
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

92

A NUMERICAL METHOD FOR FREQUENT PATTERNS MINING

Norwati Mustapha, Mohammad-Hossein Nadimi-Shahraki, Ali B Mamat, Md. Nasir B Sulaiman
Department of Computer Science, Faculty of Computer Science and Information Technology,

 University of Putra Malaysia, Selangor, 43400, Malaysia

Email:{norwati,ali,nasir}@fsktm.upm.edu.my, nadimi@ieee.org

ABSTRACT

Frequent pattern mining is one of the active research themes in data mining. It plays an important role in all
data mining tasks such as clustering, classification, prediction, and association analysis. Identifying all
frequent patterns is the most time consuming process due to a massive number of patterns generated. A
reasonable solution is identifying maximal frequent patterns which form the smallest representative set of
patterns to generate all frequent patterns. In this paper, an efficient numerical method for mining frequent
patterns is proposed. This method is based on prime number characteristics to generate all frequent patterns
by using maximal frequent ones. There are two new properties introduced in this method; a novel tree
structure called PC_Tree and PC_Miner algorithm. The PC_Tree is a simple tree structure but yet capable
to capture the whole of transactions information with an efficient data transformation technique that utilizes
the prime number theory. The PC_Miner algorithm traverses the PC_Tree by using an efficient pruning
technique. The experimental results verify the compactness and the efficiency of mining shown by the
proposed method.

Keywords: Data Mining, Frequent Pattern, Maximal frequent pattern, Data Transformation.

1. INTRODUCTION

The explosive growth of many business,
government and scientific databases has far
outpaced human ability to interpret and digest this
data. Data mining therefore appears as a tool to
address the need of sifting useful information such
as hidden patterns from databases.

As shown in Fig 1, data mining is an essential
step in the process of knowledge discovery in
databases (KDD) to extract data patterns. It is a
composite process of multiple disciplines including
statistics, database systems, machine learning,
intelligent computing and information technology.

Fig1. KDD Process

Since the introduction of the Apriori algorithms
[2], frequent pattern mining is one of the active

research themes in data mining. It covers a broad
spectrum of data mining tasks including clustering,
classification, prediction, and association analysis.
Frequent patterns are itemsets or substructures that
exist in a data set with frequency no less than a user
specified threshold. Many algorithms have been
introduced to solve the problem of frequent pattern
mining more efficiently. They are almost based on
three fundamental frequent patterns mining
methodologies: Apriori, FP-growth and Eclat [8].

The Apriori-based algorithms almost suffer from
multiple database scan and candidate generation
problem. The FP-growth method needs twice
database scan. There have been introduced some
efficient FP-growth extensions which need only
once data base scan [12]. However, they almost
need a large amount of memory to fit the tree
structure which used in their method. The Eclat
uses a Boolean power set lattice that needs much
space to store the labels and tid-lists as well.

Identifying all frequent patterns is the most time
consuming process due to a massive number of
patterns generated and this is the problem that faced
by the above mentioned algorithms. For n items in
the domain of a transaction database, there are

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

93

O(2n) candidate pattern which should be computed
their frequency to find frequent patterns. A
reasonable solution is identifying maximal frequent
patterns which form the smallest representative set
of patterns to generate all frequent patterns [10, 13].
In this paper, an efficient numerical method for
mining frequent patterns is proposed. Particularly,
our method introduces a new method based on
prime number characteristics to find completed
frequent patterns by using maximal frequent
patterns. However, this numerical approach can be
extended for all data mining tasks. It is an
improvement of previous method that has been
proposed by us for maximal frequent pattern
mining [13]. However the tree structure, search
space pruning technique, and traversing technique
have mostly been changed in mining algorithm.
The proposed method includes an efficient data
transformation technique, a novel tree structure
called Prime-based encoded and Compressed Tree
or PC_Tree and also PC_Miner algorithm. Our
method needs only once database scan. The data
transformation technique utilizes prime number
theory and transforms all items existing in each
transaction into only a positive integer called
Transaction Value (TV). The experimental results
show that the size of data set can be reduced by
using this technique dramatically. The PC_Tree is a
novel and simple tree structure but yet efficient to
capture whole of transactions information by
keeping only their transaction values. The
PC_Miner algorithm traverses the PC_Tree by
using an efficient pruning technique to find the
maximal frequent patterns which form completed
set of the frequent patterns. An experimental
analysis has comprehensively been conducted on
the performance of the proposed method. The
experimental results verify the accuracy and
efficiency of the proposed method.

The rest of this paper is organized as follows.
Section 2 introduces the problem and reviews some
efficient related works. The proposed method is
described in section 3. The experimental results
and evaluation show in section 4. Finally, section 5
contains the conclusions and future works.

2. PROBLEM AND RELATED WORK

Frequent patterns are itemsets or substructures
that exist in a dataset with frequency no less than a
user specified threshold.

2. 1 Problem Description

Let L= {i1, i2 … in} be a set of items. Let D be a
set of database transactions where each transaction
T is a set of items and |D| be the number of
transactions in D. Given P= {ij … ik} be a subset of
L (j ≤ k and 1 ≤ j, k ≤ n) is called a pattern. The
support of a pattern P or S (P) in D is the number of
transactions in D that contains P. Pattern P will be
called frequent if its support is no less than a user
specified support threshold min_sup σ (0≤ σ
≤ |D|). The problem of frequent pattern mining is
finding all frequent patterns (FP) from dataset D
with respect to specified min_sup σ.

In many real applications especially in dense data
with long frequent patterns enumerating all possible
2L – 2 subsets of an L length pattern is infeasible
[5]. A reasonable solution is identifying a smaller
representative set of patterns from which all other
frequent patterns can be derived. Maximal frequent
patterns (MFP) form the smallest representative set
of patterns to generate all frequent patterns. In
particular, the MFP are those patterns that are
frequent but none of their supersets are frequent.
The problem of maximal frequent patterns mining
is finding all MFP in D with respect to σ.

The complexity of frequent patterns mining from
a large amount of data is generating a huge number
of patterns satisfying the minimum support
threshold, especially when min_sup σ is specified
low. This is because, all sub-pattern of a frequent
pattern are frequent as well. Therefore a long
pattern contains a number of shorter frequent sub-
patterns. Various kinds of frequent patterns can be
mined from different kinds of data sets. In this
research, we use itemsets (sets of items) as a data
set and the proposed method is for frequent itemset
mining, that is, the mining of frequent from
transactional data sets. However, it can be extended
for other kinds of frequent patterns.

2.2 Related work

The Apriori is a basic algorithm for finding
frequent patterns. It has been followed by several
variations for improving efficiency and scalability.
They almost suffer inherently from two problems;
multiple database scans that are costly and
generating lots of candidates [6].

Han et al. [9] proposed frequent pattern tree or
FP-Tree as a prefix-based tree structure, and an
algorithm called FP-growth. The FP-Tree stores
only the frequent items in a frequency-descending
order. The highly compact nature of FP-tree
enhances the performance of the FP-growth. The

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

94

FP-Tree construction requires two data scans. The
FP-growth unlike the Apriori algorithm mines the
complete set of frequent patterns without candidate
generation. The experimental results showed that
FP-Tree and almost all its extensions have a high
compactness rate for dense data set. However, they
need a large amount of memory for sparse data set
where probability for sharing common paths is low
[6, 12].

The presentation of data which will be mined is
an essential consideration in almost all algorithms.
The mining algorithms can be classified according
to two horizontal and vertical database layouts.
Both the Apriori and FP-growth methods use
horizontal data format (i.e., {TID: itemset}) to mine
frequent patterns. Zaki [15] proposed Eclat
algorithm or Equivalence CLASS Transformation
by using the vertical data format (i.e., {item:
TID_set}). The Eclat uses the lattice theory to
represent the database items. The results showed
that the Eclat outperforms Apriori significantly.
However, it needs an additional conversion step.
This is because most databases use a horizontal
format. Moreover, it uses a Boolean power set
lattice that needs to much space to store the labels
and tid-lists.

As said, to cope with the complexity of frequent
patterns mining problem, our method generates FP
from MFP. Many efficient algorithms have been
introduced to solve the problem of maximal
frequent pattern mining [10, 13]. Mostly, they
traverse a search space to find MFP. The key to be
an efficient traversing is the pruning techniques
which can remove some branches in the search
space. The pruning techniques used in efficient
algorithms can be categorized into two groups:

Subset frequency pruning: the all subsets of any
frequent pattern are pruned because they can not be
maximal frequent pattern.

Superset infrequency pruning: the all supersets of
any infrequent pattern are pruned because they can
not be frequent pattern.

The Pincer-Search algorithm [10] uses horizontal
data layout. It combines a bottom-up and a top
down techniques to mine the MFP. However search
space is traversed without an efficient pruning
technique. The MaxMiner algorithm [3] uses a
breadth-first technique to traverse of the search
space and mine the MFP. It makes use of a look
ahead pruning strategy to reduce database scanning.
It prunes the search space by both subsets
frequency and supersets infrequency pruning. The
DepthProject [1] finds MFP using a depth first

search of a lexicographic tree of patterns, and uses a
counting method based on transaction projections.
The DepthProject demonstrated an efficient
improvement over previous algorithms for mining
MFP. The Mafia [5] extends the idea in
DepthProject. It uses a search strategy that has been
improved by an effective pruning mechanism. The
MaxMiner, DepthProject and Mafia use Rymon’s
set enumeration [14] to enumerate all the patterns.
Thus these algorithms avoid having to compute the
support of all the frequent patterns.

The Flex [11] is a lexicographic tree designed in
vertical layout to store pattern P and list of
transaction identifier where pattern P appears. Its
structure is restricted test-and-generation instead of
Apriori-like is restricted generation-and-test. Thus
nodes generated are certainly frequent. The Flex
tree is constructed in depth-first fashion. The
experimental results showed the Flex is an efficient
algorithm to find long and representative patterns
MFP. However, it needs a large amount of memory
especially to store the list of transaction identifier.
This makes Flex is impossible to be fit in memory
by one database scan as for huge number of
frequent patterns generated.

3. PROPOSED METHOD

3.1. Data Transformation Technique

The presentation of database is an efficient
consideration in almost all algorithms. The most
commonly database layout is the horizontal and
vertical layout [15]. In both layouts, the size of
database is very large. As shown in Fig 1 the data
transformation is an essential process in data
preprocessing step which can reduce the size of
database. Obviously, reducing of the size of
database can enhance performance of mining
algorithms. Our method uses a prime-based data
transformation technique to reduce the size of
transaction database. It transforms each transaction
into a positive integer called Transaction Value
(TV) during of the PC_Tree construction as
follows: Given transaction T = (tid, X) where tid is
the transaction-id and X = {ij … ik} is the
transaction-items or pattern X. While the PC_Tree
algorithm reads transaction T, the transformer
procedure considers a prime number pr for each
item ir in pattern X, and then TVtid is computed by
Eq. (1) where T= (tid, X), X = {ij … ik} and ir is
presented by pr.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

95

 ∏=
k

j
rtid pTV (1)

Therefore, all transactions can be represented in
a compacted layout using this transformation
technique. In fact the transformer is a numerical
encoder which hides transaction information. The
transformation technique utilizes Eq. (1) based on
simple following definition.

“A positive integer N can be expressed by unique
product N = ppp mmm r

rK21
21 where pi is prime

number, rppp Lpp 21 and im is a positive
integer, called the multiplicity of ip ” [7].

For example, N = 1800=23*32*52.
Conceptually, there is no duplicated item in
transaction T. Hence we restrict the multiplicity
only to mi = 1 without losing any significant
information. Therefore N can be produced
by PPP r21 K .

To facilitate the understanding of the
transformation process used in our method, let’s
examine it through an example. Let item set L= {A,
B, C, D, E, F} and the transaction database, DB, be
the first two columns of Table 1 with eight
transactions. As shown in the fourth column of
Table 1, DB can be presented by TVs which very
smaller than original transactions.

TABLE 1

The transaction database DB and its Transaction Values

TID Items Transformed TV

1 A, B, C, D, E 2, 3, 5, 7, 11 2310
2 A, B, C, D, F 2, 3, 5, 7, 13 2730
3 A, B, E 2, 3, 11 66
4 A, C, D, E 2, 5, 7, 11 770
5 C, D, F 5, 7, 13 455
6 A, C, D, F 2, 5, 7, 13 910
7 A, C, D 2, 5, 7 70
8 C, D, F 5, 7, 13 455

Obviously, the compactness rate for real data can
be more than synthetic data used in the
experiments. This is because; the size of the TV
used for a transaction is almost independent of kind
of dataset, but the average length of items in real
datasets is bigger than in synthetic dataset. For
example third transaction T= (3, {A, B, E}) in Table
1 presents good identification numbers bought by a
customer; To= (3, {55123450, 55123452,

55123458}) from a market. Although the length of
items in To is bigger than T but both T and To can
be transformed into the same TV 66 by using our
data transformation technique. Hence it is an item-
length independent transformation technique. The
experiments showed that by applying this data
transformation technique, the size of real
transaction database can be reduced more than half.

3.2. PC_Tree Construction

Using tree structure in mining algorithms makes
two possibilities to enhance the performance of
mining. Firstly, data compressing by a well-
organized tree structure like FP-tree. Secondly,
reducing search space by using pruning techniques.
Thus the tree structures have been considered as a
basic structure in previous data mining research [8,
11, 12]. This research introduces a novel tree
structure called PC_Tree (Prime-based encoded and
Compressed Tree). Unlike the previous methods,
the PC_Tree is based on prime number
characteristics which can makes use of both
possibilities data compressing and pruning
techniques to enhance efficiency.

A PC_Tree includes of a root and some nodes
that formed sub trees as children of the root or
descendants. The node structure consisted mainly
of several different fields: value, local-count,
global-count, status and link. The value field stores
TV to records which transaction represented by this
node. The local-count field set by 1 during inserting
current TV and it is increased by 1 if its TV and
current TV are equal. The global-count field
registers support of pattern P which presented by its
TV.

In fact during of insertion procedure the support
of all frequent and infrequent patterns is registered
in the global-count field. It can be used for
interactive mining where min_sup is changed by
user frequently [12]. The status field is to keep
tracking of traversing. When a node visited in the
traversing procedure the status field is changed
from 0 to 1. The link field is to form sub trees or
descendants of the root.

Fig. 2 shows step by step construction of
PC_Tree for transactions shown in table 1. The
construction operation mainly consists of insertion
procedure that inserts TV(s) into PC_Tree based on
definitions below:

Definition 1: If TV of node nr and ns is equal
then sr = . Insertion procedure increases local -
count field of node nr by 1 if the current TV is
equal with TV of nr .

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

96

Definition 2:),,(1 rootnnnR jii K−= is a

descendant iff TV of node)(jriRn r ≤≤∈
can divide all TVs kept in
nodes),,,(21 rootnnnR jrrr K++= .

Definition 3: TV of the root is assumed null and
can be divided by all TVs.

Fig. 2(a) shows insertion of the first and second
transactions. The second TV with value 2730 can
not be divided by the first TV with value 2310 and
it creates a new descendant using definition 2 and
3. Transactions 3-7 are inserted into their
descendant based on definition 2 shown in Figure
2(b)-(e). The TV of eighth transaction with value
455 is equal with the fifth TV, and then the local-
count field of fifth TV is increased by 1 using
definition 1 shown in Figure 2(f) (shown in
underline).

Fig. 2 Step by step PC_Tree construction

Each TV in PC_Tree represents a pattern P and
the support of pattern P or S (P) is registered in the
global-count field. Given pattern P and Q have been
presented by TVP and TVQ respectively, the
PC_Tree has some nice below properties:

Property 1: The S (P) is computed by traversing
only descendants of TVP.

Property 2: P and Q belong to descendant R and S
(P) < S (Q) iff TVP can be divided by TVQ.

Property 3: Important procedures are almost done
only by two simple mathematic operations product
and division. Obviously using mathematic
operation enhances the performance instead of
string operation.

3.3. PC_Miner Algorithm

As explained in previous section, during of
insertion each TV in the PC_Tree, the following
procedures are done.

a) Item-frequency counting.
b) Local-counting.
c) Global-counting.
d) Descendant constructing.

The PC_Miner algorithm traverses the completed
PC_Tree to discover the MFP in top-down
direction. There is no need to database scan again,
because all information about items and patterns are
stored in the PC_Tree. However Figure 2(f) as a
completed PC_Tree didn’t show some information
like global-count stored in the tree. The miner
algorithm makes use of a combined pruning
strategy including both superset infrequency and
subset frequency pruning. As a result the search
space is reduced, which dramatically reduces the
computation and memory requirement and
enhances the efficiency. The superset infrequency
pruning is assisted by the frequency of items
computed during the PC-Tree construction. Table 2
shows the item frequency and considered prime
number for transaction database shown in Table 1.

TABLE 2

Frequency of items and supposed prime numbers

Item Prime number Item Frequency

A 2 6
B 3 3
C 5 7
D 7 7
E 11 3
F 13 4

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of
our method. All experiments were performed in a
time-sharing environment in a 2.4 GHz PC. All the
algorithms are implemented using C++.

In first experiment we use synthetic sparse
datasets T10I4D100k generated by the program
developed at IBM Almaden Research Center [2].
The number of transactions, the average transaction
length and the average frequent pattern length of
T10I4D100k are set to 100k, 10 and 4 respectively.
We consider p% of this dataset where p will be
increased from 10 to 100 to evaluate how the data

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

97

transform technique can compact the size of
dataset. Fig.4 shows comparison of the size of
original dataset with the size of transformed dataset
using our data transform technique.

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100
Number of Transaction (K)

Si
ze

 o
f D

at
as

et
 (K

)

Original Dataset Transformed Dataset

 Fig.4. Compactness of data transformation technique

In second experiment, we show the accuracy and
correctness of the method. This experiment is
conducted by using T10I4D100k and real dense
dataset mushroom from UCI Irvine Machine
Learning Repository [4] The Mushroom dataset
records consists of the characteristics of various
mushroom species, and the number of records, the
number of items and the average record length are
set to 8124, 119 and 23 respectively. Fig. 5 and 6
show the numbers of frequent patterns discovered
for the tests at varying min_sup on this datasets.
The results verify that our method can find all
frequent patterns.

1

10

100

1000

10000

100000

1000000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Min_sup(%)

N
um

be
r o

f F
re

qu
en

t P
at

te
rn

s

Fig.5. Number of Frequent Patterns in T10I4D100k

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10

Min_Sup (%)

N
um

be
r o

f F
re

qu
en

t P
at

te
rn

s (
K

)

 Fig.6. Number of Frequent Patterns in Mushroom

Third experiment is to compare the performance
of the PC-Miner with the Flex algorithms on the
dataset T10I4D100k. To allow a fair comparison of
algorithms, firstly find all MFP by using PC_Miner
and Flex separately. Then all FP is generated by
same procedure run in cached mode. Fig. 7 shows
the PC_Miner algorithm outperforms the Flex
algorithms.

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Min_Sup (%)

R
un

tim
e

(S
ec

)

PC_Miner Flex

Fig.7. Performance of PC-Miner vs. Flex

5. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a numerical method to
mine all frequent patterns efficiently. Our method
introduced an efficient data transformation
technique, a novel tree structure called Prime-based
encoded and Compressed Tree or PC_Tree and also
PC_Miner algorithm. The experiments verified the
compactness of the data transformation technique.
The PC_Tree presented well-organized tree
structure with nice properties to capture transaction
information. The PC_Miner reduced the search
space using a combined pruning strategy to
traverses the PC_Tree efficiently. The experimental

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

98

results showed the PC_Miner algorithm
outperforms the Flex algorithms.

Particularly, our method introduces a new
method based on prime number characteristics to
find completed frequent patterns by using maximal
frequent patterns. However, the numerical approach
can be extended for all data mining tasks. For
example, it can be applied in incremental mining of
frequent patterns where database transactions are
inserted, deleted, and/or modified. In addition, it
can also be used for interactive mining of frequent
patterns where minimum support threshold can be
changed to find new correlation between patterns.

REFERENCES

[1] Agarwal R. C., C. C. Aggarwal, and V. V. V.
Prasad, Depth First Generation of Long
Patterns, sixth ACM SIGKDD international
conference on Knowledge discovery and data
mining, pp. 108-118, 2000.

[2] Agrawal R. and R. Srikant, Fast Algorithms
for Mining Association Rules, Proc. 20th Int.
Conf. Very Large Data Bases, VLDB, vol.
1215, pp. 487499, 1994.

[3] Bayardo Jr R. J., Efficiently Mining Long
Patterns from Databases, ACM SIGMOD
international conference on Management of
data, pp. 85-93, 1998.

[4] Blake C. and C. Merz, Uci Repository of
Machine Learning Databases. University of
California – Irvine, Irvine, Ca, 1998.

[5] Burdick D., M. Calimlim, and J. Gehrke,
Mafia: A Maximal Frequent Itemset
Algorithm for Transactional Databases, 17th
International Conference on Data
Engineering, pp. 443-452, 2001.

[6] Ceglar A. and J. F. Roddick, Association
Mining, ACM Computing Surveys (CSUR),
vol. 38, 2006.

[7] Cormen T. T., C. E. Leiserson, and R. L.
Rivest, Introduction to Algorithms: MIT Press
Cambridge, MA, USA, 1990.

[8] Han J., H. Cheng, D. Xin, and X. Yan,
Frequent Pattern Mining: Current Status and
Future Directions, Data Mining and
Knowledge Discovery, vol. 15, pp. 55-86,
2007.

[9] Han J., J. Pei, Y. Yin, and R. Mao, Mining
Frequent Patterns without Candidate

Generation: A Frequent-Pattern Tree
Approach, Data Mining and Knowledge
Discovery, vol. 8, pp. 53-87, 2004.

[10] Lin D. I. and Z. M. Kedem, Pincer-Search: A
New Algorithm for Discovering the
Maximum Frequent Set, Advances in
Database Technology--EDBT'98: 6th
International Conference on Extending
Database Technology, Valencia, Spain., 1998.

[11] Mustapha N., M. N. Sulaiman, M. Othman,
and M. H. Selamat, Fast Discovery of Long
Patterns for Association Rules, International
Journal of Computer Mathematics, vol. 80, pp.
967-976, 2003.

[12] Nadimi-Shahraki M.H., N. Mustapha, M. N.
Sulaiman, and A. Mamat, Incremental
Updating of Frequent Pattern: Basic
Algorithms, Proceedings of the second
International Conference on Information
Systems Technology and Management
(ICISTM 08), pp. 145-148, 2008.

[13] Nadimi-Shahraki M.H., N. Mustapha, M. N.
B. Sulaiman, and A. B. Mamat, A New
Method for Mining Maximal Frequent
Itemsets, presented at International IEEE
Symposium on Information Technology,
2008. ITSim 2008., Malaysia, 2008, pp. 309-
312.

[14] Rymon R., Search through Systematic Set
Enumeration, Third International Conference
on Principles of Knowledge Representation
and Reasoning, pp. 539-550, 1992.

[15] Zaki M. J., Scalable Algorithms for
Association Mining, IEEE TRANSACTIONS
ON KNOWLEDGE AND DATA
ENGINEERING, pp. 372-390, 2000.

