
Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

126

MAPPING UML TO OWL2 ONTOLOGY

1
OUSSAMA EL HAJJAMY,

2
KHADIJA ALAOUI,

3
LARBI ALAOUI ,

4
MOHAMED BAHAJ

1,2,4
 University Hassan I, FSTS Settat, Morocco

3
International University of Rabat 11100 Sala Al Jadida, Morocco

E-mail:
1
elhajjamyoussama@gmail.com,

2
khadija.alaoui.ma@gmail.com,

3
larbi.alaoui@hotmail.de,

4
mohamedbahaj@gmail.com

ABSTRACT

UML (Unified Modeling Language) is a standardized modeling language widely used by domain experts to

model real-world objects in developing object oriented applications. On the other hand, the

conceptualization, which is represented in OWL, is designed for use by applications that need to process the

content of information instead of just presenting information. Therefore, the problem of migrating UML to

OWL is becoming an active research domain. In this paper we present a detailed and comprehensive

comparison of the differences between the two languages, analyze the existing mapping methods between

them and propose a novel process of direct and automatic mapping solution UML2OWL2 that generalizes

these methods. Our process preserve the semantic of some features of UML class diagrams such as

inheritance, data types, types of associations (compositions, class associations, N-ary associations, reflexive

associations, dependency and simple associations …). It defines precise transformation rules and provides a

model of ontology while covering the semantic of the source UML class diagrams. A tool based on our

approach has also been developed and tested to demonstrate the practical applicability of our strategy.

Keywords: UML, OWL2, direct mapping, automatic mapping, semantic, ontology, UML class diagram

1. INTRODUCTION

UML, the Unified Modeling Language, is the

most used language in the requirements

specification [15] and design of object oriented

software in the middle tier of enterprise applications

and it is developed for the purpose of business and

general domain modeling. In the meantime OWL

[18] defines a common set of concepts and terms

that are used to describe and represent a domain of

knowledge and it is developed for representing

semantic information for the World Wide Web by

providing a vocabulary to represent classes, class’s

hierarchies, associations between classes and

properties.

Clearly, the formal structure of UML is quite

different from that of OWL. The major difference

between these languages is that the modeling of

OWL is less constrained than that of UML, which

means that many OWL models have no equivalent

in UML, and OWL provides more primitives than

UML such as the disjointness, union, intersection

and equivalence of classes. Consequently, the

limitation of UML for being used as a visual syntax

for knowledge representation, the increase of

semantic web technologies and the fast

development of web applications based on ontology

have all made the problem of migrating UML to

OWL an active research domain.

However the existing studies do not provide a

complete solution to this problem and so far there

still be no effective proposals that could be

considered as a standard method that preserves the

original structure of the source UML class

diagrams.

Our aim in this work is to take a further step in the

existing research works by identifying the

weaknesses and limitations of the different existing

techniques and proposals, and address other very

important aspects that have not been touched yet in

the world of conversion from UML to OWL. These

aspects are mainly related to inheritance

(generalization between classes, associations), data

types (enumeration, primitive and complex type)

and the different types of associations

(composition, class associations, N-ary

associations, dependency, reflexive and simple

associations).

We perform our work at two levels, one providing a

comparison of the existing mapping methods from

UML to OWL and the other proposing a novel

migration solution UML2OWL2 that generalizes

these methods, optimizes the constraints extraction

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

127

and refines the mapping rules to be more expressive

and less complicated.

The remainder of this paper is organized as follow.

In the following section we present an overview of

the different UML to OWL schema transformation

proposals. Needful terminology and several rules to

convert UML into OWL2 are presented in section

3. To illustrate how to combine the rules together

for a concise mapping, sections 4 and 5 respectively

outline the automatic mapping algorithm and its

implementation. Finally, section 6 includes some

conclusions and future work.

2. COMPARISON OF EXISTING MAPPING

METHODS

Due to the widespread use of UML and OWL

languages, it is no wonder that there are many

works in the literature whose goal is to study the

different relationships between UML and OWL and

propose a transformation from UML to OWL [1, 3,

5, 10, 11, 14, 17 and 18].

In this section we aim at giving a summarized

review of RDB-to-OWL existing methods. The

investigation of these methods is done with the

focus on their shortcomings with regards to the

relevant elements that are not considered in their

mapping process. In the following section all such

elements will be treated by our mapping strategy

and a comparison table of the different approaches

will is given with the UML class diagram elements

that are considered by each proposal and also the

strategy followed in order to translate them into

OWL ontology.

Cranefield [17] provide a UML-based visual

environment for modeling web ontology. He

creates an ontology in a UML tool and then save it

as an XMI-coded file. Then an XSLT stylesheet

translates the XMI-coded file into the

corresponding RDF Schema (RDFS). However this

method has inherent drawbacks because RDFS does

not have enough expressive power to capture the

knowledge and constraints of UML. Although the

work in [17] deals with the mapping of UML into

RDF we choose to also consider its mapping

approach in our comparison of existing works since

it could be considered as one of the starting works

that motivated the other approaches [1, 3, 5, 10, 11,

14, 18] that came after for the conversion from

UML into OWL.

In [14] and for mapping from UML into OWL,

Gherabi defined a correspondence between the

class diagrams of UML and OWL by using a

mathematical representation of the class diagram.

However this method neglects many properties of

the source UML class diagram such as the various

types of association and generalization, data types

and composition.

In [3] Zedlitz considered the mapping between

UML elements and OWL2 constructs such as

disjoint and complete generalization, generalization

between associations, composition and

enumeration. However, the constraints specific

model elements (e.g. composition, multiple

inheritance, datatypes and class association)

imposed on the model are not mapped. In an

extension of this work as presented in [5] Zedlitz

focused on the data types of static data models

often neglected in the previous approach and

showed some differences and similarities in the

representation of datatypes in UML and OWL2.

Furthermore, a formal algorithm and a tool have not

been introduced in their works.

Tschirner et al. described in [18] some

conversion rules from UML-data models to OWL.

They specify four main rules to map UML classes

and attributes to OWL classes and properties.

However, some important constraints (e.g.

disjointness, composition, n-ary association …)

were ignored in the transformation.

All aforementioned contributions and limitations

of the mapping approaches are summarized in

Table III which clearly shows the completeness of

our mapping strategy in comparison with these

works. Our strategy starts indeed from the

limitations of existing mapping approaches and

aims at giving concise mapping rules for all

relevant elements in UML class diagrams. Such

rules will be the basis for deriving a simple

conversion algorithm that we implement using the

programming language Java. We do it with the aim

to come up with a solution to all aforementioned

limitations of existing approaches in order to

provide the semantic world as complete as possible

conversion technique that allow to easily and fully

deduce all conceptual details of the considered

UML specifications relative to the analysis,

conception and design of the associated modeled

systems. This is fully justified by the need to handle

all relevant concepts of the domain being modeled

by considering there associated UML constructs in

the mapping process. Each of the previous works

does not handle many of such elements. In

particular all these do not treat the case of multiple

inheritance, dependency, complete generalization,

reflexive association and each of them treats the

other constructs only partially. In the following

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

128

section we propose to give clear and concise

conversion rules by taking into account all such

constructs of a UML class diagrams. The rules

allow us to derive an algorithm that is as simple as

possible and which does not use any intermediate

language.

3. UML TO OWL2 MAPPING RULES

In order to create better OWL2 ontologies from a

UML class model, we detail in this section our

migration solution and we comprehensively give

out the transformation rules. The proposed

conversion rules are based on considering all

possible cases in a UML class diagram.

Our approach begins with the extraction of the

structure of the source UML class diagram. Then,

by applying the rules of transformation from UML

to OWL2 we create the classes and the properties of

the objects and types of data that make up the

model of the ontology.

3.1. Mapping Classes

Rule 1. Both UML and OWL2 use classes to

represent concepts of a domain. Because both

concepts are similar a basic transformation can be

done.

Figure 1. Transformation of a class

3.2. Mapping Relationships

Before introducing our mapping rules for

relationships, we briefly give a new categorization

for all types of relations. The relations are divided

into the six following distinct categories:

Rel = {SAS, NAS, ASC, RAS}

� SAS (Simple association): specifies a
semantic relationship that can occur between
two different classes.

� NAS (N-ary association): is an association
among three or more classes. The NAS can be
defined as NAS = (AssocName, C1, C2… Cn)
, n>2, where C1, C2, …, Cn are the names of
the classes related by the association
"AssocName".

� CAS (Class Association): is a modeling
element that has both association and class

properties. It allows us to add attributes,
operations, and other features to associations

� RAS (Reflexive association): is an association
between instances of the same class.

Based on the aforementioned categorization our
mapping rules for relationships are as follows.

Rule 2. Every simple association in UML is

converted into an ObjectProperty axiom in OWL2.

If the navigability is given in both directions, then

"InverseObjectProperties" axiom is added to the

ontology.

Figure 2. Transformation of simple binary associations

Rule 3. For each N-ary association with n classes

(n>2) we create a new class, having a name equal to

the name of the association, whose instances are

instances of links in the association and n

ObjectProperty whose domains are the new class

and whose ranges are the classes attached to the

member ends of the association.

A

B

C

Assoc

A B

BA AB

Declaration (ObjectProperty(:AB))

ObjectPropertyDomain(:AB :A)

ObjectPropertyRange(:AB :B)

Declaration (ObjectProperty(:BA))

ObjectPropertyDomain(:BA :B)

ObjectPropertyRange(:BA :A)

InverseObjectProperties(:AB :BA)

A

Declaration(Class(:A))

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

129

Figure 3. Transformation of an N-ary association

Rule 4. A class association with attributes is

formally transformed to:

� an OWL class (named className), with data
property for every additional attribute and two
pairs of inverse object properties for every
class connected to the association class

� and object property chains between the
different classes connected to the association
class

Figure 4. Transformation of a class association

Rule 5. Every reflexive association in UML is

converted into OWL2 by using the

"ReflexiveObjectProperty" axiom.

Figure 5. Transformation of a reflexive association

3.3. Mapping Attributes

In a UML class diagram an attribute x in class C

can be one of the following:

Attr = {SimpleAttr, idAttr}

� SimpleAttr (Simple attribute): is an attribute
whose type is a Primitive Type.

� idAttr (id attribute): UML offers the
possibility to define a single key "idAttr" per
class. This latter can be used to enforce that

C

Attr: String

A B

A

AA1

AA2

ReflexiveObjectProperty(:AA1)

ReflexiveObjectProperty(:AA2)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Declaration(Class(: Assoc))

Declaration(ObjectProperty(:A_Assoc))

ObjectPropertyDomain(:A_Assoc :A)

ObjectPropertyRange(:A_Assoc :Assoc)

Declaration (ObjectProperty(:B_Assoc))

ObjectPropertyDomain(:B_Assoc :B)

ObjectPropertyRange(:B_Assoc : Assoc)

Declaration (ObjectProperty(:C_Assoc))

ObjectPropertyDomain(:C_Assoc :C)

ObjectPropertyRange(:C_Assoc : Assoc)

SubClassOf(:Assoc :A_Assoc)

SubClassOf(: Assoc :B_Assoc)

SubClassOf(: Assoc :C_Assoc)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Declaration (ObjectProperty(:C_A))

ObjectPropertyDomain(:C_A :C)

ObjectPropertyRange(:C_A :A)

Declaration (ObjectProperty(: A_C))

ObjectPropertyDomain(: A_C : A)

ObjectPropertyRange(: A_C : C)

InverseObjectProperty(: C_A : A_C)

Declaration (ObjectProperty(:C_B))

ObjectPropertyDomain(:C_B :C)

ObjectPropertyRange(:C_B :B)

Declaration (ObjectProperty(:B_C))

ObjectPropertyDomain(:B_C :B)

ObjectPropertyRange(:B_C :C)

InverseObjectProperty(: C_B : B_C)

Declaration(Data Property(:Attr))

DataPropertyDomain(:Attr :C)

DataPropertyRange(:Attr xsd:String)

SubObjectPropertyOf(

 ObjectPropertyChain(:A_C :C_B)

 :A_B)

 SubObjectPropertyOf(

 ObjectPropertyChain(:B_C :C_A)

 :B_A)

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

130

there are no two different instances of a class
for which all relations specified in the key
have an identical value.

Rule 6. For each SimpleAttr we create a data type

property by respectively associating with its domain

and range the URI of the class corresponding to the

attribute and the XSD type corresponding to the

type of the attribute in the UML class diagram.

Figure 6. Transformation of an attribute

Rule 7. idAttr implies that the values of the data

type property that represent this attribute must be

unique. Therefore, these properties must be

declared with HasKey properties.

Declaring a predicate as a HasKey property is

similar to saying that it is an

InverseFunctionalObjectProperty. The difference

between both is that:

� HasKey is applicable only to individuals that
are explicitly named by an IRI in ontology.

� InverseFunctionalObjectProperty is applicable
to any kind of individual (named individual,
anonymous individual, and any individual
whose existence is implied by existential
quantification).

Figure 7. Transformation of an id-attribute

3.4. Mapping data Types

A UML datatype is a classifier, similar to a class,

whose instances are identified only by their value.

It is shown using a rectangle symbol with keyword

«dataType». On the other hand an OWL2 datatype

is defined by assigning an Internationalized

Resource Identifier (IRI) to a DataRange using a

DatatypeDefinition axiom.

In the UML2OWL2 transformation process, this

aspect should not be ignored, especially as OWL2

comes with an elaborate support for datatype

properties.

DataType = {PrimType, ComplexType, Enum}

� PrimType (Primitive type): is a data type
which represents atomic data values, i.e.
values having no parts or internal structure.
UML supports the predefined primitive data
types defined in the PrimitiveTypes package
of the Auxiliary Constructs package.

� ComplexType (Complex type): In contrast to
primitive data types, complex data types have
an internal structure. For example attribute
whose type is a class, it belongs to a class and
connect it with another class.

� Enum (Enumeration): An enumeration in
UML is a designated collection of literals, is
used to create a datatype with a predefined list
of allowed values.

Rule 8. Primitive data types are transformed into

their corresponding datatype from XML Schema

because owl uses the majority of the datatypes

integrated into XML schema.

Rule 9. The UML to OWL2 transformation of

complex datatypes is similar to the transformation

of associations. Therefore the most similar concept

in OWL2 for a complex datatype is

"ObjectProperty" axiom. Therefore it is converted

to a unidirectional ObjectProperty.

Figure 8. Transformation of complex datatypes

Person

Nom: Name

« datatype »

Name

FirstName : String

LastName : String

A

idAttr: String

Declaration(DataProperty(:idAttr))

DataPropertyDomain(:idAttr :A)

DataPropertyRange(:idAttr xsd:String)
 HasKey(:A :idAttr)

A

Attr: String

Declaration(Data Property(:Attr))

 DataPropertyDomain(:Attr :A)

 DataPropertyRange(:Attr xsd:String)

Declaration(Class(:Person))

Declaration(Class(:Name))

Declaration (ObjectProperty(:Person_Nom))

ObjectPropertyDomain(:Person_Nom :Person)

ObjectPropertyRange(:Person_Nom :Name)

Declaration(Data Property(:FirstName))

DataPropertyDomain(:FirstName :Name)

DataPropertyRange(:FirstName xsd:String)

Declaration(Data Property(:LastName))

DataPropertyDomain(:LastName :Name)

DataPropertyRange(:LastName xsd:String)

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

131

Rule 10. In OWL 2 the data range "DataOneOf"

axiom is suitable for defining an equivalent

datatype to enumeration. DataOneOf defines a

datatype with a fixed predefined value space.

Figure 9. Transformation of an enumeration

3.5. Mapping Multiplicity Constraints

UML allows the user to specify the multiplicity for

the association’s source and target. OWL2 achieves

this by specifying minimum and maximum

cardinalities.

If a binary UML association has a multiplicity on

its both ends, then the corresponding OWL property

will be an inverse ObjectProperty, each having one

of the multiplicity declarations.

The following table gives the restrictions to apply

to object properties based on the UML cardinalities:

TABLE I. Transformation of multiplicity constraints

Rule11

Multiplicity
in UML

Equivalent into OWL 2

0..1 ObjectMaxCardinality(1 :A_B)

1..1 ObjectExactCardinality(1 :A_B)

0..n No restriction

1..n ObjectMinCardinality(1 :A_B)

3.6. Mapping Generalization-Specialization

The Generalization-Specialization relationship is a

relationship between the top class of a hierarchy,

called the super-class, and the lower level classes in

the hierarchy, called the sub-classes. The sub-

classes have the properties of the parent but also

have additional properties peculiar to the child. In

UML class models it is not only possible to use

generalization for classes but also for associations

and data types.

In this sense, the definition for a Generalization-

Specialization relationship can be specified as:

GS = {GSC, GSA, GSD}

� GSC: Generalization-Specialization between
classes and it is divided into five categories:

GSC = {GSCS, GSCD, GSCC, GSCDandC, MI}

• GSCS: Generalization-Specialization

relationship between classes without

constraints;

• GSCD: Disjoint (but not complete)

generalization-Specialization between

classes where an instance of one sub-class

must not be instance of another sub-class of

the generalization;

• GSCC: Complete generalization-

Specialization between classes where all

subclasses have been specified and no

additional subclasses can be added;

• GSCDandC: Disjoint and complete

generalization-Specialization between

classes;

• MI: Multiple inheritance indicates that a

class is an immediate subclass of several

other classes at the same time;

� GSA: In UML class diagrams it is not only
possible to use generalization-specialization for
classes but also for associations;

� GSD: Generalization-Specialization between
data types.

Due to the very similar structure and semantics of

Generalization elements in UML on the one hand

and SubClassOf or SubProperty axioms in OWL 2

on the other hand, a transformation from UML to

OWL2 is easily possible as follow:

Rule 12. For every two elements that are connected

via an instance of the UML meta-class

"Generalization" we create an instance of the OWL

meta-class "SubClassOf".

A

Attr: attrType

<<enumeration>>

attrType

Att1

Att2

Att3

Declaration(Datatype(:attrType))

DatatypeDefinition(

 :attrType

 DataOneOf("Att1" "Att2" "Att3")

)

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

132

Figure 10. Transformation of a generalization between

classes

Rule 13. We transform a disjoint (but not complete)

generalization-Specialization between classes by

adding a DisjointClasses axiom with all sub-

classes.

Figure 11. Transformation of a disjoint generalization

Rule 14. Complete Generalization-Specialization in

UML defines a class as a set of subclasses. We

transform this kind of constraint to OWL 2 by using

the "EquivalentClasses" and "ObjectUnionOf"

axioms.

Figure 12. Transformation of a complete generalization

Rule 15. In UML a disjoint and Complete

Generalization-Specialization states that all the

subclasses are pairwise disjoint and semantically

equivalent to the super-class. In this case, we use

the "DisjointUnion" axiom to generate its

equivalent in OWL 2.

Figure 13. Transformation of a disjoint and complete

generalization

A

B C

{disjoint, complete}

SubClassOf(:B :A)

SubClassOf(:C :A)

DisjointUnion(:A :B :C)

A

B C

{complete}

}

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

SubClassOf(:B :A)

SubClassOf(:C :A)

EquivalentClasses(:A

 ObjectUnionOf(:B :C))

 DisjointClasses(:B :C)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

SubClassOf(:B :A)

SubClassOf(:C :A)

DisjointClasses(:B :C)

A

B C

{disjoint}

A

B

Declaration(Class(:A))

Declaration(Class(:B))

SubClassOf(:B :A)

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

133

Rule 16. Multiple inheritance involves that an

instance of the sub-class is an indirect instance of

the super-classes. The element has to obey the

necessary conditions of all super classes and is

therefore an element of the intersection of all super

classes. This can be transferred to the OWL2 world

using "IntersectionOf" axiom.

Figure 14. Transformation of a multiple inheritance

Rule 17. Generalization between associations can

be transformed into OWL 2 by using "SubProperty"

axiom. Since the generalization between two

bidirectional associations must be transformed into

two “SubPropertyOf” axioms.

Figure 15. Transformation of a generalization between

associations

Rule 18. For the transformation of generalization

between datatypes, we define a new data range in

OWL2 by adding a "DatatypeDefintion" axiom.

This data range contains the sub-datatypes

combined in the "DataUnionOf" axiom.

<<datatype>>

AttrType

<<enumeration>>

AttrType1

Att1_1

Att1_2

Att1_3

<<enumeration>>

AttrType2

Att2_1

Att2_2

Att2_3

{complete}

A

C D

B
AB BA

CD DC

A

B C

Declaration(Class(:A))

 Declaration(Class(:B))

 Declaration(Class(:C))

 SubClassOf(:A

 IntersectionOf(:B :C))

 DisjointClasses(:B :C)

Declaration (ObjectProperty(:AB))

ObjectPropertyDomain(:AB :A)

ObjectPropertyRange(:AB :B)

Declaration (ObjectProperty(:BA))

ObjectPropertyDomain(:BA :B)

ObjectPropertyRange(:BA :A)

 InverseObjectProperty(:AB :BA)

Declaration (ObjectProperty(:CD))

ObjectPropertyDomain(:CD :C)

ObjectPropertyRange(:CD :D)

Declaration (ObjectProperty(:DC))

ObjectPropertyDomain(:DC :D)
ObjectPropertyRange(:DC :C)

 InverseObjectProperty(:CD :DC)

SubClassOf(:C :A)

 SubClassOf(:D :B)

 SubPropertyOf(:CD :AB)

 SubPropertyOf(:DC :BA)

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

134

Figure 16. Transformation of a generalization between

datatypes

3.7. Mapping a composition

CP (Composition): In UML a composition is a

special kind of association between classes that

specifies that every instance of a given class (of

parts) can be a part of at most one whole.

Rule 19. A direct mapping of a composition is not

feasible in OWL2 ontology. However, the part of

the whole can be transformed like other simple

associations into an "ObjectProperty" axiom by

taking into account the following restrictions:

� The composition association is antisymmetric.
We can transform this constraint by adding an
"AsymmetricObjectProperty" axiom.

� The composition association is irreflexive (a
class must not be in a composition relation to
itself). For this restriction we can use the
"IrreflexiveObjectProperty" axiom.

� An object of a class must not be part of more
than one composition. We can achieve this
restriction by adding
"InverseFunctionalObjectProperty" axiom.

Figure 17. Transformation of a composition

3.8. Mapping dependencies

A dependency in UML class diagram denotes that

the existence of a target class is dependent of a

source class.

Rule 20. For A direct mapping of a dependency is

not feasible in OWL2 ontology. Therefore the

dependency is transformed into a unidirectional

ObjectProperty with the name

"ClassSource_depend_ClassTarget". The domain

and the range are given according to the direction

of association.

Figure 18. Transformation of a dependency

4. UML TO OWL2 MAPPING ALGORITHM

Our approach aims at defining a correspondence

between the UML class diagram and OWL2

ontology. It consists of three separate phases as

shown in figure 19.

The first step stores the model information in

XMI document by using a Power Designer tool; the

XMI format (XML Metadata Interchange) makes it

possible to represent an UML model in an XML

format. In the second step the different elements of

the source UML class diagram (such as classes,

attributes, generalizations, compositions,

dependencies, and several relationships) as

mentioned in section 3 are extracted and used as the

input of our mapping algorithms. Finally the

transformation tool applies our algorithm based on

the list of rules to create the equivalent ontology in

owl2. Figure 19 below shows the architecture of

UML2OWL2 implementation.

A B

Declaration (ObjectProperty(:A_depend_B))

ObjectPropertyDomain(: A_depend_B :A)

ObjectPropertyRange(: A_depend_B :B)

A B

Declaration (ObjectProperty(:B_isPartOf_A))

ObjectPropertyDomain(: B_isPartOf_A :B)

ObjectPropertyRange(: B_isPartOf_A :A)

InverseFunctionalObjectProperty(:B_isPartOf_A)

IrreflexiveObjectProperty (: B_isPartOf_A)
AsymmetricObjectProperty (: B_isPartOf_A)

Declaration(Datatype(:AttrType))

Declaration(Datatype(:AttrType1))

Declaration(Datatype(:AttrType2))

DatatypeDefinition(

 :AttrType1

 DataOneOf(Att1_1 Att1_2 Att1_3))

DatatypeDefinition(

 : AttrType2

 DataOneOf(Att21_1 Att2_2 Att2_3))

DatatypeDefinition(

 :AttrType

 DataUnionOf(:AttrType1 : AttrType2))

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

135

Figure 19. UML2OWL2 framework architecture

In this section we will introduce our algorithm

for the automatic construction of OWL2 ontology

from a UML class diagram. The algorithm captures

important semantic properties of the UML class

diagram such as inheritance, enumeration,

composition, dependency … . Following the set of

rules that have been given in the previous section,

the problem that arises is how to apply the rules in

an efficient manner in the transforming process.

Different sequences of mapping the different

relations will lead to results with different

performances. For example a class should be

mapped before enumeration and data type.

Otherwise the mapping of a complete or disjoint

generalization may be blocked and postponed until

all subclasses are mapped into the owl2 ontology.

MapUMLClassDiagram()

Input: XMI Document

Output: OWL2 Ontology

Begin

 MappingClasses()

 MappingAssociations()

End

The algorithm has been divided into two parts. The

first part MappingClasses() is a function that

generates for each UML:class an OWL2:class and

calls the sub-functions MappingSubClassesOf()

and MappingAttributesOf() to respectively

convert the inheritance constraint and the attributes.

MappingClasses ()

Input: Class C

Begin

 For each Class Ci in XMI Document loop

 If (isDataType(Ci) = false and isEnumeration(Ci) = false) then

 Apply rule 1: Create OWL2 Class Ci

 If (HasChild(Ci) = true) then

 MappingSubClassesOf(Ci)

 End If

 MappingAttributes(Ci)

 End If

 End loop

End

UML class

diagram

XMI

document

Transformation tool

+

OWL2

ontology

Export with a power Designer tool

Mapping

Algorithm DOM

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

136

MappingSubClassesOf(C)

Input: Class C

Begin

 ListP =ListParentOf(C)

 ListCh = ListChildrenOf(C)

 If (ListP.Length > 1)

 Apply rule 16: MappMultipleInheritance(C)

 Else If (ListP.Length ≤ 1) then

 For each Child Chi in ListCh loop

 Apply rule 12: Create Chi SubClassOf C

 End loop

 If (ListCh.Length > 1) then

 If (GetStereotype = "disjoint, complete") then

 Apply rule 15: Create DisjointUnionAxiom(C, ListCh)

 Else If (GetStereotype = "disjoint") then

 Apply rule 13: Create DsjointClassesAxiom(ListCh)

 Else If (GetStereotype = "complete") then

 Apply rule 14: Create EquivalentClassesAxiom(A, ObjectUnionOfAxiom(ListCh))

 End If

 End If

 End If

End

MappingAttributes(C)

Input: Class C

Begin

 For each Attribute Ai in C loop

 If (isIdAttribute(Ai) =true) then

 Apply rule 7: Create DataProperty Ai with HasKey axiom

 Else

 If (isEnumeration(Ai) = true) then

 Apply rule 10: Create DataProperty Ai with a range of elements using DataOneOf axiom

 Else If (isComplexeType(Ai) = true) then

 Apply rule 9 to map a complex type

 Else

 Apply rule 6 : DataProperty Ai

 End If

 End If

 End loop

End

The other part of the algorithm Mapping-

Relationships(), converts the different types of

relations that can exist between classes in the UML

diagram. The relationships can be modeled in a

number of different ways, depending on the

association type (simple association, reflexive

association, N-ary association, composition,

dependency, class association).

MappingRelationships()

Input: Relation Rel

Begin

 For each Relation Reli in XMI Document

 If (ListOfRelatedRelations(Reli).Length > 2) then

 Apply rule 3 to map N-ary associations

 Else

 SouceRel = GetSouceClassOf(Reli)

 DestRel = GetDestClassOf(Reli)

 If (TypeOf(Reli) = Class) then

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

137

 Apply rule 4 to map Class Association

 Else If (TypeOf(Reli) = Composition) then

 Apply rule 19 to map composition

 Else If (TypeOf(Reli) = Dependency) then

 Apply rule 20 to map dependency

 End If

 Else

 If (SouceRel = DestRel) then

 Apply rule 5: Create ObjectProperty Reli and add ReflexiveObjectProperty axiom

 Else

 Apply rule 2 :Create ObjectProperty Reli

 End If

 End If

 End If

 If (HasChild(Reli) = true) then

 Apply rule 17: add SubPropertyOf axiom to map Generalization between associations

 End If

 Apply rule 11 to mapCardinality

 End loop

End

5. EXPERIMENTAL RESULTS

To evaluate the UML2OWL2 model a tool has

been developed. This tool takes as input an XMI

document that contains the overall elements of the

source UML class diagram. Then it extracts these

elements using DOM technology (Document

Object Model) and applies our mapping algorithm

to create the resulting OWL2 document. The tool is

implemented using Java solutions mainly due to its

platform-independent capabilities. DOM is

employed for an easy and efficient reading,

manipulation, and writing of an XMI document.

The DOM parser allows a convenient method for

accessing any piece of data in the XMI document

and also preserves the order of elements.

As an example, Figure 20 shows a section of a

UML class diagram developed using Rational Rose.

Figure 20. Example of a Class Diagram

Our implementation is based on the XMI version

1.1. The structure of the diagram is stored in XMI

documents using Unisys Rose XML Tools (version

1.3). Part of the XMI document is shown in Figure

21. In this example the XMI element <UML:Class

name="Adress"> matches with the class "Adress"

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

138

in the UML Class Diagram (Figure20), and the

attribute "City" is represented in the

<UML:Attrribute> element. Table III shows the

UML elements extracted from Figure 20 and the

corresponding XMI elements

Figure 21. Part of XMI document corresponding to the example of the class diagram of Figure 20

TABLE II. UML elements extracted from Figure 20 and the corresponding XMI elements

UML elements XMI elements

Class <UML:Class>

Attribute <UML:Attribute>

Association <UML:Association>

Class Association <UML:AssociationClass>

Multiplicity <UML:Multiplicity>

Generalization <UML:Generalization>

Enumeration <UML:Stereotype name="enumeration"

DataType <UML:DataType>

Composition
<UML:AssociationEnd aggregation =

'composite'>

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

139

In the following, we provide an example of our

platform conversion. Figures 22 and 23 respectively

show the screenshot of UML2OWL2 tool and the

OWL2 structure corresponding to the class diagram

in Figure 20.

Figure 22. Screenshot of UML2OWL2 tool

The basic ontology graph structure of our

example (Figure 20) is as follow:

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

140

Figure 23. The generated OWL2 ontology from the UML class diagram in Figure 20

To test the semantic consistency of our result

ontology we loaded it in the Protégé OWL editor.

The figure below (Figure 24) obtained using the

plugin OntoGraf protégé shows the hierarchy of the

classes.

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

141

Figure 24. Ontograf Diagram of the result Ontology

We have compared our method to some of the

existing approaches. The following table

summarizes all mentioned rules and the approaches

that have considered them.

TABLE III. UML TO OWL MAPPING COMPARISON METHODS

Constraints [1] [3] [5] [10] [11] [14] [17] [18] Our approach

Ontology preparation � � � � � � � � �

Classes � � � � � � � � �

Simple association � � � � � � � � �

N-ary association � � � � � � � � �

Class association � � � � � � � � �

Reflexive association � � � � � � � � �

Simple attribute � � � � � � � � �

id attribute � � � � � � � � �

Primitive type � � � � � � � � �

Complex type � � � � � � � � �

Enumeration � � � � � � � � �

Multiplicity � � � � � � � � �

Generalization without constraints � � � � � � � � �

Generalization Disjoint � � � � � � � � �

Generalization Complete � � � � � � � � �

Generalization Disjoint&Complete � � � � � � � � �

Multiple inheritance � � � � � � � � �

Generalization between association � � � � � � � � �

Generalization between data types � � � � � � � � �

Composition � � � � � � � � �

Dependency � � � � � � � � �

In this table we have identified commonalities and

differences between existing mapping techniques

and our mapping approach. With regards to our

evaluation, none of the existing transformation

tools satisfies requirements of transforming UML

class diagrams into OWL. Table III shows that

these transformation approaches do not provide a

complete solution to the problematic. Contrary to

these existing solutions our developed

UML2OWL2 approach achieves a complete

migration of UML class diagrams into OWL. Our

approach does this conversion in an automatic way,

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

142

captures richer knowledge of common UML

constructs and constraints and uses OWL2 as the

target ontology language. Our approach utilizes the

maximal intersection of UML features and OWL

features.

6. CONCLUSION AND PERSPECTIVES

In this paper, a systematic approach

UML2OWL2 for an automatic transformation of

conceptual models between UML class diagrams

and OWL2 is proposed. We especially gave a

thorough analysis and comparison of existing

mapping methods and identified their weaknesses

and limitations. As a result we gave a complete list

of elements that are crucial for the conversion and a

complete list of associated mapping rules.

One of the reasons to act so is the importance of

internationally standardized UML class diagrams as

a powerful description tool. They are indeed widely

used to tackle complexities of systems of the real

world to be conceptualized and to abstract from any

implementation platform. They offer a mean for

simple conceptual models that reveal ideas of

internal structure and behavior of the systems to be

modeled by using a variety of constructs. Another

reason is the importance of ontologies to the

Semantic Web that has led to the development of

the ontology languages RDf and OWL and

associated supporting tools.

With this in mind we recommend that research

goes a further step in encouraging the interaction

between UML world and the semantic one. In this

sense and with our UML2OWL2 algorithm our

objective is principally to fill the gap in the existing

mapping approaches from UML class diagrams into

OWL that is related to the non consideration by

these approaches of many of UML relevant

constructs and give a formalization of the steps

involved in the design of starting from and

considering various elements in a UML class

diagram.

Though some dissimilarity between structural

elements of UML and OWL we were able to give

concise rules for the mapping process and

accordingly build an associated mapping algorithm

Our implementation tool and case study show that

the proposed approach is effective. The tool is fully

automatic and allows obtaining schemas

meaningful for developers of semantic applications.

Compared to the existing approach, our new

solution optimizes constraints extraction, and

supports all of the most common UML elements

such as disjoint UML class annotations, attribute

datatypes other than primitives and all type of

associations. Thanks to OWL 2 the rules are also

refined to be more expressive and less complicated

using more expressive constructs (e.g., hasKey,

ReflexiveObjectProperty, exactcardinality,

DisjointClass, DisjointUinion, intersectionOf …).

OWL2 also simplifies many programmatic tasks

associated with ontologies, including ontology

querying and processing. In addition OWL2 can be

used to construct full applications that have

dependencies on complex ontologies.

A limitation of our mapping approach is that it

does not treat the mapping at the data-level yet. For

our future research related to this topic the focus

will be at this "data"-level in order to convert a

UML object diagram into the instances part of

ontology (ABOX) with all assertions of the

different elements from the schema level.

ACKNOLWDGEMENT

This paper is not within the framework of any

funded research project

REFERENCES

[1] A. BELGHIAT, M. BOURAHLA,

"Transformation of UML Models towards

OWL Ontologies", 6th International

Conference on Sciences of Electronics,

Technologies of Information and

Telecommunications (SETIT), 2012, pp. 840-

846.

[2] D. Gasevic, D. Djuric, V. Devedzic, V.

Damjanovi “Converting UML to OWL

ontologies”. In Proceedings of the 13 th

International World Wide Web Conference,

NY, USA, pp. 488-489. 2004

[3] J. Zedlitz, J. Jorke, N. Luttenberger, "From

UML to OWL2", Knowledge Technology:

Third Knowledge Technology Week, KTW

2011, Kajang, Malaysia, July 18-22, 2011

[4] J. Zedlitz, N. Luttenberger, " Conceptual

Modelling in UML and OWL-2", International

Journal on Advances in Software, vol 7 no 1 &

2, year 2014

[5] J. Zedlitz, N. Luttenberger, " Data Types in

UML and OWL-2", SEMAPRO 2013 : The

Seventh International Conference on Advances

in Semantic Processing

[6] K. Kiko, C. Atkinson, "A Detailed Comparison

of UML and OWL", 2008 , technical report

Journal of Theoretical and Applied Information Technology
 15

th
 August 2016. Vol.90. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

143

[7] L. Alaoui, O. EL Hajjamy, and M. Bahaj,

“RDB2OWL2: Schema and Data Conversion

from RDB into OWL2,” International Journal

of Engineering Research & Technology

(IJERT), vol. 3, Issue. 11, November 2014

[8] L. Alaoui, O. EL Hajjamy, and M. Bahaj,

"Automatic Mapping of Relational Databases

to OWL Antology," Int. J. Engineering &

Research Technology IJERT, Vol. 3, Issue 4

(April, 2014)

[9] L. Stojanovic, N. Stojanovic, R. Volz,

"Migrating data-intensive web sites into the

Semantic Web", In Proceedings of the 2002

ACM symposium on Applied computing (SAC

'02), pp.1100-1107, ACM, 2002

[10] M. Ahlonsou, E. Blanchard, H. Briand, F.

Guillet, "Transformation des concepts du

diagramme de classe UML en OWL full",

AEGC 2005, vol. RNTI-E-5, pp.13-18

[11] M. Bahaj, J. Bakkas, "Automatic Conversion

Method of Class Diagrams to Ontologies

Maintaining Their Semantic Features",

International Journal of Soft Computing and

Engineering (IJSCE) ISSN: 2231-2307,

Volume-2, Issue-6, January 2013

[12] M. K. Smith, C. Welty, D. L. McGuinness,

OWL Web Ontology Language Guide (W3C

Recommendation 10 February 2004) [EB/OL].

http://www.w3.org/TR/owl-features/, (last

modified on 10 February 2004)

[13] M. Schneider, S. Rudolph2, G. Rudolph,

“Modeling in OWL 2 without Restrictions

arXiv: 1212.2902 v3 [cs.AI] 28 Apr 2013

[14] N. Gherabi, M. Bahaj, "A New Method for

Mapping UML Class into OWL Ontology",

Special Issue of International Journal of

Computer Applications (0975 – 8887) on

Software Engineering, Databases and Expert

Systems – SEDEXS, September 2012

[15] OMG, “Unified Modeling Language,

Superstructure Version 2.4,” 2011,

http://www.omg.org/spec/UML/2.4/Superstruct

ure.

[16] S. Brockmans, R. M. Colomb, P. Haase, E. F.

Kendall, E. K. Wallace, C. Welty, G. T. Xie,

"A Model Driven Approach for Building OWL

DL and OWL Full Ontologies", 5th

International Semantic Web Conference, ISWC

2006, Athens, GA, USA, November 5-9, 2006.

Proceedings, pp 187-200, 2006

[17] S. Cranefield, "UML and the semantic web",

the first semantic web working Symposium,

pp.113-130. Stanford University, California

(2001).

[18] S.Tschirner, A.Scherp, S.Staab, "Semantic

access to INSPIRE". Terra Cognita Workshop

(2011)

[19] W.Xu, A. Dilo, "Modelling emergency

response processes: Comparative study on

OWL and UML", Proceedings of the Joint

ISCRAM-CHINA and GI4DM Conference,

Harbin, China, August 2008

[20] W3C, OWL Working Group,, “Web Ontology

Language (OWL)”

http://www.w3.org/2004/OWL, 2004

[21] W3C, OWL Working Group, “OWL 2 Web

ontology language document overview. W3C

Recommendation 27 October

2009,”http://www.w3.org/TR/owl2-overview/

[22] W3C, OWL Working Group, “OWL 2 Web

Ontology Language Structural Specification

and Functional-Style Syntax. W3C

Recommendation 11 December 2012,”

http://www.w3.org/TR/owl2-syntax/

