
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

154

AN ALGORITHM TO SELECT THE OPTIMAL
COMPOSITION OF THE SERVICES

1MOHAMMAD K. SEPEHRIFAR, 2KAMRAN ZAMANIFAR, 3MOHAMMAD B. SEPEHRIFAR

1M.Sc. Student, Department of Computer Science and Engineering, University of Isfahan, Iran
2Asstt. Prof., Department of Computer Science and Engineering, University of Isfahan, Iran

3Asstt. Prof., Department of Mathematics, University of Mississippi, USA

E-mail: mksepehrifar@eng.ui.ac.ir, zamanifar@eng.ui.ac.ir, moe@olemiss.edu

Abstract

Because of providing services to the users in the heterogeneous distributed environments, service oriented
systems are very important. Most of the time, the individual services do not have the sufficient conditions
to provide any services to the users. In order to resolve the aforementioned problem, one may compose
several individual services together.

In this paper, we propose a dynamic approach to select the best composition. This composition is selected
based on the quality and the compose-ability of participated services.

In the real life situation, we are facing with different servers, in which they present the same services with
the different interfaces. This proposed method considers these varieties. Another advantage of the proposed
approach in the paper is to recognize the feasibility of the composition process at any point of execution.

We introduce an algorithm with a better speedup and a less consumption of memory to select composition
of services dynamically. Needless to say, that this algorithm considers matching of interfaces of services.

Keywords: Dynamic Service Composition, Composed Service, Quality of Service (QoS),
Optimal Selection, Interface Matching

1 INTRODUCTION

In the recent years, the complexity of software
systems has become one of the main reasons
developing the distributed systems. Service-
oriented systems are one of the most applicable
distributed systems. These systems provide user’s
requirements through cooperation with a set of
distributed services inside of the networks such as
internet [1], [2].

One of the main problems in the field of
service-oriented systems is how to compose
services and how to manage this composition. For
doing the composition task, there are many
different procedures in the literature [3]-[6].
However, selecting the optimal composition from
different compositions still is an open problem [2].
In this paper, we address a solution for this
problem.

Section 2 studies the service oriented systems
and its related definitions. These definitions will be
used the next sections. In section 3, we introduce a
method to select the optimal composition of
services, dynamically. Section 4 shows the results
derived by a simulation study.

2 COMPOSING OF SERVICES

Service oriented systems are functioning based
on services. Composing of the services can make a
value added service.

These services provide service to the clients (A
person or a software module that gets benefits from
services of servers). A client may find its
appropriate services from the metadata information
of the services.

Of course, by increasing the number of services
and by expanding the space of system environment,
it is better to register the services through a service

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

155

broker. Moreover, having a more speed and a better
property of services are the reasons that a client
may use a service broker.

Each service has three properties as follows:
the quality, the interface and the functionality.

The quality of each service depends on
functional and non-functional requirements. In a
service, finding a proper output is called the
functional requirements. While the speed of the
computation of finding this output is called a non-
functional requirement. Based on some criteria, a
client gives score to each satisfied requirements. As
the result, this client may accept the immediate first
output or wait for a longer time to find a more
proper output.

In order to compare the quality of service, we
need to transfer the quality of the service into the
quantity values. We measure the total quality of
service (QoS) by using the total points that a client
assigns to each satisfied requirement. We calculate
this quantity (QoS) as follows: [7]

In the above formula, client assigns score wi to
the ith satisfied requirement and service s satisfies
this requirement with quality Scorei.

Interface is another property of the services.
Each service has two types of interfaces: Input and
output. Input interfaces indicate the input
parameters and output interfaces indicate the output
parameters. Two services are called match if output
parameters of one of them is the same as the input
parameters of the others. A community is a set of
services, which are matched together.

In order to increase the usability of services
most of the time we design services in such a way
that the functionality property of service could
solve the problems, which are simple and basic.
Software developers select the proper composition
of services to solve problems that are more
complex. By executing each of these compositions
through a specific process, they can reach to the

solution. This process is determined during
execution plan associated to the problem.

2-1 Execution plan
Compound task is a set of tasks to solve a

specific problem. In order to execute a compound
task one has to execute a set of tasks in the specific
order. In an execution plan, we show all tasks
related to the compound task with their assigned
position.

In the travel case study, we want to have a
correct and an optimal planning. To propose a set of
related selections, we need to have an organization
between different schedules.

In this problem, execution plan is designed in
such a way that one could travel between the two
points, the staying and visiting the destination point
and also be able to return. The execution plan for
travel problem is called itinerary. This itinerary is
designed based on the conditions of the traveler and
the environment. [8], [9]

Figure 1 illustrates part of this plan. In this
graph, tasks t1, t2, …, t5 and the process of the
execution between these tasks are shown (for
example task t5 is executed when task t4 is
accomplished). The fork streaming represents a
condition choice.

Figure 1: execution plan of travel problem

Depends on how many paths from the first task
to the last one involved, there are two types of
execution plans: the simple pipeline plan and the
complex plan.

The simple pipeline is the simplest execution
plan structured with only one path. The complex
plan has several paths; each path can be considered
as a simple pipeline. In Figure 1, the execution plan
is a complex plan.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

156

The service selection for the simple pipeline is
easier than that of complex plan. After getting the
optimal execution plans of these single pipelines,
we aggregate them into an overall composition
execution plan. In this paper, we specifically
discuss how to get the optimum execution plan of a
single pipeline path.

 By using methods introduced in [10] and [11], we
can divide a complex composition into several
single pipelines. This makes the process of
optimization much easier. Figure 2 shows the two
pipeline paths from Figure 1.

Figure 2: Complex pipeline divided into simple pipelines

After the selecting the optimal execution plan
for each simple pipeline, we need to combine such
plans in order to get an overall execution plan. We
can use the approach mentioned in [4], [10] and
[11] to combine execution plans into one overall
execution plan.

We are looking for the execution of a
compound task through execution of a set of
services. To do so, we need to design the execution
plan ([12], [13]) and then we may select the proper
service for the individual tasks. In the system
environment and for each task, there might be
several services. We label these services as the
candidate services. Thus, the execution of the
candidate services associate with the plan leads into
the executing of the composed service.

2-2 Composed service
In the system environment and for each task

there are many different candidate services, which
are provided by different providers. Selecting a
proper service from these services is a difficult and
sometimes impossible task. [8], [3] Automatic
service composition is one solution to this problem.
During the execution time, it means that one of the
components of the service-oriented system does
selecting and composition of services.

For each task in execution plan, we select a
service in which its interface is matched with its
adjacent services. Furthermore, the functionality of
the service shows its ability in doing the task.

In addition to the above properties, the selected
service must have the highest quality score (the
highest QoS) among the set of candidate services.
Finally, given these criteria, one may have an
optimized composed service.

We can consider the optimization process as
the local or global. In the local optimization
approach, we only select valid candidate nodes in
which they have the highest QoS value at each task
(greedy method). Then we can get a path that
represents the execution plan of services
composition. However, the path created by local
optimization may not be the heaviest path. That
means the overall QoS value of the execution plan,
which formed by services represented by nodes in
the path, may not be the global optimum execution
plan. We may adopt the global optimization to
select the execution plan. Needless to say, that
overall QoS of a composed service is calculated by
sum of QoS attribute of participant services.

To select the optimal composition, One may
either doing search among all services in the
design time (static approach) or, as the first step,
just searching for services of the current task and
after finding the candidate services for this stage we
go on to the next task (dynamic approach).
Dynamic selections are near to real life problems,
because the quality and the quantity of services are
changing frequently. [14]

In the next section, we introduce a method for
dynamic selection of the optimal composite service.

3 SELECTION OF OPTIMAL
COMPOSITION

Based on designed execution plan, we must
find a service for each task in runtime that finally
have the best possible composite service.

Therefore, we introduce a method that
considers each service as a graph node. With
attention to order of tasks in execution plan, we

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

157

connect nodes as the edge of the graph. After we
create the graph, by searching in the existed paths
we can find the best path. The set of services of that
path declares as the best composition. In 3-1this
section, we study how to create the graph and how
to do searching in the created graph.

3-1 Graph creation
All the proper services for each task in the

execution plan are requested from the service
broker. The service broker presents these services
in the form of different communities. Figure 3
shows an instance of the execution plan. Tasks are
presented as ellipses on the top of this figure and
the related candidate services are shown in column
under each task. Services in a community are
besieged in the same rectangles.

As mentioned earlier, we create the nodes of
the graph from some of the services. To connect
these nodes we use the weighted directed edges of
the graph. In Figure 3, the label near each edge is
the weight of that edge respectively.

s11

s12

s13
b

s21

s22

s23

s14

t1 t2 t3B E

s24

s32

s33

s31

e

Past Now

3

1

2

1

7
2

6

4

4

5

0

06

s42

s43

t4

s41

s44

5

8

Figure 3: Execution plan and candidate services

Algorithm 1 introduces the graph creation
operations completely. In this algorithm and for
each task, first we receive all candidate services.
Then we insert these services into a list in form of
the sets of the same community services. We name
this list as Now list (For example, the broker
introduces services s31, s32, s33 for task t3 in
Figure 3).

In the next step, we study each community in
the created list to figure out whether it has any
matched services in the list of previous task (Which
is called Past) or not. If such any services exist
(e.g. community of s31), we connect all services in

the two communities together two-by-two (e.g.
edges (s21, s31) and (s22, s31)). Then we assign the
quality of destination service (that is in the Now
list) to these new edges. In order to avoid the
superfluous searches, we delete that community
from the Past list.

If we cannot find any proper community for a
service in the list of previous task (e.g. the
community that has services s42 and s43 in Figure
3), we delete that community from the list of
studying task. The reason for this deletion is that we
do not need to search this community again, when
we start studying the next task. These deletions lead
decreasing of additional searches so that we can
create and search graph with a better speed.

In summary, at the beginning of the execution

for task n, the Now list has all candidate services
related to this list. Moreover, the Past list has
services from task n-1 that has at least one matched

Past=NULL; Now=NULL;

create_node(nb,B); create_node(nf,E);

foreach n in Tasks do{

 Past=Now; Now= get_cm(TRn);

 foreach CM in Now do{

 if n=1 then CMP= {B}

 else CMP= match(CM,Past);

 if CMP is not NULL then{

 foreach s in CM do{

 create_node(ns,s);

 foreach sp in CMP do

 add_edge(nsp,ns,Q(s));

 if n=k-1 then

 add_edge(ns,nf,0);
 }
 remove(CMP,Past);

 } else

 remove(CM,Now);
 }
 if Now is NULL then

throw("It is not feasible!");

}

Algorithm 1: Graph creation

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

158

service in the services of task n-2.1 For example, if
we are at the beginning of the execution for task t3,
the Now list has services s31, s32 and s33 and the
Past list has services s21, s22 and s23. (at this point
of execution, we do not know any services related
to the next tasks).

Hence, we do not create any graph node from
services that have not any matched services in the
previous task. This operation leads to the less
memory consumption as well. After executing the
algorithm, the final graph has all drawn edges and
services in Figure 3 (as nodes) except services s24,
s32, s42 and s43.

In some situation, however, we may not be able
to create any composed service from the services in
the system environment. In this case, the Now list
would be empty at the end of the execution for that
task. Therefore, we may inform the user that the
composition is not feasible and then we terminate
the execution.

In the Algorithm 1, each function is described
with these operations:

• create_node(nodeName,service):
Creates a graph node with assigned service
and called it as nodeName.

• get_cm(TRn): It requests all services from
service broker that can do the task n. Service
broker places all that services as a set of
communities of services and deliver to the
requester.

• match(CM,Past): It searches in the Past
list and return the community that is matched
with CM. if there are no such community,
returns NULL as the output.

• add_edge(node1,node2,Q): Connects a
directed edge from node1 to node2 and
determines its weight as Q.

• remove(community,list): Removes the
community from the list.

1 In the Past list, we have services of task n-1, in which they
can be accessed via first node of the graph (with at least one
path).

• throw(message): Terminates execution of
the algorithm with showing proper message to
the user.

After executing the Algorithm 1, a graph with
multiple paths is created. Only some of these are a
path from the service of the first task to the service
of the last task. We name these paths the execution
path, which connect the first node of the graph to
the last one (e.g. nodes b and e in Figure 3).

We also label each set of services on the
execution paths of the graph as the desired
composed service. In order to reach to the best
composition, we should select the best execution
path. This can be done by doing a search in the
graph to find the best path (the heaviest path).

3-2 Search in the graph
Overall quality of composed service is equal to

sum of quality of its participant services. In
searching a graph, one may select the composition
of several services that its sum is greater than the
others are. The paths with edges that have greater
weight will have services with a greater quality. In
order to find the best composite service, we select
heaviest path from the execution paths by executing
a search algorithm.

Exhaustive search algorithm is a
straightforward algoritm which computs the QoS
value for each possible execution plan. This
algorithm selects the best one from them. Surely, it
always produces the optimal execution plan. The
disadvantage of the search algorithm is the time and
memory consuming.

Several approaches have been presented to
solve the problem of selecting the heaviest path of
graph. Yan Gao et. al [15] proposes a six-step
approach with proper complexity. That approach
uses dynamic programming to solve the problem.

After accomplishing those steps, we get the
heaviest path of a graph. Services that are
represented by the nodes in the heaviest path will
construct a global optimum execution plan of a
simple pipeline services composition. In our
example, after searching the graph in Figure 3, the

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

159

path {b, s13, s23, s33, s44, e} is introduced as the
selected execution plan.

We may combine such execution plans of each
simple pipeline to get an overall execution plan of
the composition.

4 SIMULATION AND IMPLEMENTATION

In this section, we offer simulation study on the
implementation of the Algorithm 1 with a real life
example. Consider a system with Intel Pentium© IV
processor2 and 256 MB RAM. Also, consider the
C# programming language for this implementation.
We implement the Algorithm 1 on the above
system and then execute it on Microsoft XP©
operating system. We consider services with
random properties as input.

In addition to the all improvements that we
mentioned in the earlier sections, the proposed
approach does huge improvements on the time and
the memory consumption compare to the other
methods in the literature (e.g. [15] and [16]). As an
experimental evaluation, we implement both the
proposed approach in this paper and the latest work
in this area ([16]). To do this comparison, for both
of approaches, we calculate the time and the
memory consumption with the same input at the
execution time.

In order to compare time and memory
consumption of these approaches, we may consider
the varieties in the number of tasks, the number of
services and the number of types of service
interfaces during the time. The time of algorithm
execution shows the time consuming and the
number of nodes in the graph which determines the
memory consumption. We calculate these two
values for different executions with considering the
variation of one of those varieties.

 These results are illustrated in Figure 5 to
Figure 7. Chart "a" in each figure shows the
execution times of two algorithms. Chart "b" shows
the required memory for their execution
respectively; it means that in each chart, the top

2 Properties of the Celeron® D : 2.4 GH, 32 bit, 256 KB Cache
memory

curve diagram is related to the latest method in the
literature and the bottom curve is related to the
proposed approach in this paper (Figure 4 shows
the legend of these charts).

Figure 4: Legend of the charts

In Figure 5, we consider an execution plan with
twenty tasks in which the number of candidate
services is variable. We randomly select the type of
interface for each service from ten available types.

(a)

(b)

Figure 5: variety of number of candidate services

In Figure 6, the number of tasks is variable. For
each task, we consider fifty candidate services.
These candidates choose their interfaces from ten
available types.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

160

(a)

(b)

Figure 6: variety of number of tasks

In Figure 7, we consider an execution plan with
twenty tasks and fifty candidate services. Interface
of each service is selected from a variety number of
types.

(a)

(b)

Figure 7: variety of type of interfaces

5 CONCLUSION

In this study, we proposed an algorithm for
selecting an optimal composition of services
dynamically. In this algorithm, we first create a
graph from candidate services based on the
execution plan (with attention to their interfaces).
Then we label the best path in the graph as the
optimum composed service.

Considering variety of service interfaces makes
outputs of this algorithm more close to the real life
situation. This algorithm shows the feasibility of
the composition process at any point of the
execution.

In the simulated study, the experimental
evaluations show this algorithm has a better speed
and use the less memory space compare with other
similar approaches. The speedup in the creation and
the searching of graph leads to the overall speedup
of the execution. The aforementioned
improvements decrease the waste of the resources.

6 REFERENCES

[1] Mike P., Papazoglou and Willem-Jan van
den, Heuvel., "Service oriented architectures
approaches, technologies and research issues." s.l. :
The VLDB, Springer-Verlag, 2007, Issue 16, pp.
389-415.

[2] papazoglou, et al., "service-oriented
computing: state of the art and research

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

161

challenges." s.l. : IEEE Computer society, Nov.
2007, pp. 38-45.

[3] Budak, Arpinar, et al., "Ontology-Driven
Web Services Composition Platform." s.l. : IEEE
International Conference on E-Commerce
Technology (CEC'04), 2004.

[4] L., Zeng, et al., "Quality Driven Web
Services Composition." s.l. : 12th Int’l Conf,World
Wide Web(WWW), 2003.

[5] Jinghai, Rao and Xiaomeng, Su., "A Survey
of Automated Web Service Composition Methods."
s.l. : ICAPS, 2005.

[6] Biplav, Srivastava and Jana, Koehler.,
"Web Service Composition - Current Solutions and
Open Problems." s.l. : ICAPS, 2004.

[7] Benatallah, B., Sheng, Q. Z. and Dumas,
M., "The Self-Serv Environment for Web Services
Composition." s.l. : IEEE Internet Computing,
2003, Issue 1, Vol. 7, pp. 40 - 48.

[8] Ambite, J. L., et al., "Getting from Here to
There: Interactive Planning and Agent Execution
for Optimizing Travel." s.l. : Proceedings of the
Fourteenth Conference on Innovative Applications
of Artificial Intelligence (IAAI-2002), 2002.

[9] Knoblock, Craig A., "Building Software
Agents for Planning, Monitoring, and Optimizing
Travel." s.l. : ENTER, 2004.

[10] Zeng, Liangzhao, et al., "QoS-Aware
Middleware for Web Services Composition." s.l. :
IEEE Transactions on Software Engineering, 2004,
Issue 5, Vol. 30, pp. 311-327.

[11] Yu, Tao and Lin, Kwei-Jay., "Service
Selection Algorithms for Web Services with End-
to-end QoS Constraints." s.l. : Journal of
Information Systems and e-Business Management,
2005, Issue 2, Vol. 3, pp. 103-126.

[12] Sheshagiri, Mithun, desJardins, Marie and
Finin, Timothy., "A Planner for Composing
Services Described in DAML-S." s.l. : ICAPS,
2003.

[13] Sirin, Evren and Parsia, Bijan., "Planning
for Semantic Web Services." s.l. : Semantic Web
Conference (ISWC), 2004.

[14] Fluegge, Matthias, et al., "Challenges and
Techniques on the Road to Dynamically Compose
Web Services." s.l. : ICWE’06, ACM, 2007.

[15] Gao, Yan, et al., "Optimal Web Services
Selection Using Dynamic Programming." s.l. :
Proceedings of the 11th IEEE Symposium on
Computers and Communications (ISCC'06) , 2006.

[16] Gao, Yan, et al., "Optimal Selection of
Web Services for Composition Based on Interface-
Matching and Weighted Multistage Graph." s.l. :
Sixth International Conference on Parallel and
Distributed Computing, Applications and
Technologies (PDCAT’05) IEEE, 2005.

