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ABSTRACT 
 

Frequent pattern mining is one of the active research themes in data mining. It plays an important role in all 
data mining tasks such as clustering, classification, prediction, and association analysis. Identifying all 
frequent patterns is the most time consuming process due to a massive number of patterns generated. A 
reasonable solution is identifying maximal frequent patterns which form the smallest representative set of 
patterns to generate all frequent patterns. In this paper, an efficient numerical method for mining frequent 
patterns is proposed. This method is based on prime number characteristics to generate all frequent patterns 
by using maximal frequent ones. There are two new properties introduced in this method; a novel tree 
structure called PC_Tree and PC_Miner algorithm.  The PC_Tree is a simple tree structure but yet capable 
to capture the whole of transactions information with an efficient data transformation technique that utilizes 
the prime number theory. The PC_Miner algorithm traverses the PC_Tree by using an efficient pruning 
technique. The experimental results verify the compactness and the efficiency of mining shown by the 
proposed method. 

Keywords: Data Mining, Frequent Pattern, Maximal frequent pattern, Data Transformation. 
 
 
1.  INTRODUCTION 

 

The explosive growth of many business, 
government and scientific databases has far 
outpaced human ability to interpret and digest this 
data. Data mining therefore appears as a tool to 
address the need of sifting useful information such 
as hidden patterns from databases. 

As shown in Fig 1, data mining is an essential 
step in the process of knowledge discovery in 
databases (KDD) to extract data patterns. It is a 
composite process of multiple disciplines including 
statistics, database systems, machine learning, 
intelligent computing and information technology. 

  

 

Fig1. KDD Process 
 

Since the introduction of the Apriori algorithms 
[2], frequent pattern mining is one of the active 

research themes in data mining. It covers a broad 
spectrum of data mining tasks including clustering, 
classification, prediction, and association analysis. 
Frequent patterns are itemsets or substructures that 
exist in a data set with frequency no less than a user 
specified threshold. Many algorithms have been 
introduced to solve the problem of frequent pattern 
mining more efficiently. They are almost based on 
three fundamental frequent patterns mining 
methodologies: Apriori, FP-growth and Eclat [8].  

 

The Apriori-based algorithms almost suffer from 
multiple database scan and candidate generation 
problem. The FP-growth method needs twice 
database scan. There have been introduced some 
efficient FP-growth extensions which need only 
once data base scan [12]. However, they almost 
need a large amount of memory to fit the tree 
structure which used in their method. The Eclat 
uses a Boolean power set lattice that needs much 
space to store the labels and tid-lists as well.  

Identifying all frequent patterns is the most time 
consuming process due to a massive number of 
patterns generated and this is the problem that faced 
by the above mentioned algorithms.  For n items in 
the domain of a transaction database, there are 
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O(2n) candidate pattern which should be computed 
their frequency to find frequent patterns. A 
reasonable solution is identifying maximal frequent 
patterns which form the smallest representative set 
of patterns to generate all frequent patterns [10, 13]. 
In this paper, an efficient numerical method for 
mining frequent patterns is proposed. Particularly, 
our method introduces a new method based on 
prime number characteristics to find completed 
frequent patterns by using maximal frequent 
patterns. However, this numerical approach can be 
extended for all data mining tasks. It is an 
improvement of previous method that has been 
proposed by us for maximal frequent pattern 
mining [13]. However the tree structure, search 
space pruning technique, and traversing technique 
have mostly been changed in mining algorithm. 
The proposed method includes an efficient data 
transformation technique, a novel tree structure 
called Prime-based encoded and Compressed Tree 
or PC_Tree and also PC_Miner algorithm. Our 
method needs only once database scan. The data 
transformation technique utilizes prime number 
theory and transforms all items existing in each 
transaction into only a positive integer called 
Transaction Value (TV). The experimental results 
show that the size of data set can be reduced by 
using this technique dramatically. The PC_Tree is a 
novel and simple tree structure but yet efficient to 
capture whole of transactions information by 
keeping only their transaction values. The 
PC_Miner algorithm traverses the PC_Tree by 
using an efficient pruning technique to find the 
maximal frequent patterns which form completed 
set of the frequent patterns. An experimental 
analysis has comprehensively been conducted on 
the performance of the proposed method. The 
experimental results verify the accuracy and 
efficiency of the proposed method. 

The rest of this paper is organized as follows. 
Section 2 introduces the problem and reviews some 
efficient related works. The proposed method is 
described in section 3.  The experimental results 
and evaluation show in section 4. Finally, section 5 
contains the conclusions and future works.  

 

2. PROBLEM AND RELATED WORK 
 

Frequent patterns are itemsets or substructures 
that exist in a dataset with frequency no less than a 
user specified threshold.  

2. 1 Problem Description 

Let L= {i1, i2 … in} be a set of items. Let D be a 
set of database transactions where each transaction 
T is a set of items and |D| be the number of 
transactions in D. Given P= {ij … ik} be a subset of 
L (j ≤ k and 1 ≤  j, k ≤  n) is called a pattern. The 
support of a pattern P or S (P) in D is the number of 
transactions in D that contains P. Pattern P will be 
called frequent if its support is no less than a user 
specified support threshold min_sup σ (0≤  σ 
≤ |D|). The problem of frequent pattern mining is 
finding all frequent patterns (FP) from dataset D 
with respect to specified min_sup σ.  

In many real applications especially in dense data 
with long frequent patterns enumerating all possible 
2L – 2 subsets of an L length pattern is infeasible 
[5]. A reasonable solution is identifying a smaller 
representative set of patterns from which all other 
frequent patterns can be derived. Maximal frequent 
patterns (MFP) form the smallest representative set 
of patterns to generate all frequent patterns. In 
particular, the MFP are those patterns that are 
frequent but none of their supersets are frequent. 
The problem of maximal frequent patterns mining 
is finding all MFP in D with respect to σ. 

The complexity of frequent patterns mining from 
a large amount of data is generating a huge number 
of patterns satisfying the minimum support 
threshold, especially when min_sup σ is specified 
low. This is because, all sub-pattern of a frequent 
pattern are frequent as well. Therefore a long 
pattern contains a number of shorter frequent sub-
patterns. Various kinds of frequent patterns can be 
mined from different kinds of data sets. In this 
research, we use itemsets (sets of items) as a data 
set and the proposed method is for frequent itemset 
mining, that is, the mining of frequent from 
transactional data sets. However, it can be extended 
for other kinds of frequent patterns. 

2.2 Related work 

The Apriori is a basic algorithm for finding 
frequent patterns. It has been followed by several 
variations for improving efficiency and scalability. 
They almost suffer inherently from two problems; 
multiple database scans that are costly and 
generating lots of candidates [6]. 

Han et al. [9] proposed frequent pattern tree or 
FP-Tree as a prefix-based tree structure, and an 
algorithm called FP-growth. The FP-Tree stores 
only the frequent items in a frequency-descending 
order. The highly compact nature of FP-tree 
enhances the performance of the FP-growth. The 
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FP-Tree construction requires two data scans. The 
FP-growth unlike the Apriori algorithm mines the 
complete set of frequent patterns without candidate 
generation. The experimental results showed that 
FP-Tree and almost all its extensions have a high 
compactness rate for dense data set. However, they 
need a large amount of memory for sparse data set 
where probability for sharing common paths is low 
[6, 12]. 

The presentation of data which will be mined is 
an essential consideration in almost all algorithms. 
The mining algorithms can be classified according 
to two horizontal and vertical database layouts. 
Both the Apriori and FP-growth methods use 
horizontal data format (i.e., {TID: itemset}) to mine 
frequent patterns. Zaki [15] proposed Eclat 
algorithm or Equivalence CLASS Transformation 
by using the vertical data format (i.e., {item: 
TID_set}). The Eclat uses the lattice theory to 
represent the database items. The results showed 
that the Eclat outperforms Apriori significantly. 
However, it needs an additional conversion step. 
This is because most databases use a horizontal 
format. Moreover, it uses a Boolean power set 
lattice that needs to much space to store the labels 
and tid-lists.  

As said, to cope with the complexity of frequent 
patterns mining problem, our method generates FP 
from MFP. Many efficient algorithms have been 
introduced to solve the problem of maximal 
frequent pattern mining [10, 13]. Mostly, they 
traverse a search space to find MFP. The key to be 
an efficient traversing is the pruning techniques 
which can remove some branches in the search 
space. The pruning techniques used in efficient 
algorithms can be categorized into two groups: 

Subset frequency pruning: the all subsets of any 
frequent pattern are pruned because they can not be 
maximal frequent pattern. 

Superset infrequency pruning: the all supersets of 
any infrequent pattern are pruned because they can 
not be frequent pattern. 

The Pincer-Search algorithm [10] uses horizontal 
data layout. It combines a bottom-up and a top 
down techniques to mine the MFP. However search 
space is traversed without an efficient pruning 
technique. The MaxMiner algorithm [3] uses a 
breadth-first technique to traverse of the search 
space and mine the MFP. It makes use of a look 
ahead pruning strategy to reduce database scanning. 
It prunes the search space by both subsets 
frequency and supersets infrequency pruning. The 
DepthProject [1] finds MFP using a depth first 

search of a lexicographic tree of patterns, and uses a 
counting method based on transaction projections. 
The DepthProject demonstrated an efficient 
improvement over previous algorithms for mining 
MFP. The Mafia [5] extends the idea in 
DepthProject. It uses a search strategy that has been 
improved by an effective pruning mechanism. The 
MaxMiner, DepthProject and Mafia use Rymon’s 
set enumeration [14] to enumerate all the patterns. 
Thus these algorithms avoid having to compute the 
support of all the frequent patterns.  

The Flex [11] is a lexicographic tree designed in 
vertical layout to store pattern P and list of 
transaction identifier where pattern P appears. Its 
structure is restricted test-and-generation instead of 
Apriori-like is restricted generation-and-test. Thus 
nodes generated are certainly frequent. The Flex 
tree is constructed in depth-first fashion. The 
experimental results showed the Flex is an efficient 
algorithm to find long and representative patterns 
MFP. However, it needs a large amount of memory 
especially to store the list of transaction identifier. 
This makes Flex is impossible to be fit in memory 
by one database scan as for huge number of 
frequent patterns generated. 

 

3. PROPOSED METHOD 
 

3.1. Data Transformation Technique  

The presentation of database is an efficient 
consideration in almost all algorithms. The most 
commonly database layout is the horizontal and 
vertical layout [15]. In both layouts, the size of 
database is very large. As shown in Fig 1 the data 
transformation is an essential process in data 
preprocessing step which can reduce the size of 
database. Obviously, reducing of the size of 
database can enhance performance of mining 
algorithms. Our method uses a prime-based data 
transformation technique to reduce the size of 
transaction database. It transforms each transaction 
into a positive integer called Transaction Value 
(TV) during of the PC_Tree construction as 
follows: Given transaction T = (tid, X) where tid is 
the transaction-id and X = {ij … ik} is the 
transaction-items or pattern X. While the PC_Tree 
algorithm reads transaction T, the transformer 
procedure considers a prime number pr for each 
item ir in pattern X, and then TVtid is computed by 
Eq. (1) where T= (tid, X), X = {ij … ik} and ir is 
presented by pr. 
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Therefore, all transactions can be represented in 
a compacted layout using this transformation 
technique.  In fact the transformer is a numerical 
encoder which hides transaction information. The 
transformation technique utilizes Eq. (1) based on 
simple following definition.  

“A positive integer N can be expressed by unique 
product N = ppp mmm r

rK21
21  where pi is prime 

number, rppp Lpp 21 and im is a positive 
integer, called the multiplicity of ip ” [7]. 

For example, N = 1800=23*32*52. 
Conceptually, there is no duplicated item in 
transaction T. Hence we restrict the multiplicity 
only to mi = 1 without losing any significant 
information. Therefore N can be produced 
by PPP r21 K . 

To facilitate the understanding of the 
transformation process used in our method, let’s 
examine it through an example. Let item set L= {A, 
B, C, D, E, F} and the transaction database, DB, be 
the first two columns of Table 1 with eight 
transactions. As shown in the fourth column of 
Table 1, DB can be presented by TVs which very 
smaller than original transactions. 

  
TABLE 1 

The transaction database DB and its Transaction Values 

TID Items Transformed TV 

1 A, B, C, D, E 2, 3, 5, 7, 11 2310 
2 A, B, C, D, F 2, 3, 5, 7, 13 2730 
3 A, B, E 2, 3, 11 66 
4 A, C, D, E 2, 5, 7, 11 770 
5 C, D, F 5, 7, 13 455 
6 A, C, D, F 2, 5, 7, 13 910 
7 A, C, D 2, 5, 7 70 
8 C, D, F 5, 7, 13 455 

 

Obviously, the compactness rate for real data can 
be more than synthetic data used in the 
experiments. This is because; the size of the TV 
used for a transaction is almost independent of kind 
of dataset, but the average length of items in real 
datasets is bigger than in synthetic dataset. For 
example third transaction T= (3, {A, B, E}) in Table 
1 presents good identification numbers bought by a 
customer; To= (3, {55123450, 55123452, 

55123458}) from a market. Although the length of 
items in To is bigger than T but both T and To can 
be transformed into the same TV 66 by using our 
data transformation technique. Hence it is an item-
length independent transformation technique. The 
experiments showed that by applying this data 
transformation technique, the size of real 
transaction database can be reduced more than half. 

3.2. PC_Tree Construction 

Using tree structure in mining algorithms makes 
two possibilities to enhance the performance of 
mining. Firstly, data compressing by a well-
organized tree structure like FP-tree. Secondly, 
reducing search space by using pruning techniques. 
Thus the tree structures have been considered as a 
basic structure in previous data mining research [8, 
11, 12]. This research introduces a novel tree 
structure called PC_Tree (Prime-based encoded and 
Compressed Tree). Unlike the previous methods, 
the PC_Tree is based on prime number 
characteristics which can makes use of both 
possibilities data compressing and pruning 
techniques to enhance efficiency.  

A PC_Tree includes of a root and some nodes 
that formed sub trees as children of the root or 
descendants. The node structure consisted mainly 
of several different fields: value, local-count, 
global-count, status and link. The value field stores 
TV to records which transaction represented by this 
node. The local-count field set by 1 during inserting 
current TV and it is increased by 1 if its TV and 
current TV are equal. The global-count field 
registers support of pattern P which presented by its 
TV.  

In fact during of insertion procedure the support 
of all frequent and infrequent patterns is registered 
in the global-count field. It can be used for 
interactive mining where min_sup is changed by 
user frequently [12]. The status field is to keep 
tracking of traversing. When a node visited in the 
traversing procedure the status field is changed 
from 0 to 1. The link field is to form sub trees or 
descendants of the root.  

Fig. 2 shows step by step construction of 
PC_Tree for transactions shown in table 1. The 
construction operation mainly consists of insertion 
procedure that inserts TV(s) into PC_Tree based on 
definitions below:   

Definition 1: If TV of node nr  and ns is equal 
then sr = . Insertion procedure increases local - 
count field of node nr  by 1 if the current TV is 
equal with TV of nr .  
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Definition 2: ),,( 1 rootnnnR jii K−=  is a 

descendant iff TV of node )( jriRn r ≤≤∈  
can divide all TVs kept in 
nodes ),,,( 21 rootnnnR jrrr K++= .  

Definition 3: TV of the root is assumed null and 
can be divided by all TVs.  

Fig. 2(a) shows insertion of the first and second 
transactions. The second TV with value 2730 can 
not be divided by the first TV with value 2310 and 
it creates a new descendant using definition 2 and 
3. Transactions 3-7 are inserted into their 
descendant based on definition 2 shown in Figure 
2(b)-(e). The TV of eighth transaction with value 
455 is equal with the fifth TV, and then the local-
count field of fifth TV is increased by 1 using 
definition 1 shown in Figure 2(f) (shown in 
underline).  

 

 
 

Fig. 2 Step by step PC_Tree construction 
 

Each TV in PC_Tree represents a pattern P and 
the support of pattern P or S (P) is registered in the 
global-count field. Given pattern P and Q have been 
presented by TVP and TVQ respectively, the 
PC_Tree has some nice below properties: 

Property 1: The S (P) is computed by traversing 
only descendants of TVP.  

Property 2: P and Q belong to descendant R and S 
(P) < S (Q) iff TVP can be divided by TVQ. 

Property 3: Important procedures are almost done 
only by two simple mathematic operations product 
and division. Obviously using mathematic 
operation enhances the performance instead of 
string operation. 

3.3. PC_Miner Algorithm 

As explained in previous section, during of 
insertion each TV in the PC_Tree, the following 
procedures are done. 

a) Item-frequency counting. 
b) Local-counting. 
c) Global-counting. 
d) Descendant constructing. 

The PC_Miner algorithm traverses the completed 
PC_Tree to discover the MFP in top-down 
direction. There is no need to database scan again, 
because all information about items and patterns are 
stored in the PC_Tree. However Figure 2(f) as a 
completed PC_Tree didn’t show some information 
like global-count stored in the tree. The miner 
algorithm makes use of a combined pruning 
strategy including both superset infrequency and 
subset frequency pruning. As a result the search 
space is reduced, which dramatically reduces the 
computation and memory requirement and 
enhances the efficiency. The superset infrequency 
pruning is assisted by the frequency of items 
computed during the PC-Tree construction. Table 2 
shows the item frequency and considered prime 
number for transaction database shown in Table 1. 

 
TABLE 2 

Frequency of items and supposed prime numbers 

Item Prime number Item Frequency 

A 2 6 
B 3 3 
C 5 7 
D 7 7 
E 11 3 
F 13 4 

 

4. EXPERIMENTAL RESULTS  
 

In this section, we evaluate the performance of 
our method. All experiments were performed in a 
time-sharing environment in a 2.4 GHz PC. All the 
algorithms are implemented using C++.  

In first experiment we use synthetic sparse 
datasets T10I4D100k generated by the program 
developed at IBM Almaden Research Center [2]. 
The number of transactions, the average transaction 
length and the average frequent pattern length of 
T10I4D100k are set to 100k, 10 and 4 respectively. 
We consider p% of this dataset where p will be 
increased from 10 to 100 to evaluate how the data 
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transform technique can compact the size of 
dataset. Fig.4 shows comparison of the size of 
original dataset with the size of transformed dataset 
using our data transform technique. 
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    Fig.4. Compactness of data transformation technique 

 

 

In second experiment, we show the accuracy and 
correctness of the method. This experiment is 
conducted by using T10I4D100k and real dense 
dataset mushroom from UCI Irvine Machine 
Learning Repository [4] The Mushroom dataset 
records consists of the characteristics of various 
mushroom species, and the number of records, the 
number of items and  the average record length  are 
set to 8124, 119 and 23 respectively. Fig. 5 and 6 
show the numbers of frequent patterns discovered 
for the tests at varying min_sup on this datasets. 
The results verify that our method can find all 
frequent patterns.  
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Fig.5. Number of Frequent Patterns in T10I4D100k 
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   Fig.6. Number of Frequent Patterns in Mushroom 

 

Third experiment is to compare the performance 
of the PC-Miner with the Flex algorithms on the 
dataset T10I4D100k. To allow a fair comparison of 
algorithms, firstly find all MFP by using PC_Miner 
and Flex separately. Then all FP is generated by 
same procedure run in cached mode. Fig. 7 shows 
the PC_Miner algorithm outperforms the Flex 
algorithms. 
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Fig.7. Performance of PC-Miner vs. Flex 

 
5. CONCLUSION AND FUTURE WORKS  

 

In this paper, we proposed a numerical method to 
mine all frequent patterns efficiently. Our method 
introduced an efficient data transformation 
technique, a novel tree structure called Prime-based 
encoded and Compressed Tree or PC_Tree and also 
PC_Miner algorithm. The experiments verified the 
compactness of the data transformation technique. 
The PC_Tree presented well-organized tree 
structure with nice properties to capture transaction 
information.  The PC_Miner reduced the search 
space using a combined pruning strategy to 
traverses the PC_Tree efficiently. The experimental 
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results showed the PC_Miner algorithm 
outperforms the Flex algorithms.  

Particularly, our method introduces a new 
method based on prime number characteristics to 
find completed frequent patterns by using maximal 
frequent patterns. However, the numerical approach 
can be extended for all data mining tasks. For 
example, it can be applied in incremental mining of 
frequent patterns where database transactions are 
inserted, deleted, and/or modified. In addition, it 
can also be used for interactive mining of frequent 
patterns where minimum support threshold can be 
changed to find new correlation between patterns.  
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