
Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

168

EFFECTIVE SOFTWARE FAULT LOCALIZATION USING

GA-RBF NEURAL NETWORK

1
DR. R.P. MAHAPATRA,

 2
ANURAG NEGI

1
Prof., Head Of Department, Department Of Computer Science and Engineering, SRM University, Delhi

NCR, INDIA
2
 M.Tech Student, Department Of Computer Science and Engineering, SRM University, Delhi NCR,

INDIA

E-mail:
1
mahapatra.rp@gmail.com,

2
anurag.negi1729@gmail.com

ABSTRACT

This paper proposes application of GA-RBF Neural Network Algorithm in context of software fault

localization. A neural network is trained on the basis of Code Coverage information of a test case and the

corresponding execution result, successful execution or failure. The weights and structure of the RBF

neural network is then optimized using Genetic algorithm. The hidden layer neurons number and

connection weights are encoded using binary encoding and real encoding respectively. For further leaning,

LMS (Least Mean Square) algorithm is used. A set of virtual test cases (each covering a single statement) is

then given input to the trained and optimized network. The output of the network is considered to be

“degree of suspiciousness” of the corresponding statement. Finally the statements are ranked on the basis of

their corresponding degree of suspiciousness.

Keywords: Software Fault Localization, GA-RBF Neural Network, Software Debugging, Genetic

algorithm, Radial Basis Function.

1. INTRODUCTION

Fault localization is the activity of identifying
the exact locations of program faults. In program
debugging, this is considered most tedious and time
consuming activity. In larger and complex programs
a high degree of time and effort is dedicated to the
identification of a fault in the software. Automatic
software fault localization techniques are used by
programmers to find out the exact location of the
fault in least amount of time. Major advantage of the
software fault localization techniques is the
identification of faults in complex programs with
more accuracy and less effort. This paper proposes
the application of GA-RBF neural network as fault
localization technique. Using Genetic Algorithm for
the optimization of a RBF neural network improves
the operating efficiency in dealing with complex
problems and also improves the precision of the
recognition.

The ability to learn is one of the several
advantage of Neural-Network based models over
other comparable models. Neural Networks are
considered to be more tolerant because of the
information distribution among the weights on the
connections. The capability of Neural Networks to
adapt and re-train to deal with minor changes in the
operating environment also makes neural networks
more popular among researchers.

Radial Basis Function (RBF) is a three-layer
feed-forward network with a single hidden layer.
This structure can be trained to learn an input-output
relationship based on a data set. In this paper, the
statement coverage of a test case is passed as the
input and the output is result (success or failure) of
corresponding program execution. The network is
further optimized using Genetic Algorithm ad
finally a virtual test case with only one statement
covered is used as an input to computer the degree
of suspiciousness of the corresponding statement in
terms of its likelihood of containing bugs. The
statements can then be ranked in descending order
of their suspiciousness, such that the statements can
be examined one by one.

The framework is similar to [3], however the
RBF- Neural Network is further optimized using
Genetic algorithm in order to improve efficiency
and precision of the technique.

2. GENETIC ALGORITHM AND RBF

NEURAL NETWORK

2.1 Basic Theory Of Genetic Algorithm

In a Genetic Algorithm, a population of
candidate (potential solution set) to an optimization
problem is evolved towards better solutions. The
population is composed of a certain number of
encoded gene individuals, which is the entities with
characteristic chromosome. The major setback in the

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

169

construction of a Genetic Algorithm based approach
is the solvable encoding method and design of
genetic operator. The successful application of the
GA is determined by the choice of genetic operator,
usage of different encoding method and degree of
understanding of problems to be solved.

Traditionally, solutions are represented in binary
as strings of 0’s and 1’s, but other encodings are
equally possible. The evolution usually starts from a
population of randomly generated individuals, and is
an iterative process, with the population in each
iteration called a generation. In each generation, the
fitness of every individual in the population is
evaluated; the fitness is usually the value of the
objective function in the optimization problem being
solved. The more fit individuals are stochastically
selected from the current population, and each
individual's genome is modified (recombined and
possibly randomly mutated) to form a new
generation). The new generation of candidate
solutions is then used in the next iteration of the
algorithm. Commonly, the algorithm terminates
when either a maximum number of generations has
been produced, or a satisfactory fitness level has
been reached for the population.

 GA is an iterative procedure which tends to
retain a candidate solution and sorts them in
accordance to some indicator, generally referred as
the fitness function, and uses genetic operators to
compute it to produce a new generation of candidate
solutions. The process is repeated until it meets
some index of convergence.

Figure 1 : The flow chart of genetic algorithm

2.2 Basic Theory Of RBF Neural Network

An RBF is a real-valued function whose value
depends only on the distance from its receptive field
center µ to the input x. It is a strictly positive
radially symmetric function, where the center has
the unique maximum, and the value drops off
rapidly to zero away from the center. When the
distance between x and µ (denoted as ||x-µ||) is

smaller than the receptive field width σ, the function
has an appreciable value.

A typical RBF neural network has a three-layer
feed-forward structure. The first layer is the input
layer, which passes inputs to the (second) hidden
layer without changing their values. The hidden
layer is where all neurons simultaneously receive
the n-dimensional real-valued input vector. Each
neuron in this layer uses an RBF as the activation
function. We made use of the Gaussian basis
function [1], as it is one of the most popular choices
for employment in RBF networks [2].

 Rj(x) = exp (||x-μj ||
2
 / 2σj

2
) 1)

 Usually the distance in (1) is the Euclidean
distance between x and μ, but in this paper we use a
weighted bit-comparison based dissimilarity, and to
make the distinction, we use ||x-μ|| to represent a
generic distance, and ||x-μ||WBC for the weighted bit-
comparison-based dissimilarity, same as [3]. The
third layer is the output layer. The output can be
expressed as y = [y1,y2,y3,…,yk] with yi as the output
of the ith neuron given by:

 yi =
h
∑j=1 wjiRj(x) for i=[1,k] 2)

An RBF network implements a mapping from
the dimensional real-valued input space to the
dimensional real-valued output space with a hidden
layer space in between. The transformation from the
input space to the hidden-layer space is nonlinear,
whereas the transformation from the hidden-layer
space to the output space is linear [4]. Fig. 2 shows
an RBF network with m neurons in the input layer, h
neurons in the hidden layer, and k neurons in the
output layer. The parameters to be trained are the
centers (μ1, μ2,…,μh) and widths (σ1, σ2,…, σh) of
the receptive fields of hidden layer neurons, and the
output layer weights.

Figure 2 : A sample three-layer RBF neural network

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

170

2.3 Optimized RBF Algorithm Based on

Genetic Algorithm

RBF networks can self-adaptively adjust the
hidden layer in the training stage according to
specific problems. Hidden layer allocation can be
decided by the capacity, the category, and the
distribution of the training samples. It is capable of
dynamically identifying center points and width of
the hidden layer’s neurons and the hidden layer.

The main content of using genetic algorithm to
optimize RBF network includes the chromosome
coding, the definition of fitness function, and the
construct of genetic operators. The use of GA-RBF
optimization algorithm can be seen as an adaptive
system; it is to automatically adjust its network
structure and connection weights without human
intervention and make it possible to combine genetic
algorithm with the neural network organically. [5]

Figure 3 : The flow chart of GA-RBF algorithm

2.3.1. Chromosome Encoding. Suppose the
number of RBF neural network’s maximum hidden
neurons is s and the number of output neurons is m.

 Hidden layer’s neurons with binary coding, and
the coding scheme are as follows:

 c1c2 . . . cs. 3)

Here, the number of hidden layer neurons is
encoded by binary encoding method, represented by
ci, the value of which is 0 or 1. When ci =1, it means
that the neuron exists; while ci=0 means that the
neuron does not exist, and s represents the upper
limit.

 The weights with real encoding, coding scheme
are as follows:

 w11w21…ws1w12w22…ws2…w1mw2m…wsm 4)

Here, the weights from hidden layer to output
layer was encoded by real number encoding method,
and ��� represents the connection weight from the
ith output neuron to the jth hidden neuron.

The threshold also with real encoding scheme is
as follows:

 θ1 θ2… θm 5)

Here, the threshold of output layer neuron is also
encoded by real number encoding method; ��
represents the threshold of jth output neuron.

So, in conclusion, the complete coding strand of
one chromosome is the combination of the structure,
connection weight, and threshold, and it is as
follows:

c1c2 . . . csw11w21…ws1w12w22…ws2…w1mw2m…wsm θ1 θ2…

θm 6)

2.3.2. Constructing Genetic Operator.

(1) Selection operator. We are choosing
proportional selection operator and using roulette
wheel selection, which is the most commonly used
method in genetic algorithm. The individuals with
higher fitness will more likely be selected, while the
individuals with lower fitness also have the chance
to be selected, so that it keeps the diversity of the
population under the condition of “survival of the
fittest”.

(2) Crossover Operator. We use single-point
crossover operator as the crossover operator; each
time we choose two individuals of parent generation
to crossover so as to generate two new individuals,
which are added into the new generation. We will
repeat this procedure until the new generation
population reaches the maximum size. We use
single-point crossover although the complete
procedure uses hybrid encoding; however, the
crossover operation for binary encoding and real
encoding is the same.

The strategy of elitism selection is used here,
that is, to retain several individuals with highest
fitness to the next generation directly; this strategy
prevents the loss of the optimal individual during
the evolution.

(3) Mutation Operator. Mutation operator uses
reversal operator, as it uses hybrid encoding;
different operations are applied to different code
system. Binary encoding uses bit flipping mutation;
that is to say, some bit of the chromosome may turn
from1 to 0 or 0 to 1. For real encoding, we use
Gaussian mutation; that means some gene of the
chromosome will add a random Gaussian number.

2.3.3. Calculate Fitness. Fitness function evaluation
is the basis of genetic selection, so it will directly
affect the performance of genetic algorithm.
Therefore, the selection of fitness is very important
as it directly affects the speed of genetic algorithm
convergence and whether we can find the optimal
solution.

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

171

 The original data sets are divided into
training data sets and testing data sets, using the
network training error and the number of hidden
neurons to determine the RBF neural networks’
corresponding fitness of the chromosomes.

Suppose the training error is �, the number of
hidden layer neurons is �, and upper limit of the
number of hidden layer neurons is �max. So the
fitness � is defined by

� � 	
 �	 �	

��� 7)

In the formula, 	 is a constant number; this
formula ensures that the smaller the network size
(fewer hidden layer neurons) and the smaller the
training error, the higher the corresponding fitness
of chromosome.

2.3.4. Parameters of RBF Neural Network.

Three parameters of the RBF Neural Network
can be adjusted: centers and its width of the hidden
layer’s basis function and the connection weights
between hidden layer and output layer.

1. Basis Function Centers. We can select

the s centers according to the experience;

the spacing is d; the width of the selected

Gaussian function is

� � �
√�
 8)

2. Basis Function. We use K-mean cluster

method to select the basis function; the

center of each cluster is regarded as the

center of basis functions. As the output is

linear unit, its weights can be calculated

directly by LMS method. We use the

iterative formula (9) to modify the training

error, so we can get the following optimal

neural network algorithm: � � ∑ ���
 �������� 9)

Here, e is the error fraction, tk is the actual value,
and yk is the output of the neural network.

2.3.5. The Basis Steps of GA-RBF Algorithm [5]

Step 1. Set the RBF neural network, according to
the maximum number of neurons in the hidden
layers; use K-clustering algorithm to obtain the
center of basis function; use formula (8) to calculate
the width of the center.

Step 2. Set the parameters of the GA, the
population size, the crossover rate, mutation rate,
selection mechanism, crossover operator and
mutation operator, the objective function error, and
the maximum number of iterations.

Step 3. Initialize populations � randomly; its size
is (the number of RBF neural network is); the
corresponding network to each individual is
encoded by formula (6).

Step 4. Use the training sample to train the initial
constructed RBF neural network, whose amount is ; use formula (7) to calculate the network’s output
error �.

Step 5. According to the training error � and the
number of hidden layer neurons �, use formula (7)
to calculate the corresponding chromosome fitness
to each network.

Step 6. According the fitness value, sort the
chromosome; select the best fitness of the
population, denoted by �!; verify � < �min or " ≥ "max; if yes, turn to Step 9; otherwise turn to Step
7.

Step 7. Select several best individuals to be
reserved to the next generation New� directly.

Step 8. Select a pair of chromosomes for single-
point crossover, to generate two new individuals as
members of next generation; repeat this procedure,
until the new generation reaches the maximum size
of population ��; at this time, the coding will be
done separately.

Step 9. Mutate the population of new generation;
binary coding part and real number coding part
should use different mutation strategies. Then the
new population is generated; set � = New�, " = " +
1; return to Step 4.

Step 10. Get the optimal neural network
structure, and the iteration of genetic algorithm is
terminated, which means the optimizing stopped.

Step 11. The new neural network’s weight
learning is not sufficient, so use LMS method to
further learn the weights.

End of the algorithm.

3. FAULT LOCALIZATION USING GA-RBF

NEURAL NETWORK

Suppose we have a program P with m
statements, executed on n test cases. Let sj be the jth
statement of P. The vector #$% provides us with

information on how the program P is covered by test
ti. In this paper, such coverage is reported in terms of
which statements in P are executed by ti. We have

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

172

#$% � &'#$%(�, '#$%(�, … , �#$%�+,
where

'#$%(- � 	.
0, �0	��1��2�3�	�-	��	34�	#45�6�7	!�	����	�$1, �0	��1��2�3�	�-	��	#45�6�7	!�	����	�$ 								

for 1 ≤ j ≤ m

The value of result 69% depends on whether the

program execution of ti succeeds or fails. It has a
value of 1 if the execution fails, and a value of 0 if
the execution succeeds. We construct an RBF neural
network with m input layer neurons, each of which
corresponds to one element in a given #$% and one

output layer neuron, corresponding to 6$% , the

execution result of test ti. In addition, there is a
hidden layer between the input and output layers.
The overall network structure and the number of
hidden neurons can be determined by using GA-
RBF algorithm (III-A).

Once the neural network is trained, the mapping
between the input and the output (test case and the
corresponding execution result) can be predicted by
it. Thus the trained neural network can now be used
to identify suspicious code of a given program in
terms of likelihood of containing bugs. In order to
determine the degree of suspiciousness, a set of
virtual test cases v1,v2…vm whose coverage vectors
are #:; , #:< , … , #:� ,(Fig.4, (a)) where each test vj

covers only one statement sj.

 (a) Input coverage Vector for virtual test case

(b) Output of the trained network are the
suspiciousness with respect to corresponding statement

Figure 4 : Input and output based on the example.

[6],[7],[8] suggest that , if the execution of a test
case fails, program bugs responsible for this failure
are most likely to be contained in the corresponding
execution slice, the statements executed by failed
test case. Therefore, If the execution of vj fails, the
probability that bugs are contained in sj is high.
Therefore, we should examine the statements whose
virtual test case fail. Finally the output
corresponding to the virtual test case indicates that
the larger value of result vj (6̂:>) implies higher

degree of suspiciousness.

Thus, the overall procedure for using the GA-
RBF algorithm in context of fault localization can
be described as follows.

• Build a modified RBF neural network with

m input neurons and one output neuron.

Each neuron is the hidden layer uses the

Gaussian basis function as its activation

function.

• Use GA to optimize the network structure

and weights of the RBF algorithm

simultaneously.

• Use LMS method for weights further

learning.

• Use the virtual coverage vectors #:>, 1 ≤ j

≤ m as the inputs to the trained network to

produce the outputs 6̂:> , 1≤ j ≤m.

• Assign 6̂:> as the suspiciousness of the jth

statement.

The statement can now be examined one by one

in descending order of suspiciousness, until a fault

is located. The proposed technique can be

represented in a diagram (Fig 5).

Figure 5: Overall Diagram of proposed Fault

Localization Model

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

173

4. EMPERICAL EVALUATION AND

COMPARISION

A comprehensive study and comparison is
provided by [3] and [9] in context of software fault
localization. Studies suggest that RBF neural
network can be used effectively for fault
localization. Comparisons in terms of effectiveness
on the basis of less statements examined suggests
that RBFBest is empirically better than Crosstab. In
terms of number of faults versions, it is observed
that RBF performs better than both Ochiai[11] and
Jaccard[11]. Combining the results presented in [3]
and those from previous study[12] which shows that
RBF is also more effective than techniques such as
Tarantula[13].Liblit05[14],and SOBER[15]. [3]
suggests that RBF is more effective than 7 different
competing fault localization techniques: Tarantula,
SOBER,Liblit05, Ochiai, Jaccard, Crosstab, and
H3C.

However, the reduction in sampling rate
adversely affects the ability of fault localization to
distinguish one statement from another. The
author[3] suggested to measure the effectiveness as
the function of sampling rate. Thus indicating that
higher number of the training sample would provide
better mapping and effective classification by RBF
neural Network.

Figure 6: Total number of statements that must be

examined as a function of sampling rate.

 The RBF approach is similar to a support vector

machine (SVM) methodology in that an input

vector is mapped into a feature space (in our case

the features are the neurons at the hidden layer of

the modified RBF), and then a linear model is used

to compute a weighted sum of features [10].

 [5] Suggests that the training success rate aspect

of GA optimized RBF algorithm is superior to the

traditional RBF algorithm. Operationally, GA-RBF

algorithm takes more time and training error is

equivalent to traditional RBF algorithm. From the

recognition precision aspect, the GA-RBF-L

algorithm’s classification precision is the best.

(Fig7)

Figure : 7 Comparision of the performance of RBF-

variations for waveform database

5. CONCLUSION AND DISCUSSION

In this paper, we propose a model and usage of a

Genetically Optimized RBF neural network in

context of software fault localization. The GA

optimizes neural network structure and connect

weight simultaneously and then uses LMS method

to adjust the network further. GA-RBF algorithm

takes more time in optimization, but it can reduce

the time which is spent in constructing the network

[5]. Thus, implementation in various fields [16] and

competitive study suggests that GA-RBF algorithm

is a self-adapted and intelligent algorithm [5] and

provides better performance than traditional RBF

techniques. Thus, the usage of GA-RBF network in

context of fault localization is recommended by us

and we intend to further optimize and improve the

technique by inspecting on other aspects of same

technique.

The major challenge to implement the study is,

first, the coverage data collection and second the

neural network implementation. The code coverage

Traini

ng

Succe

ss

Rate,

%

Test

Error

Numb

er of

hidde

n

neuro

ns

Opera

tion

time,

s

Classif

icatio

n

accur

acy, %

Traditional RBF 86 1.78 44 1.21 89

GA-RBF 100 1.97 28 1.62 87

GA-RBF-L 100 1.61 28 1.84 97

0

20

40

60

80

100

120

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

174

analysis of a code plays a vital role in order to train

the neural network and the neural network itself

may have various implementations. The

effectiveness of the fault localization techniques

based upon machine learning approaches is

sensitive to Data Set size and also the neural

network design and implementation.

REFERENCES :

[1] M. H. Hassoun, Fundamentals of Artificial

Neural Networks. Cambridge, MA: MIT Press,

1995.

[2] EP. Singla, K. Subbarao, and J. L. Junkins,

“Direction-dependent learning approach for

radial basis function networks,” IEEE Trans.

Neural Networks, vol. 18, no. 1, pp. 203–222,

January 2007.

[3] W.Eric Wong, Vidroha Debroy, Richard

Golden, Xiaofeng Xu, and Bhavani

Thuraisingham, “Effective Software Fault

Localization Using an RBF Neural NEtwork”,

IEEE TRANSACTIONS ON RELIABILITY,

VOL.61, NO.1, MARCH 2012

[4] S. Haykin, Neural Networks: A Comprehensive

Foundation, 2nd ed. New York: Prentice Hall,

1999.

[5] “A New Optimized GA-RBF Neural Network

Algorithm” Weikuan Jia, Dean Zhao, Tian

Shen, Chunyang Su, Chanli Hu, and Yuyan

Zhao, Computational Intelligence and

Neuroscience

Volume 2014 (2014), Article ID 982045,

Hindawi 13 October 2014.

[6] H. Agrawal, J. R. Horgan, S. London, and W.

E. Wong, “Fault localization using execution

slices and dataflow tests,” in Proceedings of

the 6th International Symposium on Software

Reliability Engineering, Toulouse, France, Oct.

1995, p. 143-15.

[7] W. E. Wong and Y. Qi, “Effective program

debugging based on execution slices and inter-

block data dependency,” Journal of Systems

and Software, vol. 79, no. 7, pp. 891–903, Jul.

2006.

[8] W. E. Wong, T. Sugeta, Y. Qi, and J. C.

Maldonado, “Smart debugging software

architectural design in SDL,” Journal of

Systems and Software, vol. 76, no. 1, pp. 15–

28, April 2005.

[9] Survey of Software Fault Localization for Web

Application [Vol.5, No.3, June 2015],

International Journal of Current Engineering

and Technology, Swati B. Ghaawate and

Sharmila Shinde

[10] T. Hastie, R. Tibshirani, and J. Friedman, The

Elements of Statistical Learning: Data Mining,

Inference, and Prediction. Berlin, Germany:

Springer, 2001.

[11] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J.

C. van Gemund, “A Practical Evaluation of

Spectrum-based Fault Localization,” Journal

of Systems and Software, vol. 82, no. 11, pp.

1780–1792, 2009.

[12] W. E. Wong, Y. Shi, Y. Qi, and R. Golden,

“Using an RBF neural network to locate

program bugs,” in Proceedings of the 19th

IEEE Intl. Symposium on Software Reliability

Engineering, Seattle, USA, November 2008,

pp. 27–38.

[13] J. A. Jones and M. J. Harrold, “Empirical

evaluation of the Tarantula automatic fault-

localization technique,” in Proceedings of the

20
th

 IEEE/ACM Conference on Automated

Software Engineering, Long Beach, California,

USA, Dec. 2005, pp. 273–282.

[14] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and

M. I. Jordan, “Scalable statistical bug

isolation,” in Proceedings of the 2005 ACM

SIGPLAN Conference on Programming

Language Design and

Implementation,Chicago, Illinois, USA, Jun.

2005, pp. 15–26.

[15] C. Liu, L. Fei, X. Yan, J. Han, and S. P.

Midkiff, “Statistical debugging: a hypothesis

testing-based approach,” IEEE Trans.

Software Engineering, vol. 32, no. 10, pp. 831–

848, Oct. 2006.

[16] C.Harpham, C.W.Dawson, M.R. Brown, A

review of genetic algorithms applied to

training radial basis function networks, Neural

computing and Applications, September 2004,

Volume 13, Issue 3, pp 193-201

