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ABSTRACT 

  

This paper proposes application of GA-RBF Neural Network Algorithm in context of software fault 

localization. A neural network is trained on the basis of Code Coverage information of a test case and the 

corresponding execution result, successful execution or failure. The weights and structure of the RBF 

neural network is then optimized using Genetic algorithm. The hidden layer neurons number and 

connection weights are encoded using binary encoding and real encoding respectively. For further leaning, 

LMS (Least Mean Square) algorithm is used. A set of virtual test cases (each covering a single statement) is 

then given input to the trained and optimized network. The output of the network is considered to be 

“degree of suspiciousness” of the corresponding statement. Finally the statements are ranked on the basis of 

their corresponding degree of suspiciousness. 

 

Keywords: Software Fault Localization, GA-RBF Neural Network, Software Debugging, Genetic 

algorithm, Radial Basis Function. 

 

1. INTRODUCTION 

Fault localization is the activity of identifying 
the exact locations of program faults. In program 
debugging, this is considered most tedious and time 
consuming activity. In larger and complex programs 
a high degree of time and effort is dedicated to the 
identification of a fault in the software. Automatic 
software fault localization techniques are used by 
programmers to find out the exact location of the 
fault in least amount of time. Major advantage of the 
software fault localization techniques is the 
identification of faults in complex programs with 
more accuracy and less effort. This paper proposes 
the application of GA-RBF neural network as fault 
localization technique. Using Genetic Algorithm for 
the optimization of a RBF neural network improves 
the operating efficiency in dealing with complex 
problems and also improves the precision of the 
recognition. 

The ability to learn is one of the several 
advantage of Neural-Network based models over 
other comparable models. Neural Networks are 
considered to be more tolerant because of the 
information distribution among the weights on the 
connections. The capability of Neural Networks to 
adapt and re-train to deal with minor changes in the 
operating environment also makes neural networks 
more popular among researchers. 

Radial Basis Function (RBF) is a three-layer 
feed-forward network with a single hidden layer. 
This structure can be trained to learn an input-output 
relationship based on a data set. In this paper, the 
statement coverage of a test case is passed as the 
input and the output is result (success or failure) of 
corresponding program execution. The network is 
further optimized using Genetic Algorithm ad 
finally a virtual test case with only one statement 
covered is used as an input to computer the degree 
of suspiciousness of the corresponding statement in 
terms of its likelihood of containing bugs. The 
statements can then be ranked in descending order 
of their suspiciousness, such that the statements can 
be examined one by one. 

The framework is similar to [3], however the 
RBF- Neural Network is further optimized using 
Genetic algorithm in order to improve efficiency 
and precision of the technique. 

2. GENETIC ALGORITHM AND RBF 

NEURAL NETWORK 

2.1 Basic Theory Of Genetic Algorithm 

In a Genetic Algorithm, a population of 
candidate (potential solution set) to an optimization 
problem is evolved towards better solutions. The 
population is composed of a certain number of 
encoded gene individuals, which is the entities with 
characteristic chromosome. The major setback in the 
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construction of a Genetic Algorithm based approach 
is the solvable encoding method and design of 
genetic operator. The successful application of the 
GA is determined by the choice of genetic operator, 
usage of different encoding method and degree of 
understanding of problems to be solved. 

Traditionally, solutions are represented in binary 
as strings of 0’s and 1’s, but other encodings are 
equally possible. The evolution usually starts from a 
population of randomly generated individuals, and is 
an iterative process, with the population in each 
iteration called a generation. In each generation, the 
fitness of every individual in the population is 
evaluated; the fitness is usually the value of the 
objective function in the optimization problem being 
solved. The more fit individuals are stochastically 
selected from the current population, and each 
individual's genome is modified (recombined and 
possibly randomly mutated) to form a new 
generation). The new generation of candidate 
solutions is then used in the next iteration of the 
algorithm. Commonly, the algorithm terminates 
when either a maximum number of generations has 
been produced, or a satisfactory fitness level has 
been reached for the population. 

 GA is an iterative procedure which tends to 
retain a candidate solution and sorts them in 
accordance to some indicator, generally referred as 
the fitness function, and uses genetic operators to 
compute it to produce a new generation of candidate 
solutions. The process is repeated until it meets 
some index of convergence. 

Figure 1 : The flow chart of genetic algorithm 

2.2 Basic Theory Of RBF Neural Network 

An RBF is a real-valued function whose value 
depends only on the distance from its receptive field 
center µ to the input x. It is a strictly positive 
radially symmetric function, where the center has 
the unique maximum, and the value drops off 
rapidly to zero away from the center. When the 
distance between x and µ (denoted as ||x-µ||) is 

smaller than the receptive field width σ, the function 
has an appreciable value. 

A typical RBF neural network has a three-layer 
feed-forward structure. The first layer is the input 
layer, which passes inputs to the (second) hidden 
layer without changing their values. The hidden 
layer is where all neurons simultaneously receive 
the n-dimensional real-valued input vector. Each 
neuron in this layer uses an RBF as the activation 
function. We made use of the Gaussian basis 
function [1], as it is one of the most popular choices 
for employment in RBF networks [2]. 

 Rj(x) = exp ( ||x-μj ||
2
 / 2σj

2
)               1) 

 Usually the distance in (1) is the Euclidean 
distance between x and μ, but in this paper we use a 
weighted bit-comparison based dissimilarity, and to 
make the distinction, we use ||x-μ|| to represent a 
generic distance, and ||x-μ||WBC for the weighted bit-
comparison-based dissimilarity, same as [3]. The 
third layer is the output layer. The output can be 
expressed as y = [y1,y2,y3,…,yk] with yi as the output 
of the ith neuron given by: 

 yi = 
h
∑j=1 wjiRj(x) for i=[1,k]               2) 

An RBF network implements a mapping from 
the dimensional real-valued input space to the 
dimensional real-valued output space with a hidden 
layer space in between. The transformation from the 
input space to the hidden-layer space is nonlinear, 
whereas the transformation from the hidden-layer 
space to the output space is linear [4]. Fig. 2 shows 
an RBF network with m neurons in the input layer, h 
neurons in the hidden layer, and k neurons in the 
output layer. The parameters to be trained are the 
centers (μ1, μ2,…,μh) and widths (σ1, σ2,…, σh) of 
the receptive fields of hidden layer neurons, and the 
output layer weights. 

 

Figure 2 : A sample three-layer RBF neural network 
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2.3 Optimized RBF Algorithm Based on 

Genetic Algorithm 

RBF networks can self-adaptively adjust the 
hidden layer in the training stage according to 
specific problems. Hidden layer allocation can be 
decided by the capacity, the category, and the 
distribution of the training samples. It is capable of 
dynamically identifying center points and width of 
the hidden layer’s neurons and the hidden layer. 

The main content of using genetic algorithm to 
optimize RBF network includes the chromosome 
coding, the definition of fitness function, and the 
construct of genetic operators. The use of GA-RBF 
optimization algorithm can be seen as an adaptive 
system; it is to automatically adjust its network 
structure and connection weights without human 
intervention and make it possible to combine genetic 
algorithm with the neural network organically. [5] 

 

Figure 3 : The flow chart of GA-RBF algorithm 

2.3.1. Chromosome Encoding. Suppose the 
number of RBF neural network’s maximum hidden 
neurons is s and the number of output neurons is m. 

 Hidden layer’s neurons with binary coding, and 
the coding scheme are as follows: 

 c1c2 . . . cs.                          3) 

Here, the number of hidden layer neurons is 
encoded by binary encoding method, represented by 
ci, the value of which is 0 or 1. When ci =1, it means 
that the neuron exists; while ci=0 means that the 
neuron does not exist, and s represents the upper 
limit. 

 The weights with real encoding, coding scheme 
are as follows: 

 w11w21…ws1w12w22…ws2…w1mw2m…wsm         4) 

Here, the weights from hidden layer to output 
layer was encoded by real number encoding method, 
and ��� represents the connection weight from the 
ith output neuron to the jth hidden neuron. 

The threshold also with real encoding scheme is 
as follows: 

 θ1 θ2… θm                                              5) 

Here, the threshold of output layer neuron is also 
encoded by real number encoding method; �� 
represents the threshold of jth output neuron. 

So, in conclusion, the complete coding strand of 
one chromosome is the combination of the structure, 
connection weight, and threshold, and it is as 
follows: 

c1c2 . . . csw11w21…ws1w12w22…ws2…w1mw2m…wsm θ1 θ2… 

θm    6) 

2.3.2. Constructing Genetic Operator.  

(1) Selection operator. We are choosing 
proportional selection operator and using roulette 
wheel selection, which is the most commonly used 
method in genetic algorithm. The individuals with 
higher fitness will more likely be selected, while the 
individuals with lower fitness also have the chance 
to be selected, so that it keeps the diversity of the 
population under the condition of “survival of the 
fittest”. 

(2) Crossover Operator. We use single-point 
crossover operator as the crossover operator; each 
time we choose two individuals of parent generation 
to crossover so as to generate two new individuals, 
which are added into the new generation. We will 
repeat this procedure until the new generation 
population reaches the maximum size. We use 
single-point crossover although the complete 
procedure uses hybrid encoding; however, the 
crossover operation for binary encoding and real 
encoding is the same. 

The strategy of elitism selection is used here, 
that is, to retain several individuals with highest 
fitness to the next generation directly; this strategy 
prevents the loss of the optimal individual during 
the evolution. 

(3) Mutation Operator. Mutation operator uses 
reversal operator, as it uses hybrid encoding; 
different operations are applied to different code 
system. Binary encoding uses bit flipping mutation; 
that is to say, some bit of the chromosome may turn 
from1 to 0 or 0 to 1. For real encoding, we use 
Gaussian mutation; that means some gene of the 
chromosome will add a random Gaussian number. 

 

2.3.3. Calculate Fitness. Fitness function evaluation 
is the basis of genetic selection, so it will directly 
affect the performance of genetic algorithm. 
Therefore, the selection of fitness is very important 
as it directly affects the speed of genetic algorithm 
convergence and whether we can find the optimal 
solution. 
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 The original data sets are divided into 
training data sets and testing data sets, using the 
network training error and the number of hidden 
neurons to determine the RBF neural networks’ 
corresponding fitness of the chromosomes. 

Suppose the training error is �, the number of 
hidden layer neurons is �, and upper limit of the 
number of hidden layer neurons is �max. So the 
fitness � is defined by 

� � 	 
 �	 �	 


���                    7) 

In the formula, 	 is a constant number; this 
formula ensures that the smaller the network size 
(fewer hidden layer neurons) and the smaller the 
training error, the higher the corresponding fitness 
of chromosome. 

 

2.3.4. Parameters of RBF Neural Network.  

Three parameters of the RBF Neural Network 
can be adjusted: centers and its width of the hidden 
layer’s basis function and the connection weights 
between hidden layer and output layer. 

1. Basis Function Centers. We can select 

the s centers according to the experience; 

the spacing is d; the width of the selected 

Gaussian function is  
 

� � �
√�
                                                    8) 

 

2. Basis Function. We use K-mean cluster 

method to select the basis function; the 

center of each cluster is regarded as the 

center of basis functions. As the output is 

linear unit, its weights can be calculated 

directly by LMS method. We use the 

iterative formula (9) to modify the training 

error, so we can get the following optimal 

neural network algorithm: � � ∑ ��� 
 ��������                                  9) 

Here, e is the error fraction, tk is the actual value, 
and yk is the output of the neural network. 

 

2.3.5. The Basis Steps of GA-RBF Algorithm [5] 

Step 1. Set the RBF neural network, according to 
the maximum number of neurons in the hidden 
layers; use K-clustering algorithm to obtain the 
center of basis function; use formula (8) to calculate 
the width of the center. 

Step 2. Set the parameters of the GA, the 
population size, the crossover rate, mutation rate, 
selection mechanism, crossover operator and 
mutation operator, the objective function error, and 
the maximum number of iterations. 

Step 3. Initialize populations � randomly; its size 
is   (the number of RBF neural network is  ); the 
corresponding network to each individual is 
encoded by formula (6). 

Step 4. Use the training sample to train the initial 
constructed RBF neural network, whose amount is  ; use formula (7) to calculate the network’s output 
error �. 

Step 5. According to the training error � and the 
number of hidden layer neurons �, use formula (7) 
to calculate the corresponding chromosome fitness 
to each network. 

Step 6. According the fitness value, sort the 
chromosome; select the best fitness of the 
population, denoted by �!; verify � < �min or " ≥ "max; if yes, turn to Step 9; otherwise turn to Step 
7. 

Step 7. Select several best individuals to be 
reserved to the next generation New� directly. 

Step 8. Select a pair of chromosomes for single-
point crossover, to generate two new individuals as 
members of next generation; repeat this procedure, 
until the new generation reaches the maximum size 
of population ��; at this time, the coding will be 
done separately. 

Step 9. Mutate the population of new generation; 
binary coding part and real number coding part 
should use different mutation strategies. Then the 
new population is generated; set � = New�, " = " + 
1; return to Step 4. 

Step 10. Get the optimal neural network 
structure, and the iteration of genetic algorithm is 
terminated, which means the optimizing stopped. 

Step 11. The new neural network’s weight 
learning is not sufficient, so use LMS method to 
further learn the weights. 

End of the algorithm. 

 

3. FAULT LOCALIZATION USING GA-RBF 

NEURAL NETWORK 

Suppose we have a program P with m 
statements, executed on n test cases. Let sj be the jth 
statement of P. The vector #$%  provides us with 

information on how the program P is covered by test 
ti. In this paper, such coverage is reported in terms of 
which statements in P are executed by ti. We have  
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#$% � &'#$%(�, '#$%(�, … , �#$%�+, 
where 

'#$%(- � 	.
0, �0	��1��2�3�	�-	��	34�	#45�6�7	!�	����	�$1, �0	��1��2�3�	�-	��	#45�6�7	!�	����	�$ 								 

for 1 ≤ j ≤ m 

The value of result 69%  depends on whether the 

program execution of ti succeeds or fails. It has a 
value of 1 if the execution fails, and a value of 0 if 
the execution succeeds. We construct an RBF neural 
network with m input layer neurons, each of which 
corresponds to one element in a given #$% and one 

output layer neuron, corresponding to 6$% , the 

execution result of test ti. In addition, there is a 
hidden layer between the input and output layers. 
The overall network structure and the number of 
hidden neurons can be determined by using GA-
RBF algorithm (III-A). 

Once the neural network is trained, the mapping 
between the input and the output (test case and the 
corresponding execution result) can be predicted by 
it. Thus the trained neural network can now be used 
to identify suspicious code of a given program in 
terms of likelihood of containing bugs. In order to 
determine the degree of suspiciousness, a set of 
virtual test cases v1,v2…vm whose coverage vectors 
are #:; , #:< , … , #:� ,(Fig.4, (a)) where each test vj 

covers only one statement sj. 

 

 (a) Input coverage Vector for virtual test case 

 

(b) Output of the trained network are the 
suspiciousness with respect to corresponding statement 

Figure 4 : Input and output based on the example. 

[6],[7],[8] suggest that , if the execution of a test 
case fails, program bugs responsible for this failure 
are most likely to be contained in the corresponding 
execution slice, the statements executed by failed 
test case. Therefore, If the execution of vj fails, the 
probability that bugs are contained in sj is high. 
Therefore, we should examine the statements whose 
virtual test case fail. Finally the output 
corresponding to the virtual test case indicates that 
the larger value of result vj (6̂:>) implies higher 

degree of suspiciousness. 

Thus, the overall procedure for using the GA-
RBF algorithm in context of fault localization can 
be described as follows. 

• Build a modified RBF neural network with 

m input neurons and one output neuron. 

Each neuron is the hidden layer uses the 

Gaussian basis function as its activation 

function. 

• Use GA to optimize the network structure 

and weights of the RBF algorithm 

simultaneously. 

• Use LMS method for weights further 

learning. 

• Use the virtual coverage vectors #:>, 1 ≤ j 

≤ m as the inputs to the trained network to 

produce the outputs 6̂:> , 1≤ j ≤m. 

• Assign 6̂:> as the suspiciousness of the jth 

statement. 

The statement can now be examined one by one 

in descending order of suspiciousness, until a fault 

is located. The proposed technique can be 

represented in a diagram (Fig 5). 

 
 
Figure 5: Overall Diagram of proposed Fault 

Localization Model 
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4. EMPERICAL EVALUATION AND 

COMPARISION 

A comprehensive study and comparison is 
provided by [3] and [9] in context of software fault 
localization. Studies suggest that RBF neural 
network can be used effectively for fault 
localization. Comparisons in terms of effectiveness 
on the basis of less statements examined suggests 
that RBFBest is empirically better than Crosstab. In 
terms of number of faults versions, it is observed 
that RBF performs better than both Ochiai[11] and 
Jaccard[11]. Combining the results presented in [3] 
and those from previous study[12] which shows that 
RBF is also more effective than techniques such as 
Tarantula[13].Liblit05[14],and SOBER[15]. [3] 
suggests that RBF is more effective than 7 different 
competing fault localization techniques: Tarantula, 
SOBER,Liblit05, Ochiai, Jaccard, Crosstab, and 
H3C. 

However, the reduction in sampling rate 
adversely affects the ability of fault localization to 
distinguish one statement from another. The 
author[3] suggested to measure the effectiveness as 
the function of sampling rate. Thus indicating that 
higher number of the training sample would provide 
better mapping and effective classification by RBF 
neural Network. 

 

Figure 6: Total number of statements that must be 

examined as a function of sampling rate. 

 

 The RBF approach is similar to a support vector 

machine (SVM) methodology in that an input 

vector is mapped into a feature space (in our case 

the features are the neurons at the hidden layer of 

the modified RBF), and then a linear model is used 

to compute a weighted sum of features [10]. 

 [5] Suggests that the training success rate aspect 

of GA optimized RBF algorithm is superior to the 

traditional RBF algorithm. Operationally, GA-RBF 

algorithm takes more time and training error is 

equivalent to traditional RBF algorithm. From the 

recognition precision aspect, the GA-RBF-L 

algorithm’s classification precision is the best. 

(Fig7) 

Figure : 7 Comparision of the performance of RBF-

variations for waveform database 
 

5. CONCLUSION AND DISCUSSION 

In this paper, we propose a model and usage of a 

Genetically Optimized RBF neural network in 

context of software fault localization. The GA 

optimizes neural network structure and connect 

weight simultaneously and then uses LMS method 

to adjust the network further. GA-RBF algorithm 

takes more time in optimization, but it can reduce 

the time which is spent in constructing the network 

[5]. Thus, implementation in various fields [16] and 

competitive study suggests that GA-RBF algorithm 

is a self-adapted and intelligent algorithm [5] and 

provides better performance than traditional RBF 

techniques. Thus, the usage of GA-RBF network in 

context of fault localization is recommended by us 

and we intend to further optimize and improve the 

technique by inspecting on other aspects of same 

technique.  

The major challenge to implement the study is, 

first, the coverage data collection and second the 

neural network implementation. The code coverage 
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analysis of a code plays a vital role in order to train 

the neural network and the neural network itself 

may have various implementations. The 

effectiveness of the fault localization techniques 

based upon machine learning approaches is 

sensitive to Data Set size and also the neural 

network design and implementation.  
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