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ABSTRACT 

Peristaltic pumping of a fluid of variable viscosity in a non-uniform tube / channel lined with porous 

material is investigated. The flow in the tube is governed by Navier- Stokes equation and the permeable 

boundary is described by Darcy law. It is observed that larger the permeability  of the porous medium, 

greater the pressure rise against which the pump works, so the increase of permeability of the wall causes 

less frictional force and also observed that the frictional force shows opposite behaviour to that of pressure 

rise in peristalsis. 
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1. INTRODUCTION 

 A peristaltic pump is a device for 

pumping fluids, generally from a region of lower 

to higher pressure, by means of a contraction 

wave traveling along a tube-like structure. This 

traveling-wave phenomenon is referred to as 

(peristaltic). This phenomenon is now well 

known to physiologists to be one of the major 

mechanisms for fluid transport in many 

biological systems. Peristalsis is the mechanism 

of fluid transport that occurs generally from a 

region of lower pressure to higher pressure when 

a progressive wave of area contraction or 

expansion travels along the flexible wall of the 

tube. This mechanism is applied not only by 

small blood vessels, ureter and stomach to pump 

various bio-fluids in a human body, but also by 

mechanical devices such as roller pumps and 

finger pumps. Peristaltic pumps are designed for 

various industries to transport corrosive fluids 

without contamination due to contact with the 

pumping machinery. 

 Most of the industrial fluids show 

variable viscosity behavior. Further the pump 

cannot always be designed as a uniform tube for 
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serving the needs such as biomedical 

instruments. The pressure rise, the velocity field 

and stream functions are determined by the 

Navier–Stokes equations, named after Claude-

Louis Navier and George Gabriel Stokes, 

describe the motion of fluid substances, that is 

substances which can flow. These equations 

arise from applying Newton's second law to 

fluid motion, together with the assumption that 

the fluid stress is the sum of a diffusing viscous 

term (proportional to the gradient of velocity), 

plus a pressure term and the results are discussed 

through graphs. Darcy’s law states that the rate 

at which a fluid flows through a permeable 

substance per unit area is equal to the 

permeability, which is a property only of the 

substance through which the fluid is flowing, 

times the pressure drop per unit length of flow, 

divided by the viscosity of the fluid. In view of 

all these facts, an attempt is made to study the 

peristaltic pumping of a fluid with variable 

viscosity through a non-uniform tube lined with 

porous material. 

 Latham6 made an experimental study 

on the mechanics of peristaltic transport. The 

results of experiments were found to be in good 

agreement with the theoretical studies of 

Shapiro9. Later Shapiro et al8. Jaffrin and 

Shapiro5 Burns and Parkes3, Yin15, Barton and 

Raynor1 Subba Reddy et al11 and several others 

made fundamental contributions to peristaltic 

transport. All these works are based on the 

Newtonian behavior of the pumping fluid. 

Treating the fluid as non-Newtonian, good 

numbers of investigations are available. Some of 

them are Bohme and Fedrich 2, Shehawey and 

Mekheimer7, Usha and Rama Chandra Rao4, 

Vajravelu et al12, Vajravelu et al13, Vajravelu et 

al14, Subba Reddy et al11 and Sreenadh et al10. 

 In the design of pumps, it is usual that 

the inner surface of the tube is not smooth. The 

roughness that arises due to corrugations plays 

an important role in pumping. Further in the 

human body, the biology-systems such as blood 

vessels contain tissue region, which surrounds 

the blood. A better understanding can be done in 

these situations by modeling the pump as a non-

uniform tube with permeable wall. 

 In this paper peristaltic flow of a fluid 

of variable viscosity in a non-uniform 

tube/channel lined with porous material is 

investigated. The flow in the free flow of the 

tube is governed by Navier- Stokes equation. 

The flow in the permeable boundary is described 

by Darcy law. The velocity distribution, the 

pressure rise and frictional force are obtained 

and the results are discussed through graphs. 

2. NOMENCLATURE    

a : Half width of the channel or radius of the 

tube 

a0 : Half width of the channel or radius of the 

tube at inlet 

a(z) : radius of the tube at any axial distance ‘z’ 

from the inlet ‘a0’. 
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B: Amplitude 

C: Wave speed 

Da : Darcy number 

E: Mechanical efficiency  

∆F: Dimensionless friction force 

H: Wall co-ordinate of peristaltic wave 

K: Constant = 3 a0/L 

L: Length of the channel or tube 

P: Pressure rise 

∆P: Dimensionless pressure rise 

Q: Instantaneous volume flow rate 

Q : Time mean volume rate of flow 

t : Time 

UB : Slip velocity 

Uporous : Velocity in the permeable boundary 

V: Co-ordinate velocity 

R, Θ, Z: Cylindrical polar co-ordinates in 

laboratory frame 

r, θ,z : Cylindrical polar co-ordinates in wave 

frame 

α: Slip parameter 

δ: Viscosity parameter 

ρ: density 

µ0: Viscosity at inlet 

υ: Kinematic viscosity 

µ: Dynamic viscosity 

φ: amplitude ratio = b/ a0 

λ: Wave length 

3. MATHEMATICAL FORMULATION 

AND SOLUTION 

 Consider the peristaltic transport of a 

fluid of variable viscosity in a non-uniform tube 

with permeable wall as shown in Figure (1). 

 

Fig. 1 Physical Model 

 The axisymmetric flow in the pump is 

governed by Navier-Stokes equation. The flow 

in the permeable wall is described by Darcy law. 

The cylindrical polar coordinate system (R,θ,Z) 

is used. The wall deformation due to the infinite 

train of peristaltic waves is represented by the 

geometry of the wall surface is defined as  
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R = H (z, t) = a(z) + b Sin ( )ctz −
λ
π2

 (3.1) 

a (z) = a0 + k(z) 

4. EQUATIONS OF MOTION 

 Under the assumptions that the tube 

length is an integral multiple of the wave length 

λ and the pressure difference across the ends of 

the tube is a constant, the flow is inherently 

unsteady in the laboratory frame (R,θ,Z) and 

becomes steady in the wave frame (r,θ,z) which 

is moving with the velocity c along the wave. 

The transformation between these two frames is 

given by 

r = R, θ = θ,  z = Z-ct. 

 (3.2) 

Let us assume that

 

( )t,ruV,0V,0V zθr ===
 (3.3) 

we assume that the flow is inertia  free and the 

wavelength is infinite.  

The appropriate equation describing the 

flow in the wave frame under lubrication 

approach becomes  = 
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p1 (z, t) pressure u1 = u1 (z,r,t) axial 

velocity. The equations governing the motion in 

dimensionless form are   
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The dimensionless boundary conditions are 
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 (3.7) 

(Beauves and Joseph slip condition, 1967). 

Where uporous  = 
z
PDa

r ∂
∂−

)(µ
 

 (3.8) 

(Darcy law) 

Here uporous is the velocity in the permeable 

boundary  

5. SOLUTIONS 

 Solving the equations (3.5) & (3.6) 

subject to the conditions (3.7) and (3.8) we 

obtain the velocity as  
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Where UB is called slip velocity and has to be 

found using the condition  (3.7) 

Now we assume that viscosity decays 

exponentially with r 

i.e.  ( )
δr

r eµ −= δr1−≅ (for δ<<1)           

(3.11) 

The slip velocity uB  is obtained as 

( ) [ ]Da2αh
δh12α

DauB −
−

=                

(3.12) 

The instantaneous flow rate Q(z, t) in 

the laboratory frame between the centre line and 

the wall is 

Q (z, t) = ∫
h

udrr
0

2π                             

(3.13) 

From equation (3.9 and 3.13) we have 
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6. THE PUMPING CHARACTERISTICS 

 Integrating the equation (3.14) w.r.t ‘z’ 

over one wavelength, we get the pressure rise 

(drop) over one cycle of the wave as  
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7. THE FRICTIONAL FORCE 

The dimensionless frictional force at 

the wall across one wave length in tube is given 

by  
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8. MECHANICAL EFFICIENCY OF 

PUMPING 

∫ ∫
λ
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In equation 3.19 the numerator denotes 

the average rate of work done by the fluid over 

one wave length against the pressure rise, and 
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the denominator denotes the average rate of 

work done by the wall over one wave length 

both being averaged over one period of the 

wave. 

9. RESULTS AND DISCUSSIONS 

 From equation (3.16), we have 

calculated the pressure difference as a function 

of ‘t’ for different values of averaged mean flow 

rate ‘Q’ at an amplitude ratio ‘ϕ’ of 0.8 and is 

shown in fig. (2). It is observed that the peak 

occurs at‘t’ approximately 0.3 which 

corresponds to the instant when the maximum 

occlusion occurs at the entry to the channel. The 

magnitude of the peak pressure rise decreases 

with increasing flow rate.  

 From equation (3.16), we have 

calculated the pressure difference as a function 

of ‘t’ for different values of amplitude ratio ‘ϕ’at 

a given averaged mean flow rate ‘Q’ = 0.5 and is 

shown in fig. (3). It is observed that, the peak 

pressure rise increases with increasing amplitude 

ratio ‘ϕ’ and it occurs approximately at t = 0.3. 

 From equation (3.16), we have 

calculated the pressure difference as a function 

of ‘t’ for different values of Darcy number at an 

amplitude ratio ‘ϕ’of 0.7 and at  a given 

averaged mean flow rate ‘Q’ = 0.5 and  is shown 

in fig. (4). It is observed that, the peak pressure 

rise occurs at the same value of ‘t’ as in the 

earlier cases and it increases with increasing 

Darcy number ‘Da’. This shows that the larger 

the permeability of the porous medium, the 

greater the pressure rise against which the pump 

works.    

 In fig. (5) The effect of variation of 

viscosity on the pressure rise is shown at an 

amplitude ratio ‘ϕ’of 0.5 and at a given averaged 

mean flow rate ‘Q’ = 0.5. It is observed that as 

the viscosity decreases the pressure rise 

increases. 

 We have calculated the frictional force 

from the equation (3.18) as a function of ‘t’ for 

different values of averaged mean flow rate ‘Q’ 

at an amplitude ratio ‘ϕ’ of 0.8 and is shown in 

fig. (6). It is observed that the frictional force 

exhibits opposite behavior to that of pressure 

rise, which is shown in fig. (2). 

 We have calculated the frictional force 

as a function of ‘t’ for different values of 

amplitude ratio ‘ϕ’as shown in fig. (7). It is 

observed that the friction force is negative and 

the trough in the frictional force increases with 

decreasing amplitude ratio. 

 From equation (3.18) we have 

calculated the frictional force as a function of ‘t’ 

for different Darcy number. It is observed that 

the trough in frictional force occurs 

approximately at ‘t’ = 0.3 and the magnitude of 

the trough frictional force decreases with 

increase in Darcy number. So the increase of 

permeability of the wall causes less frictional 

forces. 

    We have calculated the frictional 

force as a function of ‘t’ for different values of 
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viscosity as shown in fig. (9). It is observed that 

the less the viscosity ratio smaller the frictional 

force in other words, decrease in viscosity 

makes the peristaltic pump to work under less 

frictional force. 

 From equation (3.16) we have 

calculated the pressure rise as a function of 

averaged mean flow rate ‘Q’ for different values 

of amplitude ratio ‘ϕ’ and is shown in fig. (10). 

It is observed that for a given ∆P, the flux 

increases with increasing amplitude ratio ‘ϕ’. 

For free pumping the flux Q decreases with 

increasing amplitude ratio ‘ϕ’.  

 The variation of pressure difference 

with time averaged flow rate Q, is calculated 

from equation (3.16) for different ‘δ’ and is 

depicted in fig. (11). It is observed that, the 

pressure rise decrease with increase in flow rate 

at a given ‘δ’. For a given flow rate Q, the 

pressure rise increases with increasing ‘δ’ (i.e. 

decrease in viscosity). 

 From equation (3.18) we have 

calculated the frictional force as a function of 

time averaged flow rate Q for different values of 

amplitude ratio. It is observed that the frictional 

has opposite behavior to that of pressure rise 

(fig. 10). In order to study the effect of variation 

of viscosity on the variation of frictional force 

with flow rate Q, we have evaluated equation 

(3.18) numerically and is shown in figure (13). It 

is observed that the frictional force increases, 

with the volume flow rate Q, for a constant ‘δ’. 

For a given frictional force, the flux increases 

with increasing ‘δ’ i.e. the decrease in viscosity. 

 It is clear that the frictional force shows 

opposite behavior to that of pressure rise in 

peristalsis.  

 

Fig. 2. The variation of Pressure rise with 

time‘t’ for different flow rate Q with aD = 

0.1, α = 0.1, ϕ = 0.8, a = 0.012, δ = 0.1, λ = L = 

20 

 

Fig. 3. The variation of Pressure rise with 
time‘t’ for different Amplitude ratio ϕ,  with 

aD = 0.1, α = 0.1, Q = 0.5, a = 0.012, δ = 

0.1, λ = L = 20 
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Fig. 4. The variation of Pressure rise with 

time‘t’ for different Darcy’s number aD , 

with ϕ = 0.7, α = 0.1, Q = 0.5, a = 0.012, δ = 

0.01, λ = L = 20 

 

Fig. 5. The variation of Pressure rise with 
time ‘t’ for different Viscosity co-efficient ‘δ’ 
with aD  = 0.1, ϕ = 0.5, α = 0.1, Q = 0.5, a 

= 0.012,  λ = L = 20 

 

 

Fig. 6. The variation of Friction force with 
time ‘t’ for different flow rate Q with 

aD = 0.1, α = 0.1, ϕ = 0.8, a = 0.012, δ = 0.1, 

λ = L = 20  

 

Fig. 7. The variation of Friction force with 
time‘t’ for different Amplitude ratioϕ, with 

aD = 0.1, α = 0.1, Q = 0.5, a = 0.012,  

δ = 0.1, λ = L = 20 

 

Fig. 8. The variation of Friction force with 
time‘t’ for different Darcy’s number aD , 

with ϕ = 0.9, α = 0.1, Q = 0.25, a = 0.012, δ = 
0.1, λ = L = 20 

 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
90 

 

Fig. 9. The variation of Friction force with 
time‘t’ for different Viscosity co-efficient ‘δ’ 

with aD  = 0.1, ϕ = 0.8, α = 0.1,  

Q = 0.25, a = 0.012,  λ = L = 20 

 

Fig. 10. The variation of Pressure rise with 
Averaged flow rate Q  for different ϕ with 

aD = 0.1, α = 0.1, a = 0.012, δ = 0.1, t = 0.5, 

λ = L = 20 

 

Fig. 11. The variation of Pressure rise with 
Averaged flow rate Q  for different Viscosity 

co-efficient ‘δ’ with aD = 0.1, α = 0.1, a = 

0.012, ϕ  = 0.6, t = 0.5, λ = L = 20 

 

Fig. 12. The variation of Friction force with 
Averaged flow rate Q  for different ϕ with 

aD = 0.1, α = 0.1, a = 0.012, δ = 0.1, t = 0.5, 

λ = L = 20  

 

Fig. 13. The variation of Friction force with 
Averaged flow rate Q  for different Viscosity 

co-efficient ‘δ’ with aD = 0.1, α = 0.1, a = 

0.012, ϕ  = 0.8, t = 0.5, λ = L = 20 

 

 

REFERENCES 

1. BARTON. C. & RAYNOR. S, 

“Peristaltic flow in tubes”, Bull. Math.   

Bio-physics. Vol. No 30, pg. no. 663-

680, 1968. 

2. BOHME. G. & FRIEDRICH. R., 

“Peristaltic flow of Visco elastic 

liquids”, Journal of Fluid Mechanics”, 

1983, Vol No. 128, pg. no. 109-122. 

3. BURNS. J. C. & PARKES. T, 

“Peristaltic motion:, Journal of Fluid 

Mechanics, 1967, Vol. no. 29, pg. no. 

731-743.  

4. HUGHES. W. F. & YOUNG. F. J, 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
91 

 

“The Electromagnet dynamics of 

Fluids”, John Willy and Sons, inc., 

New York. 1966, pg. no. 516-527.  

5. JAFFRIN. M. Y. & SHAPIRO. A. H, 

“Peristaltic pumping”, Ann. Rev. fluid 

Mech. Vol. no. 3, pg. no. 13-36. 

6. LATHAM. T. W, “ Fluid motions in a 

peristaltic pump” , M. S. Thesis, M.I.T., 

1966 

7. MEKHEIMER. K. S., EL 

SHEHAWEY. E. F & ELAW, A. M, 

“Peristaltic motion of a particle-fluid 

suspension in a planer channel”, 

International. Journal of Theory Phys”, 

1998, Vol. No. 37, pg. no. 2895-2920.  

8. SHAPIRO, A. H., JAFFRIN, M. Y. & 

WIENBERG, S. L, “Peristaltic 

pumping with long wavelengths at low 

Reynolds number”, Journal of Fluid 

Mechanics, 1969, Vol. No.37, pg. no. 

799-825. 

9. SHAPIRO, A. H, “Pumping and 

retrograde diffusion in peristaltic 

waves”, Procedings. Workshop in 

Ureteral Reflux in children, 1967, pg. 

no. 109-126.  

10. SREENADH, S., NARAHARI, M. & 

RAMESH BABU, V, “Effect of yield 

stress on peristaltic pumping of non-

Newtonian fluids in a channel”, 

Proceedings. Int. Symp. On recent 

advances in Fluid Mech., Tata 

McGraw-Hill publishing company Ltd., 

New Delhi, 2005, pg. no. 234-247.  

11. SUD, V. K., SEKHON, G. S. & 

MISHRA, R. K, “Pumping action on 

blood by a magnetic field”, Bull. Math. 

Biol. 1977, Vol. No. 39, pg. no. 385-

390. 

12. VAJRAVELU, K., SREENADH, S. & 

RAMESH BABU, V, “Peristaltic 

transport of a Hershel-Bulkley fluid in 

an inclined tube”, Int. J. Non linear 

Mech. 2005, Vol. No. 40, pg. no. 83-

90. 

13. VAJRAVELU, K., SREENADH, S. & 

RAMESH BABU, V, “Peristaltic 

transport of a Hershel-Bulkley fluid in a 

channel”, Appl. Math. And Comput, 

2005, Vol. No. 169, pg. no. 726-735. 

14. VAJRAVELU, K., SREENADH, S. & 

RAMESH BABU, V, “Peristaltic 

transport of a Hershel-Bulkley fluid in 

contact with a Newtonian fluid”, 

Quarterly J. of Appl. Math. 2006, Vol. 

no. 64, pg. no. 593-604. 

15. YIN, C. C. & FUNG, Y. C., “Peristaltic 

waves in circular cylindrical tubes”, 

Journal of Applied Mechanics”, 1969, 

Vol .No. 36, pg. no. 579-587.       

 


