List 2 = {t5 > t6 > t4 > t2 > t3 > t1}.

From Priority List 1 and Priority List 2 t5 has

higher priority in both Priority List 1 and Priority

List 2 so we can choose t5 in the effective ordered

set. Then t4 has second highest priority in Priority

List 1 but third highest priority in Priority List 2

and t6 has second highest priority in PL2 but last

priority in Priority List 1 so we can choose t4

before t6 because t4 (3-2) has lowest priority

difference than t6 (6-2) in Priority List 2. Similarly

same process have to apply for remaining test

cases. The resultant order is

Effective Priority List = {t5, t4, t2, t6, t1, t3}

7. RESULT ANALYSIS

Figure3. Individual testcases statement coverage

(Branch)

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

47

Figure4. Individual testcases statement coverage

(DU Pair)

Figure5. Ordered Testcases Coverage(Both Branch and

DU Pair)

8. Conclusion and Future Work

In this paper, we have taken one case study in

which Genetic Algorithm and random ordered

techniques has been used for testcase prioritization

in both branch and DU pair Coverage testing. But

this research mainly focused genetic algorithm for

testcase prioritization by which effective order

testcase has been generated and analyzed with

random prioritization technique. Finally this

analysis proven that effective order suite is better

order for testing both branch and DU pair coverage.

But in this order some higher order statements are

not covered effectively as earlier possible. In future,

this research focuse on above problem and try to

resolve it.

REFERENCES

[1] Yu-Chi Huang, Chin-Yu Huang, Jun-Ru Chang

and Tsan- Yuan Chen “Design and Analysis

of Cost-Cognizant Test Case Prioritization

Using Genetic Algorithm with Test History”,

IEEE 34th Annual Computer Software and

Applications Conference 2010.

[2] F. Basanieri, A. Betolino, and E. Marchetti,

"CoWTeSt: A Cost Weighed Test Strategy,"

Escom-Scope 2001, London, England, April

2001, pp. 387-396.

[3] F. Basanieri, A. Betolino, and E. Marchetti, "The

Cow_Suite Approach to Planning and

Deriving Test Suites in UML Projects," Fifth

International Conference on the Unified

Modeling Language - the Language and its

applications UML 2002, Dresden, Germany,

September 2002, pp. 383-397.

[4] Bogdan Korel and Ali M. Al-Yami, “Automated

Regression Test Generation”, ISSTA98, 1998.

[5] B. Korel and J. Laski, “Algorithmic software

fault localization”, Annual Hawaii

International Conference on System Sciences,

pages 246–252, 1991.

[6] Zheng Li, Mark Harman, and Robert M. Hierons,

“Search algorithm for Regression Test Case

Prioritization,” IEEE Transactions on

Software Engineering, Vol. 33, No.4, April

2007.

[7] Cem Kaner, “Exploratory Testing”, Florida

Institute of Technology, Quality Assurance

Institute Worldwide Annual Software Testing

Conference, Orlando, FL, 2006.

[8] Harsh Bhasin, Surbhi Bhatia: Use of Genetic

Algorithms for Finding Roots of Algebraic

Equations. International Journal of Computer

Science and Information Technology, 2011.

Volume 2, Issue 4, pages 693-696.

[9] S. Elbaum, A. Malishevsky, and G. Rothermel,

"Prioritizing Test Cases for Regression

Testing," Proceedings of the ACM

International Symposium on Software Testing

and Analysis, vol. 25, no. 5, pp. 102- 112,

August 2000.

[10] S. Elbaum, A. Malishevsky, and G. Rothermel,

"Test Case Prioritization: A Family of

Empirical Studies," IEEE Transactions on

Software Engineering, vol. 28, no. 2, pp. 159-

182, February, 2002.

[11] Hyunsook Do and Gregg Rothermel, “A

Controlled Experiment Assessing Test Case

Prioritization Techniques via Mutation

Faults”, Proceedings of the IEEE

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

48

International Conference on Software

Maintenance, pages 411-420, 2005.

[12] J. Li, “Prioritize Code for Testing to Improve

Code Coverage of Complex Software,” Proc.

16th IEEE Int’l Symp. Software Reliability

Eng., pp. 75-84, 2005.

[13] B. Korel and J. Laski, “Algorithmic software

fault localization”, Annual Hawaii

International Conference on System Sciences,

pages 246–252, 1991.

[14] Z. Li, M. Harman, and R. Hierons, “Search

Algorithms for Regression Test Case

Prioritization,” IEEE Trans. Software Eng.,

vol. 33, no. 4, pp. 225- 237, Apr. 2007.

[15] David Leon and Andy Podgurski, “A

Comparison of Coverage- Based and

Distribution-Based Techniques for Filtering

and Prioritizing Test Cases”, Proc. Int’l

Symp. Software Reliability Eng., pp. 442-453,

2003.

[16] Dennis Jeffrey and Neelam Gupta, “Test Case

Prioritization Using Relevant Slices”, In

Proceedings of the 30th Annual International

Computer Software and Applications

Conference, Volume 01, 2006, pages 411-

420, 2006.

[17] G. Rothermel, R. Untch, C. Chu, and M.

Harrold, "Test Case Prioritization," IEEE

Transactions on Software Engineering, vol.

27, no. 10, pp. 929-948, October, 2001.

[18] G. Rothermel, R. Untch, C. Chu, and M.

Harrold, "Test Case Prioritization: An

Empirical Study," International Conference

on Software Maintenance, Oxford, UK,

September 1999, pp. 179 - 188.

[19] Sayogita Chaturvedi, A. Kulothungan,

Improving Fault Detection Capability Using

Coverage Based Analysis”, IOSR Journal of

Computer Engineering (IOSR) – (JCE) e -

ISSN: 2278 - 0661, p – ISSN: 2278

8727Volume 16, Issue 2, Ver. VI (Mar-Apr.

2014), PP 22-30. IEEE Press, Dec. 2007, pp.

57-64, doi:10.1109/SCIS.2007.357670.

