
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

136

EFFECTIVE MINER OF TIME-VARIANT DATA USING
WEIGHT FACTOR

1 RICHA SHARMA 2 PURUSHOTTAM SHARMA 3 DEEPAK NAGARIA

1Research Scholar (M.Tech) B.I.E.T Jhansi (U.P)
2Lecturer Amity University, Noida (U.P)

3Lecturer B.I.E.T, Jhansi (U.P)

Emails: richa_sharma06@ rediffmail.com , psharma5@amity.edu, deepaknagaria@gmail.com

ABSTRACT

There are so many important results toward finding the association rules. But, when we consider the sale of
seasonal items then no algorithm existed till now that can able to mine the interesting pattern on time–
variant seasonal database. In view of this, we propose an Effective Miner (abbreviatedly as EM) algorithm
to perform the mining for this problem as well as I conduct the corresponding performance studies.
Furthermore, without fully considering the time-changing characteristics of items and transactions, it is
noted that some discovered rules may be expired from user’s interest i.e rules generated in one season can
not give the useful information in other season. Under EM we first partition the database on the bases of
season i.e Yearly, Half Yearly or Quarterly etc according to user’s requirements and then we apply
weighted mining on each partition. In EM (Effective Miner) the cumulative information of mining previous
partitions is selectively carried over toward the generation of candidate itemsets for the subsequent
partitions I have also applied scan reduction technique in EM due to that only two scan of database are
required, means saving lots of time.

Keywords: Association Rules, Effective Miner, Database, Partition, Saving Time

1. INTRODUCTION

The discovery of association
relationship among the data in a huge database
has been known to be useful in selective
marketing, decision analysis, and business
management. A popular area of applications is
the market basket analysis, which studies the
buying behaviors of customers by searching for
sets of items that are frequently purchased either
together or in sequence. For a given pair of
confidence and support thresholds, the problem
of mining association rules is to identify all
association rules that have confidence and
support greater than the corresponding minimum
support threshold (denoted as min_supp) and
minimum confidence threshold (denoted as
min_conf). Association rule mining algorithms
[5] work in two steps:
(1) Generate all frequent itemsets that satisfy
min_supp;
(2) Generate all association rules that satisfy
min_conf using the frequent itemsets

 P1

 Pi

 Pj

Fig 1.1 A time-variant transaction database

On the other hand, a time-variant
database, as shown in Figure 1.1, consists of
values or events varying with time. Time-variant
databases are popular in many applications, such
as daily fluctuations of a stock market, traces of

Data for 1/2005

Data for 2/2007

Data for 1/2008

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

137

a dynamic production process, scientific
experiments, medical treatments, weather
records, to name a few. In our opinion, the
existing model of the constraint-based
association rule mining is not able to efficiently
handle the time-variant database due to two
fundamental problems, i.e.,
(1) Lack of consideration of the exhibition period
of each individual transaction;
(2) Lack of an intelligent support counting basis
for each item.

However, some phenomena are
observed when we take the “item information” in
Figure 1.2 into consideration.

1.1 An early product intrinsically possesses a
higher likelihood to be determined as a
 frequent itemset.
 As a result, the association rules we
usually get will be those with long-term products
such as “milk and bread are frequently purchased
together”, which, while being correct by the
definition, is of less interest to us in the
association rule mining. In contrast, some more
recent products, such as new books, which are
really “frequent” and interesting in their
exhibition periods, are less likely to be identified
as frequent ones if a traditional mining process is
employed.

1.2 Some discovered rules may be expired
from users’ interest.

Some discovered knowledge may be
obsolete and of little use. This is especially true
when we perform the mining schemes on a
transaction database of short life cycle products
such as CPU, RAM, etc.

Such mining results could be of less
interest to our on-going mining works. For
example, most researchers tend to pay more
attention to the recently published papers.

1.3 Different transactions are usually of
different importance to the user.

From the above discussions, it is noted
that mining long period transaction data could
have less contribution to making future business
decisions because, for example, the selling items
could be out of date. Since a new coming data is
usually viewed more important than an old one,
without fully considering this aspect, the
knowledge discovered from the traditional
mining framework may lead to wrong decisions.

 Transaction Database

Date TID Itemset

D

P1

Jan-
08

T1 B D
T2 B C D
T3 B C
T4 A D

P2

Feb-
08

T5 B C E
T6 D E
T7 A B C
T8 C D E

P3

Mar-
08

T9 B C E F
T10 B F
T11 A D
T12 B D F

Figure 1.2: An illustrative transaction database and the
corresponding item information

Specifically, we propose an Effective

Miner (abbreviatedly as EM) algorithm to
perform the mining for this problem as well as
conduct the corresponding performance studies.
In algorithm EM, the importance of each
transaction period is first reflected by a proper
weight assigned by the user. Then, EM partitions
the time-variant database in light of weighted
periods of transactions and performs weighted
mining.

2. PROBLEM DESCRIPTIONS

Let n be the number of partitions with a
time granularity, e.g., business-week, month,
quarter, year, etc., in database D. In the model
considered, Pi denotes the part of the transaction
database where Pi is a subset of D. Explicitly, we
explore in this paper the mining of transaction-
weighted association rules (abbreviatedly as
weighted association rules), i.e., (X ⇒ Y)W,
where X ⇒Y is produced by the concepts of
weighted − support and weighted confidence.

Item Starting Date
A Jan-07
B Apr-07
C Jul-07
D Aug-07
E Feb-07
F Mar-07

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

138

Further, instead of using the traditional support
threshold min_ST = ⎡|D| × min_supp⎤ as a
minimum support threshold for each item , a
weighted minimum support for mining an
association rules is determined by
min_SW = {Σ |Pi| ×W (Pi)} × min_supp where
|Pi| and W (Pi) represent the amount of partial
transactions and their corresponding weight
values by a weighting function W (·) in the
weighted period Pi of the database D. Formally,
we have the following definitions.

Definition 2.1:

 Let NPi(X) be the number of
transactions in partition Pi that contain itemset X.
Consequently, the weighted support value of an
itemset X can be formulated as SW(X)
= Σ NPi(X) × W (Pi). As a result, the weighted
support ratio of an itemset X is suppW(X) =
SW(X) / Σ |Pi| × W (Pi).

In accordance with Definition 2.1, an
itemset X is termed to be frequent when the
weighted occurrence frequency of X is larger
than the value of min_supp required, i.e.,
suppW(X) > min_supp, in transaction set D. The
weighted confidence of a weighted association
rule (X ⇒ Y)W is then defined below.
Definition 2.2:

confW(X ⇒ Y) = suppW (X UY) /
suppW (X).
Definition 2.3:

An association rule X ⇒ Y is termed a
frequent weighted association rule (X ⇒
Y)W if and only if its weighted support is larger
than minimum support required, i.e., suppW(X U
Y) > min_supp, and the weighted confidence
confW(X ⇒ Y) is larger than minimum
confidence needed, i.e., confW(X ⇒ Y) >
min_conf.

3. EFFECTIVE MINING

It is noted that most of the previous
studies, including those in [5], belong to Apriori-
like approaches. Basically, an Apriori-like
approach is based on an anti-monotone Apriori
heuristic [5], i.e., if any itemset of length k is not
frequent in the database, its length (k + 1)
superitemset will never be frequent. The
essential idea is to iteratively generate the set of
candidate itemsets of length (k+1) from the set of
frequent itemsets of length k (for k ≥ 1), and to
check their corresponding occurrence
frequencies in the database.

 As a result, if the largest frequent
itemset is a j-itemset, then an Apriori-like

algorithm may need to scan the database up to (j
+1) times. This is the basic concept of an
extended version of Apriori-based algorithm,
referred to as AprioriW, whose performance will
be comparatively evaluated with algorithm EM
in our experimental studies later. In fact, as will
be validated by experimental results later, the
increase of candidates often causes a drastic
increase of execution time and a severe
performance degradation, meaning that without
utilizing the partitioning and Time support
counting techniques proposed, a direct extension
to priori work is not able to handle the weighted
association rule mining efficiently.

In [6], the technique of scan-reduction
was proposed and shown to result in prominent
performance improvement. By scan reduction,
Ck is generated from Ck−1*Ck−1 instead of from
Lk−1*Lk−1. Clearly, a C’3 generated from C2 * C2,
instead of from L2* L2, will have a size greater
than |C3| where C3 is generated from L2*L2. It
can be seen that using this concept, one can
determine all Lks by as few as two scans of the
database (i.e., one initial scan to determine L1
and a final scan to determine all other frequent
itemsets), assuming that C’k for k ≥ 3 is
generated from C’k −1 and all C’k for k > 2 can be
kept in the memory. It will be seen that the
Progressive mining technique used in algorithm
EM will enable EM to obtain candidate set Ck
with the size very close to that of Lk. This feature
of EM allows itself of fully utilizing the
technique of scan reduction and leads to
prominent performance improvement over
AprioriW.

3.1 Algorithm of EM

In general, databases are too large to be
held in main memory. Thus, the data mining
techniques applied to very large databases have
to be highly scalable for efficient execution. As
mentioned above, by partitioning a transaction
database into several partitions, algorithm EM is
devised to employ a Time filtering scheme in
each partition to deal with the candidate itemset
generation and process one partition at a time.
For ease of exposition, the processing of a
partition is termed a phase of processing.
Explicitly, a Time candidate set of itemsets is
composed of the following two types of
candidate itemsets, i.e.,
(1) The candidate itemsets that were carried over
from the previous progressive candidate set in
the previous phase and remain as candidate
itemsets after the current partition is included

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

139

into consideration (Such candidate itemsets are
called type α candidate itemsets); and
(2) The candidate itemsets that were not in the
Progressive candidate set in the previous phase
but are newly identified after only taking the
current data partition into account (Such
candidate itemsets are called type β candidate
itemsets).

Under EM, the cumulative information

in the prior phases is selectively carried over
toward the generation of candidate itemsets in
the subsequent phases. After the processing of a
phase, algorithm EM outputs a Progressive
candidate set of itemsets, their occurrence counts
and the corresponding partial supports required.

Initially, a time-variant database D is
partitioned into n partitions based on the
weighted periods of transactions. The procedure
of algorithm EM is outlined below, where
algorithm EM is decomposed into four sub-
procedures for ease of description. C2 is the set
of candidate 2-itemsets generated by database D.
Recall that NPi(X) is the number of transactions
in partition Pi that contain itemset X and W (Pi)
is the corresponding weight of partition Pi.

Algorithm EM (n, min_supp): Effective Miner

Procedure I: Initial Partition, based on time i.e.
yearly, half yearly, Quarterly etc.
1. |D| = Pi=1, n |Pi|;
2. C2 = ∅;

Procedure II: Candidate 2-Itemset Generation
1. begin for i = 1 to n // 1st scan of D
2. begin for each 2-itemset X2 ∈ Pi
3. if (X2 ∉ C2)
4. X2.count=NPi(X2)×W(Pi);
5. X2.start = i;
6. if (X2.count ≥ min_supp
 × |Pi|×W(Pi))
7. C2 = C2 U X2;
8. if (X2 ∈ C2)
9. X2.count = X2.count +
 NPi(X2) ×W (Pi);
10. if (X2.count < min_supp
 ×∑m=X2.start,i(|Pm|×W(Pm)))
11. C2 = C2 − X2;
12. end
13. end

Procedure III: Candidate k-Itemset Generation
1. begin while (Ck ≠∅ & k ≥ 2)
2. Ck+1 = Ck*Ck;
3. k = k +1;

4. end

Procedure IV: Frequent Itemset Generation
1. begin for i = 1 to n
2. begin for each itemset Xk ∈ Ck
3. Xk.count = Xk.count +
 NPi (Xk)×W(Pi);
4 end
5. end
6. begin for each itemset Xk ∈ Ck

7. if (Xk.count ≥ min_supp
 ×∑m=1,n(|Pm|×W(Pm)))
8. Lk = Lk U Xk;
9. end
10. return Lk;

4. PERFORMANCE STUDIES

To assess the performance of algorithm
EM, we performed several experiments on a
computer. I have implemented EM in Visual
Basic and MS Access as a backend. The
performance comparison of EM and AprioriW is
presented in Section 4.1

4.1 Relative performances

Note that as pointed out earlier, there is
essentially no restriction on the form of
weighting functions. In all the experiments
shown we take transaction length 10, average
length of frequent itemset is 5 and 1500
transactions in database D.

We use the notation Tx−Iy −Dm to
represent a database in which D = m transaction,
|T| = x, and |I| = y ie T10-I5-D1500 for x=10,
y=5 and m=1500.
We take a synthetic database of 4 years of
transaction for our experimental results.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

140

Figure 4.1: Relative performance studies between EM and AprioriW

T10-I4-D1500

0

100

200

300

400

500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

min_supp (%)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

TWM
Apriori

T10-I6-D1500

0

100

200

300
400

500

600

700

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

min_supp (%)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

TWM
Apriori

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

141

5. CONCLUSIONS

 In this paper we design and evolutes the
performance of EM (Time Weight Miner) with a
synthetic data set in which time constraint play a
major role. In experimental result it is shown that
the three problems can be effectively solve with
the help of EM.

Problem 1. An early product intrinsically
possesses a higher likelihood to be determined as
a frequent itemset Problem 2. Some discovered
rules may be expired from users’ interest
Problem 3. Different transactions are usually of
different importance to the user

In addition to above problem we have seen that
EM generate candidate itemsets as minimum as
possible when support value decrease gradually
to a lower value. Due to this in candidate
generation step time taken by EM is very less in
comparison to older algorithm in which we don’t
consider time factor.

 We also had shown the execution time
comparison by graphs with Apriori Algorithm,
that shows EM takes less time to Apriori.

REFERENCES:

[1] Arun K Pujari. Data Mining: Techniques.

University Press (India) Private Ltd, 2005

[2] C.-H. Lee, C.-R. Lin, and M.-S. Chen.

Sliding-Window Filtering: An Efficient
Algorithm for Incremental Mining. Proc. of
the ACM 10th Intern’l Conf. on
Information and Knowledge
Management, November 2001

[3] J. Ale and G. Rossi. An Approach to

Discovering Temporal Association Rules.
ACM symposium on Applied Computing,
2000

[4] J. Han and M. Kamber. Data Mining:

Concepts and Techniques. Morgan
Kaufmann Publishers, 2000

[5] R. Agrawal, T. Imielinski, and A.

Swami. Mining Association Rules
between Sets of Items in Large Databases.
Proc. of ACM SIGMOD, pages 207—216,
May 1993

 [6] W. Wang, J. Yang, and P. Yu.

Efficient mining of weighted association

rules (WAR). Proc. of the Seventh ACM
SIGKDD International Conference on
Knowledge Discovery and Data Mining,
2000

