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ABSTRACT 

There are so many important results toward finding the association rules. But, when we consider the sale of 
seasonal items then no algorithm existed till now that can able to mine the interesting pattern on time–
variant seasonal database. In view of this, we propose an Effective Miner (abbreviatedly as EM) algorithm 
to perform the mining for this problem as well as I conduct the corresponding performance studies. 
Furthermore, without fully considering the time-changing characteristics of items and transactions, it is 
noted that some discovered rules may be expired from user’s interest i.e rules generated in one season can 
not give the useful information in other season. Under EM we first partition the database on the bases of 
season i.e Yearly, Half Yearly or Quarterly etc according to user’s requirements and then we apply 
weighted mining on each partition. In EM (Effective Miner) the cumulative information of mining previous 
partitions is selectively carried over toward the generation of candidate itemsets for the subsequent 
partitions I have also applied scan reduction technique in EM due to that only two scan of database are 
required, means saving lots of time. 
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1.    INTRODUCTION 

The discovery of association 
relationship among the data in a huge database 
has been known to be useful in selective 
marketing, decision analysis, and business 
management. A popular area of applications is 
the market basket analysis, which studies the 
buying behaviors of customers by searching for 
sets of items that are frequently purchased either 
together or in sequence. For a given pair of 
confidence and support thresholds, the problem 
of mining association rules is to identify all 
association rules that have confidence and 
support greater than the corresponding minimum 
support threshold (denoted as min_supp) and 
minimum confidence threshold (denoted as 
min_conf). Association rule mining algorithms 
[5] work in two steps:  
(1) Generate all frequent itemsets that satisfy 
min_supp;  
(2) Generate all association rules that satisfy 
min_conf using the frequent itemsets 
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Fig 1.1 A time-variant transaction database 
 

On the other hand, a time-variant 
database, as shown in Figure 1.1, consists of 
values or events varying with time. Time-variant 
databases are popular in many applications, such 
as daily fluctuations of a stock market, traces of 
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a dynamic production process, scientific 
experiments, medical treatments, weather 
records, to name a few. In our opinion, the 
existing model of the constraint-based 
association rule mining is not able to efficiently 
handle the time-variant database due to two 
fundamental problems, i.e.,  
(1) Lack of consideration of the exhibition period 
of each individual transaction;  
(2) Lack of an intelligent support counting basis 
for each item. 
 

However, some phenomena are 
observed when we take the “item information” in 
Figure 1.2 into consideration.  
 
1.1 An early product intrinsically possesses a 
higher likelihood to be determined as a 
      frequent itemset. 
  As a result, the association rules we 
usually get will be those with long-term products 
such as “milk and bread are frequently purchased 
together”, which, while being correct by the 
definition, is of less interest to us in the 
association rule mining. In contrast, some more 
recent products, such as new books, which are 
really “frequent” and interesting in their 
exhibition periods, are less likely to be identified 
as frequent ones if a traditional mining process is 
employed.  
 
1.2 Some discovered rules may be expired 
from users’ interest.  

Some discovered knowledge may be 
obsolete and of little use. This is especially true 
when we perform the mining schemes on a 
transaction database of short life cycle products 
such as CPU, RAM, etc. 

Such mining results could be of less 
interest to our on-going mining works. For 
example, most researchers tend to pay more 
attention to the recently published papers. 
 
1.3 Different transactions are usually of 
different importance to the user.  

From the above discussions, it is noted 
that mining long period transaction data could 
have less contribution to making future business 
decisions because, for example, the selling items 
could be out of date. Since a new coming data is 
usually viewed more important than an old one, 
without fully considering this aspect, the 
knowledge discovered from the traditional 
mining framework may lead to wrong decisions. 
 
 

 
 
 
 
                
 
 
 
 
 

             Transaction Database 
 
Date TID Itemset 

 
 
 
 
 
 
 
D 

 
 
P1 

 
Jan-
08 

T1      B       D 
T2      B  C  D 
T3      B  C 
T4 A           D 

 
 
P2 

 
Feb-
08 

T5      B C       E 
T6                 D E 
T7 A B C 
T8         C  D  E 

 
 
P3 

 
Mar-
08 

T9     B  C      E F 
T10    B               F 
T11 A          D 
T12     B      D     F 

 
Figure 1.2: An illustrative transaction database and the 
corresponding item information 

 
Specifically, we propose an Effective 

Miner (abbreviatedly as EM) algorithm to 
perform the mining for this problem as well as 
conduct the corresponding performance studies. 
In algorithm EM, the importance of each 
transaction period is first reflected by a proper 
weight assigned by the user. Then, EM partitions 
the time-variant database in light of weighted 
periods of transactions and performs weighted 
mining.  

2.    PROBLEM DESCRIPTIONS 

Let n be the number of partitions with a 
time granularity, e.g., business-week, month, 
quarter, year, etc., in database D. In the model 
considered, Pi denotes the part of the transaction 
database where Pi is a subset of D. Explicitly, we 
explore in this paper the mining of transaction-
weighted association rules (abbreviatedly as 
weighted association rules), i.e.,  (X ⇒ Y)W, 
where X ⇒Y is produced by the concepts of 
weighted − support and weighted confidence. 

Item Starting Date 
A           Jan-07 
B          Apr-07 
C          Jul-07 
D         Aug-07 
E         Feb-07 
F         Mar-07 
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Further, instead of using the traditional support 
threshold min_ST = ⎡|D| × min_supp⎤ as a 
minimum support threshold for each item , a 
weighted minimum support for mining an 
association rules is determined by                                    
min_SW = {Σ |Pi| ×W (Pi)} × min_supp where 
|Pi| and W (Pi) represent the amount of partial 
transactions and their corresponding weight 
values by a weighting function W (·) in the 
weighted period Pi of the database D. Formally, 
we have the following definitions. 
 
Definition 2.1: 

 Let NPi(X) be the number of 
transactions in partition Pi that contain itemset X. 
Consequently, the weighted support value of an 
itemset X can be formulated as                   SW(X) 
= Σ NPi(X) × W (Pi). As a result, the weighted 
support ratio of an itemset X is    suppW(X) = 
SW(X) / Σ |Pi| × W (Pi). 

In accordance with Definition 2.1, an 
itemset X is termed to be frequent when the 
weighted occurrence frequency of X is larger 
than the value of min_supp required, i.e., 
suppW(X) > min_supp, in transaction set D. The 
weighted confidence of a weighted association 
rule (X ⇒ Y )W is then defined below. 
Definition 2.2: 

confW(X ⇒ Y) = suppW (X UY) / 
suppW (X). 
Definition 2.3:  

An association rule X ⇒ Y is termed a 
frequent weighted association rule           (X ⇒ 
Y)W if and only if its weighted support is larger 
than minimum support required, i.e., suppW(X U 
Y ) > min_supp, and the weighted confidence 
confW(X ⇒ Y ) is larger than minimum 
confidence needed, i.e., confW(X ⇒ Y ) > 
min_conf. 

 
3.    EFFECTIVE MINING 

It is noted that most of the previous 
studies, including those in [5], belong to Apriori-
like approaches. Basically, an Apriori-like 
approach is based on an anti-monotone Apriori 
heuristic [5], i.e., if any itemset of length k is not 
frequent in the database, its length    (k + 1) 
superitemset will never be frequent. The 
essential idea is to iteratively generate the set of 
candidate itemsets of length (k+1) from the set of 
frequent itemsets of length k (for k ≥ 1), and to 
check their corresponding occurrence 
frequencies in the database. 

 As a result, if the largest frequent 
itemset is a j-itemset, then an Apriori-like 

algorithm may need to scan the database up to (j 
+1) times. This is the basic concept of an 
extended version of Apriori-based algorithm, 
referred to as AprioriW, whose performance will 
be comparatively evaluated with algorithm EM 
in our experimental studies later. In fact, as will 
be validated by experimental results later, the 
increase of candidates often causes a drastic 
increase of execution time and a severe 
performance degradation, meaning that without 
utilizing the partitioning and Time support 
counting techniques proposed, a direct extension 
to priori work is not able to handle the weighted 
association rule mining efficiently. 

In [6], the technique of scan-reduction 
was proposed and shown to result in prominent 
performance improvement. By scan reduction, 
Ck is generated from Ck−1*Ck−1 instead of from 
Lk−1*Lk−1. Clearly, a C’3 generated from C2 * C2, 
instead of from L2* L2, will have a size greater 
than |C3| where C3 is generated from L2*L2. It 
can be seen that using this concept, one can 
determine all Lks by as few as two scans of the 
database (i.e., one initial scan to determine L1 
and a final scan to determine all other frequent 
itemsets), assuming that C’k for k ≥ 3 is 
generated from C’k −1 and all C’k for k > 2 can be 
kept in the memory. It will be seen that the 
Progressive mining technique used in algorithm 
EM will enable EM to obtain candidate set Ck 
with the size very close to that of Lk. This feature 
of EM allows itself of fully utilizing the 
technique of scan reduction and leads to 
prominent performance improvement over 
AprioriW.  

3.1 Algorithm of EM 

In general, databases are too large to be 
held in main memory. Thus, the data mining 
techniques applied to very large databases have 
to be highly scalable for efficient execution. As 
mentioned above, by partitioning a transaction 
database into several partitions, algorithm EM is 
devised to employ a Time filtering scheme in 
each partition to deal with the candidate itemset 
generation and process one partition at a time. 
For ease of exposition, the processing of a 
partition is termed a phase of processing. 
Explicitly, a Time candidate set of itemsets is 
composed of the following two types of 
candidate itemsets, i.e.,  
(1) The candidate itemsets that were carried over 
from the previous progressive candidate set in 
the previous phase and remain as candidate 
itemsets after the current partition is included 
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into consideration (Such candidate itemsets are 
called type α  candidate itemsets); and  
(2) The candidate itemsets that were not in the 
Progressive candidate set in the previous phase 
but are newly identified after only taking the 
current data partition into account (Such 
candidate itemsets are called type β candidate 
itemsets).  

 
Under EM, the cumulative information 

in the prior phases is selectively carried over 
toward the generation of candidate itemsets in 
the subsequent phases. After the processing of a 
phase, algorithm EM outputs a Progressive 
candidate set of itemsets, their occurrence counts 
and the corresponding partial supports required. 

Initially, a time-variant database D is 
partitioned into n partitions based on the 
weighted periods of transactions. The procedure 
of algorithm EM is outlined below, where 
algorithm EM is decomposed into four sub-
procedures for ease of description. C2 is the set 
of candidate 2-itemsets generated by database D. 
Recall that NPi(X) is the number of transactions 
in partition Pi that contain itemset X and W (Pi) 
is the corresponding weight of partition Pi.  

Algorithm EM (n, min_supp): Effective Miner  

Procedure I: Initial Partition, based on time i.e. 
yearly, half yearly, Quarterly etc. 
1. |D| = Pi=1, n |Pi|; 
2. C2 = ∅; 
 
Procedure II: Candidate 2-Itemset Generation 
1.  begin for i = 1 to n // 1st scan of D  
2.  begin for each 2-itemset X2 ∈ Pi 
3.     if ( X2 ∉ C2 ) 
4.   X2.count=NPi(X2)×W(Pi); 
5.   X2.start = i; 
6.   if ( X2.count ≥ min_supp    
                            × |Pi|×W(Pi) ) 
7.    C2 = C2 U X2; 
8.       if ( X2 ∈ C2 ) 
9.   X2.count = X2.count +  
                                      NPi(X2) ×W (Pi); 
10.   if ( X2.count < min_supp  
              ×∑m=X2.start,i(|Pm|×W(Pm)) ) 
11.    C2 = C2 − X2; 
12.   end 
13. end 
 
Procedure III: Candidate k-Itemset Generation 
1. begin while (Ck ≠∅ & k ≥ 2) 
2.  Ck+1 = Ck*Ck; 
3.   k = k +1; 

4. end 
 
Procedure IV: Frequent Itemset Generation 
1.  begin for i = 1 to n 
2.   begin for each itemset Xk ∈ Ck 
3.    Xk.count = Xk.count +  
                                    NPi (Xk)×W(Pi); 
4  end 
5.  end 
6.  begin for each itemset Xk ∈ Ck 
 
 
 
7.   if ( Xk.count ≥ min_supp           
                      ×∑m=1,n(|Pm|×W(Pm)) ) 
8.    Lk = Lk U Xk; 
9.   end 
10. return Lk; 
 

4.   PERFORMANCE STUDIES 

To assess the performance of algorithm 
EM, we performed several experiments on a 
computer. I have implemented EM in Visual 
Basic and MS Access as a backend. The 
performance comparison of EM and AprioriW is 
presented in Section 4.1 
 
4.1 Relative performances 

Note that as pointed out earlier, there is 
essentially no restriction on the form of 
weighting functions. In all the experiments 
shown we take transaction length 10, average 
length of frequent itemset is 5 and 1500 
transactions in database D. 

We use the notation Tx−Iy −Dm to 
represent a database in which D = m transaction, 
|T| = x, and |I| = y ie T10-I5-D1500 for x=10, 
y=5 and m=1500. 
We take a synthetic database of 4 years of 
transaction for our experimental results. 
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Figure 4.1: Relative performance studies between EM and AprioriW 
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5.   CONCLUSIONS 

 In this paper we design and evolutes the 
performance of EM (Time Weight Miner) with a 
synthetic data set in which time constraint play a 
major role. In experimental result it is shown that 
the three problems can be effectively solve with 
the help of EM. 

Problem 1. An early product intrinsically 
possesses a higher likelihood to be determined as 
a frequent itemset Problem 2. Some discovered 
rules may be expired from users’ interest 
Problem 3. Different transactions are usually of 
different importance to the user 

In addition to above problem we have seen that 
EM generate candidate itemsets as minimum as 
possible when support value decrease gradually 
to a lower value. Due to this in candidate 
generation step time taken by EM is very less in 
comparison to older algorithm in which we don’t 
consider time factor. 
 
 We also had shown the execution time 
comparison by graphs with Apriori Algorithm, 
that shows EM takes less time to Apriori.  
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