
Journal of Theoretical and Applied Information Technology
 31

st
 July 2016. Vol.89. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

296

ENHANCED PLANTED(ℓ,D) MOTIF SEARCH PRUNE

ALGORITHM FOR PARALLEL ENVIRONMENT

1
SATARUPA MOHANTY,

 2
 BISWAJIT SAHOO

1
Asstt Prof., School of Computer Engineering, KIIT University Bhubaneswar

2
Assoc. Prof., School of Computer Engineering, KIIT University Bhubaneswar

E-mail:
1 satarupafcs@kiit.ac.in,

2 bsahoofcs@kiit.ac.in

ABSTRACT

The Identification of inimitable patterns (motif) occurring in a set of biological sequences could give rise to

new biological discoveries and has been studied considerably due to its paramount importance. In the field

of bioinformatics, motif search is the vital problem for its application in the detection of transcriptional

regulatory elements and transcription factor binding sites (TFBS) which are crucial for the knowledge of

drug design, human disease, gene function etc. Many aspects of the motif search problem have been

identified in the literature. One of them is the planted (ℓ, d)-motif search problem. In this paper, we propose

a parallel extension of the existing PMSPRUNE algorithm along with two additional features: those are

neighbor generation on a demand basis and omitting the duplicate neighbor checking with the help of a bit

vector implementation. The experimental result shows, the proposed multicore algorithm in C, handles the

problem for larger d value with fix length ℓ with a speed up more than twice, without any additional

requirement of space on a 2.4GHz PC with 4GB RAM.

Keywords: PMSPRUNE, Planted Motif Search, Symmetric Multiprocessor (SMP), Message Passing

 Interface (MPI), Bit Map Vector

1. INTRODUCTION

In computational molecular biology and

bioinformatics, the discovery of approximate

patterns in DNA sequences has given rise to

important solutions in the domain of many

biological problems. For illustration, the

recognition of patterns in protein sequences has

ensured to be exceptionally helpful in domain

recognition, locating the protease cleavage sites,

identification of signal peptides, protein

cooperation, resolution of protein degradation

elements, identification of short functional motifs.

Also, motifs are common sequence patterns in

transcription factor binding sites that play

significant roles in gene expression and regulation,

understanding numerous human disease, gene

function, drug design etc. As a result, in biological

studies, the discovery of motifs plays an important

and fundamental role. In literature, several versions

of the motif search problem have been studied

extensively. For the instance, they include Simple

Motif Search (SMS), Edit-distance-based Motif

Search (EMS), and Planted (ℓ, d) Motif Search. In

this paper, our focus is on Planted (ℓ, d) Motif

Search (PMS). PMS is defined as follows: Inputs to

the PMS are n sequences of length m each, two

positive integers’ ℓ and d. The objective is to

extract strings of length ℓ, such that any such string

M is present in all n sequences with at most d

mismatches. Formally, we can define the problem

as follows:

Definition 1. Given a set of sequences
n
iisS 1}{: == over an alphabet ∑={A,T,C,G}, with

is = m and ℓ , d with 0 ≤ d < ℓ < m, the PMS

involves identifying the (ℓ, d) motif x with x = ℓ

such that xi is a substring of si of length ℓ and x

differs from xi in at most d places for i=1,…,n.

In the literature, PMS algorithms are categorized

into two approaches: exact and approximation

algorithms on the basis of heuristic search and

exhaustive enumeration search respectively.

Generally PMS approximation, algorithms are

faster and more popular than exact algorithms but

they are not guaranteed to give correct motif

always. The probabilistic approach [1], [2], [3], [4]

is utilized by the approximate algorithm, which

depends on the Position-Specific Scoring Matrix

(PSSM) representation [5], or a combinatorial

Journal of Theoretical and Applied Information Technology
 31

st
 July 2016. Vol.89. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

297

approach [6], [7], [8], [9], [10]. Extensively used

analytical algorithms are the stochastic GibbsDNA

algorithm [1], AlignACE [2], PhyloGibbs [3],

BioProspector [4], TEIRESIAS [6], WINNOWER

[7], Random Projection [8], MULTIPROFILER [9],

Pattern Branching [10], CONSENSUS[11], MEME

[12], MCEMDA[13] and Vine [14] . The

WINNOWER algorithm, proposed by Pevzner and

Sze[7] constructs a graph considering the ℓ-mers as

nodes and there exist an edge between two ℓ-mers

of different sequences if the mismatch among them

is at most 2d. Then he maps PMS to the problem of

finding a large clique, an NP-Hard problem.

Random projections [8], by Buhler and Tompa,

grouped ℓ-mers based on the similarity of the

projections by considering k location from the

entire ℓ-mers. The probability of getting the desired

motif is more in the groups having a maximum

number of ℓ-mers. Pattern Branching [10] algorithm

uses the scoring method to assign a score to each

neighbor of all ℓ-mers available in the sequence and

then the best-scored neighbors are determined by

the local search. The greedy CONSENSUS [11]

employs statistical measures for the alignment of ℓ-

mers and finds probable motifs from the alignment

while GibbsDNA [1] uses Gibbs sampling. MEME

(Multiple Expectation-Maximization Elicitation)

[12] is one of the widely used approximation

algorithms, where the technique of expectation

minimization is used. A Monte Carlo algorithm,

MCEMDA[13], initiate from a starting model and

then it repeatedly executes the Monte Carlo

simulation and parameter update till the

convergence. Vine [14] a recent polynomial time

Heuristic method based on WINNOWER[7].

Exact algorithms take exponential time to

compute, but there is a guarantee of getting motifs.

For the NP-hard nature of the exact algorithm, it is

impractical to run on a very large instance and is

therefore required to design the exact algorithm

with small time and space overhead. Based on

search space the exact algorithms built on two

approaches: sample driven, test all (m- ℓ +1)
n

possible combinations of ℓ-mers of different strings,

generate the common neighbor and pattern driven,

verify all 4
ℓ
 possible patterns to find the one that

appear in all n sequences with minimum number of

mutations. Some of the exact algorithms for solving

PMS are SMILE [15], CENSUS [16], MITRA [17],

PMS1 [18], PMS2 [18], Voting [19], and RISOTTO

[20], three algorithms namely PMSi, PMSP, and

PMSprune by Davila et al. [21], Pompa[22],

PMS4[23], .Many of these algorithms use a tree

data structure like a suffix tree or a mismatch tree or

tries to steadily generate motifs one character at a

time. CENSUS [16] constructs a trie out of all ℓ-

mers from each of the input sequences. In the

process of the trie generation, the nodes go on

storing the number of mismatches from the motif,

potentially pruning many branches of the trie. The

algorithms SMILE[15] and RISOTTO[20] uses the

suffix trees. Their theoretical space complexity is

O(n
2
m) and time complexity is O(n

2
mN(ℓ,d)) where

that N(ℓ,d) = ()dd
i d

l
1

1
−∑∑ =

. Among this

RISOTTO [20] performs efficiently and uses suffix

tree. MITRA [17] considers the mismatch tree data

structure. He divides the space of patterns into a

number of sub-spaces those starts with a stated

prefix and then employ pruning to each of those

sub-spaces. PMS1, PMSi, PMS2 [18] are built on

radix sort. They intersect efficiently the sorted d-

neighborhood of all ℓ-mers in the input sequences

using a different technique. Voting [19] uses the

hash table to store all possible ℓ-mers and thus the

space requirement is huge for large instances.

Davila et al. [21] proposed a series of PMS

algorithms those are fast as well as well as

comparatively economical on space. PMSP [21]

explores the d-neighborhood of the first input

sequence’s all ℓ-mers and then apply an extensive

search with the rest input sequences to compute the

particular ℓ-mers in the found d-neighborhood

which are motifs. Practically it performs better than

the PMS1 instead of its worse theoretical worst case

time complexity. PMSprune [21] is an advancement

over PMSP having time complexity as

O(nm
2
N(ℓ,d)) with a space complexity of O(nm).

This uses the branch and bound approach to

exploring all d-neighborhood and uses dynamic

programming to compute the distance among them.

Pampa [22] added the concept of wildcard

characters over PMSprune to compute approximate

motif patterns and then finds the actual motifs by

doing a thorough mapping within the computed

approximate pattern. PMS4 [23], a generic speedup

approach to improving the execution time of any

exact algorithm. The algorithm PMS5 [24],

PMS6[25] and qPMS7[26] computes all the

common neighbors of the three ℓ-mers iteratively

using an integer linear programming formulation.

PairMotif[27] selects a candidate ℓ-mer from the

input string and then alter the alphabets one by one.

All the above-mentioned approaches use serial

computation. A recently proposed bit based parallel

approach [28], [29] implemented on multicore and

GPU architecture are the bottleneck on memory

requirement as the increase in the ℓ and d values.

 The algorithms PMSprune[21], Pampa[22],

qPMSPrunel[26], and qPMS7[27] are based on

Journal of Theoretical and Applied Information Technology
 31

st
 July 2016. Vol.89. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

298

search tree of depth d which was introduced by

Davila in algorithm PMSprune[21]. In this paper,

we work more efficaciously by minimizing the

search tree space. We decide to work on PMSprune

algorithm due to its advantages compared to other

algorithms as discussed in [30]. We also develop a

parallel version of PMSprune by using the SMP

cluster for generation and process of many d-

neighborhoods. The relative speed of it comes from

the way of d-neighborhood generation and its

intersection, and the relative space from the way of

storing the huge ℓ-mers. This paper is organized as

follows. The PMSprune[21] algorithm is described

in section 2 and its limitations in section 3. In

section 4 proposed algorithm has discussed,

followed by the implementation detail in section 5.

The discussion and comparisons on the results we

present in section 6. Finally, the paper is ended with

a conclusion in section 7.

2. EXISTING PMSPRUNE (A BRANCH AND

 BOUND ALGORITHM)

The PMSprune describes the solution of PMS in

a geometric way through the concept of “distance”

between a string and set of strings. We will use

same notations and definitions as in [21] to state

PMSprune.

input Let two strings x and y with x = ℓ

and, y = ℓ the Hamming distance dH(x,y) can be

defined as the number of places where the

mismatch occur.

 Definition 2. Given 2 strings with ms = and

x = ℓ respectively with ℓ <m. the notation sx l<

 can be used to say x is a length ℓ substring of s or x

is a ℓ-mer of s.

Definition 3. Given a string x with, x =ℓ the

vicinity or neighborhood of x is denoted as

 l== yyxBd :{)(and }),(dxydH ≤ where dH is the

Hamming distance.

 Definition 4. Given two strings s and x of length

m and ℓ respectively with ℓ <m, we denote by

)',(min
'

),(xx
sx

sx HH dd
l<

=

Definition 5. Given a string x with x = ℓ and a

sequence of n number of strings n
iisS

1
}{: == ,

 with mS =i , we denote by

)',(min
'

max
1

),(max
1

:),(xxHd

isx

n

i
isxHd

n

i

SxHd

l<=
=

=
=

 Taking the advantage of these notation

PMSPRUNE has described the definition 1 in a

mathematical way as follows which is equivalent to

say that x is the required (ℓ,d) motif.

)1(}),...,{,()(:
2

1 dssxHdydBxsy n ≤∧∈∃ l<

PMSPRUNE follow the equation 1. For every

element of Bd(y), while y is a ℓ-mer of s1, it

evaluates the function)(., SHd . If it finds any x

such as),(sxd H ≤ d, then it output x as the motif.

PMSPRUNE[21] strategy: For each ℓ-mer y in s1, it

generate all possible neighbors of y and check

whether that is a candidate motif or not. The idea of

PMSPRUNE is given below.

a. It produces the neighbors for every ℓ-mer y of

s1 in a branch and bound strategy using the

help of a tree T (y) of height d, where the root

of the tree is ℓ-mer y and the children are the

neighbors of it. If x is a neighbor of y, then x

appears in T (y) at height h iff dH(x,y)=h.

Furthermore, if x’ is a child of x in T (y) then

dH(x,x’)=1. In figure 1 we have shown the

example of such a tree.

b. The value of dH(x,S) and h are used to prune

the descendants of x where x corresponds to a

node in T (y).

c. Using the approach of construction of T (y) the

neighborhood, it calculates the)(.,SHd in an

incremental way.

Figure 1. T (1010) with d=2 and ∑ = {0,1}

 Algorithm PMSPRUNE

For every 1Sy l<

i) Traverse T (y) using a DFS strategy evaluating

),,(SxHd where x Є T (y).

ii) If(),(SxHd ≤ d) ,then output x.

Journal of Theoretical and Applied Information Technology
 31

st
 July 2016. Vol.89. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

299

iii) If()),(hddSxHd −>− , then prune all the

 descendents.

iv) If (),(SxHd -d=d-h) , then consider only x’

 which has),'(SxHd =),(SxHd -1

v) If (),(SxHd -d=d-h-1), then consider only x’

 which has),'(SxHd ≤),(SxHd

The),(SxHd can be calculated in a incremental

 way in a same procedure as [21].

3. LIMITATION

1. Here, for each ℓ-mer y of string S1, it

constructs all nodes of the tree T(y), then apply

the pruning technique to discard the undesired

nodes. However, the descendant nodes to the

newly constructed node x are not required to be

generated if),(SxHd ≥ 2d-h.

2. It is assumed that the possibilities of occurring

two ℓ-mers at a different position of string S1

are dissimilar, but this may not hold for the

large string. Again when two ℓ-mers are in

close proximity, then duplicate neighbors can

be generated. So, duplicate tree construction

must be avoided. In overall there is no

technique available which can restrict the

generation of the neighbor for which already

the motif search has taken place.

4. PROPOSED ALGORITHM

 A series of algorithms Pampa[22],

qPMSPrunel[26], and qPMS7[27] are based on the

search tree mentioned in PMSPRUNE[21]. In the

extended PMSPRUNE procedure, we add the

following features in the neighbor generation

technique of search tree as well as we paralyze that

which improves the performance of the existing

PMSPRUNE[21].

1. Firstly in the tree neighbor node will not be

generated unless it is neither a motif nor any

of its children becomes a motif. This way of

tree generation on demand basis we achieve

with the help of recursive procedure.

2. Secondly we have avoided repeated

generation of sub tree for same ℓ -mer of the

string s1 and for neighbors which are available

earlier as the neighbor for some other ℓ-mer.

In the implementation, we use bit vector. For

every possible ℓ -mer or neighbor of length ℓ,

there is a corresponding bit in the bit vector.

The bit represents whether the ℓ-mer or

neighbor has been already considered (1) or

not (0) in the motif search process. For fixed

length ℓ, increasing d, gives rise to

tremendous increase in the number of

neighbors but the same bit vector can able to

hold those.

3. The efficiency is low in the serial

implementation of the exact solution by single

computer. Again most of the sequential

algorithm contains lots of repeated, data-

independent operations. This motivated us to

propose a parallel way of implementing the

existing exact planted (ℓ, d) motif search

algorithm PMSprune[21] with some

modification.

Each recursive call produces a derived ℓ -mer x’

for the current ℓ -mer x. Here conditions must be

checked before calling the recursive procedure for

x’ to generate the tree for node x’.

The relation between the current neighbor x and

the derived neighbor x’ are 1)',(=xxHd and if

S={s1,…sn} then δ+=),'(),(SxHdSxHd where

}1,0,1{−=δ that is the value of)(.,SHd does not

differ too much between the neighbor and its

derived one. Employing this property between

current neighbor and its derived one, the following

recursive call strategy is used.

Let y be a ℓ-mer of s1 and x be a neighbor of y

and let S={s1,…sn} be a set of strings. Assume that

∆+= dSxHd),(and x appears after h recursive

calls, that is hxyHd =),(, then the following

condition or statements holds.

1. power If Δ > d-h, then none of the derived

neighbors x’ of x will be a motif hence

generation of neighbors can be stopped.

2. If Δ = d - h, then only those derived neighbors

x’ having 1),(),'(−= SxHdSxHd may yield a

motif thus be included in the search space of

motif.

3. If Δ = d-h-1 then only those derived x’ having

),(),'(SxHdSxHd ≤ may yield a motif

and thus be included in search space of motif.

 Here we have used two bit vectors M1 and M2 of

size
][log�

2
∑

 each to store the neighbors of ℓ -mer

y and motif respectively.

Journal of Theoretical and Applied Information Technology
 31

st
 July 2016. Vol.89. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

300

 Algorithm 1. Modified PMSPRUNE()

Input: ℓ, d, S= { }n
iiS

1=

Output: Generate neighborhood of each ℓ-mer

 of S1 by calling the function find_child().

1: let Bit vector M1 and M2 initially empty.

2: For each]1[Sy l<
 do

3: For each pos=1 to ℓ do

4: h=0

5: find_child(pos, h, y)

Figure 2. Sequential modified PMSprune

pseudocode

Algorithm 2. Find_child(pos, h, x)

Input: pos, current location of the ℓ-mer where

the alphabet or symbol has to be changed h, current

height of tree T(y) in the process of neighborhood

generation, x, the ℓ-mer.

Output:Generate all neighborhood x' of ℓ-mer x

for level h and check for the motif. If x' found to be

the motif then save it in bit vector M2 or otherwise

depending on the value of dH(x’,S) call function

find_child_less() or find_child_less_equal().

1. Increment h

2: For each ch=1 to ∑ -1 do

3: Find the neighbor of x as x’ such that

 dH(x’,x)=1, x[pos]≠x’[pos] and x’∉M1

4: add x’ to M1

5: If(dH(x’,S) ≤ d) then

6: add x’ to M2

7: if(h!=d) then

 8: for pos=pos+1 to ℓ do

 9: find_child(pos,h,x’)

10: else if(dH(x’,S) –d=d-h) then

11: if(d!=h)then

12: for pos=pos+1 to ℓ do

13: find_child_less(pos,h,x’)

14: else if(dH(x’,S)-d=d-h-1) then

15: if(d!=h)then

16: for pos=pos+1 to ℓ do

17: find_child_less_equal(pos,h,x’)

Figure 3. Pseudocode to find neighbors of ℓ-

mer x

 Algorithm 3. Find_child_less(pos, h, x)

Input: pos, current location of the ℓ-mer where

the alphabet or symbol has to be changed h,

current height of tree T(y) in the process of

neighborhood generation, x, the ℓ-mer.

Output: Generate level h neighborhood x' of ℓ-

mer x where dH(x’,S) < dH(x.,S) and check for

the motif. If x' found to be the motif then save

 it in bit vector M2, otherwise depending on the

value of dH(x’,S) call function find_child_less()

1: Increment h

 2: For each ch=1 to ∑ -1 do

 3: Find the neighbor of x as x’ such that

 dH(x’,x)=1, x[pos]≠x’[pos] and x’∉M1

 4: add x’ to M1

 5: if(dH(x’,S) ≥ dH(x,S)) then

 6: return

 7: else if(dH(x’,S) ≤ d) then

 8: add x’ to M2

 9: else if(h!=d) then

 10: for pos=pos+1 to ℓ do

 11: find_child_less(pos,h,x’)

Figure 4. Pseudocode to find neighbors x’ of ℓ -

mer x where dH(x’.,S)< dH(x.,S)

Algorithm 4. find_child_less_equal(pos, h, x)

Input: pos, current location of the ℓ-mer where

 the alphabet or symbol has to be changed h, current

height of tree T(y) in the process of neighborhood

generation. x, the ℓ-mer

Output: Generate level h neighborhood x' of ℓ-

mer x where dH(x’,S) <= dH(x.,S) and check for the

motif. If x' found to be the motif then save it in bit

vector M2, otherwise call function find_child_

less_equal() .

1: Increment h

 2: For each ch=1 to ∑ -1 do

 3: Find the neighbor of x as x’ such that

 dH(x’,x)=1, x[pos]≠x’[pos] and x’∉M1

 4: add x’ to M1

 5: if(dH(x’,S) > dH(x,S)) then

 6: return

 7: else if(dH(x’,S) ≤ d) then

 8: add x’ to M2

 9: else if(h!=d) then

10: for pos=pos+1 to ℓ do

Journal of Theoretical and Applied Information Technology
 31

st
 July 2016. Vol.89. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

301

11: find_child_less(pos,h,x’

Figure 5. Pseudocode to find neighbors x’ of ℓ -

 mer x where dH(x’.,S)≤ dH(x.,S)

We have formulated the parallel version of the

above sequential extended PMSPRUNE where we

have used the coarse grain and fine grain

parallelism as shown below.

Algorithm 5. Parallel_ modified_PMSPRUNE()

Input: ℓ, d, S= { }n
iiS

1=

Output: In parallel it generates neighborhood of

 each ℓ-mer of S1 and checks for motif

1. M1= Ø and M2= Ø

2. for each]1[Sy l<
 do parallel using process

3. for each pos=1 to ℓ do using thread

4. find_child(pos, 0, y);

5. M = U M2.

Figure 6. Pseudocode of parallel version of

algorithm1

5. IMPLEMENTATION OF PROPOSED

 ALGORITHM

We have applied a Client-Server(C/S) mode to

our LAN, where we have one Server and multiple

clients. The Server coordinates and synchronizes all

the clients. There is n number of sequences of

length m each. The possible ℓ-mers of length ℓ in

sequence s1 are m- ℓ+1. Firstly we exploit the

process-level (i.e course grain) parallelism by

distributing the (m-ℓ+1)/p number of ℓ-mers of

s1, n-1 sequences and PMS tasks evenly to each

client process (i.e the outer for loop of figure 6).

The clients accept the individual nonoverlapping

task with their domain and implement in a parallel

way. Secondly we exploit the thread-level

parallelism where the different thread finds the

different set of neighbors of ℓ-mer y (i.e in the

inner for loop of figure 6). Finally, the merging of

the intermediate results produced on the clients

takes place in the server side.

We have assumed the set of ‘n’ strings

s:= { si
n
i 1} = is formed from the alphabet ∑= {A, C,

G, T}. Each of these 4 distinct symbols can be

represented by a binary string of length 2, that is

A=00, G=01, T=10 and C=11. Using this

phenomenon we consider every ℓ -mer as a

sequence of the binary string. If a1, a2,…, a ℓ is an ℓ

-mer, then this can be represented as i1, i2, …, i2ℓ

binary string where each pair of binary digits

corresponds to successive residues of ℓ -mer. Thus,

a series of ℓ -residues can be replaced by an integer

value in a natural way. For example when ℓ =16

and size of the integer is 32 bits (depending on the

machine), each ℓ -mer can be represented as an

integer. For each process, we have taken two-bit

vectors of size half GB each for M1 and M2 to store

the set of ℓ -mers which have gone through the

motif search process and the set of found motif

respectively. Each possible ℓ -mer in M1 or motif in

M2 has corresponding bit position, which implies

the presence (1) or absence (0) in the vectors. Bit

vectors M1 and M2, initially contain all zeros.

Whenever any ℓ -mer seems to be a motif or an ℓ -

mer is found to be a motif, the bit position of the

corresponding ℓ -mer is set to 1 in bit vector M1 or

M2 respectively. Due to the use of bit vector here

the repeated checking of same ℓ-mer can be

avoided and thus the time of computation can be

minimized.

5.1 Server Designing

The server has the following functions according

to its design:

 Task distribution: In the consideration of

simultaneous work of clients, the server divides the

task into smaller subtasks depending upon the

number of files or sequences present and distribute

the task to the clients for the uniform computation.

The clients return the produced results at the end.

Database sharing: All the bioinformatics

information is stored in the main database on the

server. The synchronization of the client is

controlled by the server which is must to have the

one to one correspondence between the modules.

The start message is sent by the server after the

distribution of the tasks so that they can start to

work. After the completion of work, the client will

send an End message and result to the server to say

the completion of the task.

Planted (ℓ, d) motif: The server begins to

calculate the planted (ℓ, d) motif after receiving the

End messages from all the clients. The server is

configured with REDHAT Enterprise version-5 OS.

5.2 Client Designing

The clients simultaneously complete the task of

getting DNA sequence into their database and

computing Motif Finding from subsets of

sequences under control of the server. For this we

have another database on the clients which acts as a

secondary database. In the client side, the download

of the information starts from the server after

receiving the tasks from it, and it stores those on the

Journal of Theoretical and Applied Information Technology
 31

st
 July 2016. Vol.89. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

302

secondary storage, by which the time delay due to

successive accessing the primary storage can be

solved. After completion of the current task, the

output is submitted to the server by the clients with

one End message to the server. The clients are

configured with REDHAT Enterprise version-5 OS.

6. EXPERIMENTAL RESULT AND

 PERFORMANCE ANALYSIS

 The algorithm that we proposed has been

implemented in the C language using MPI library,

Pthread library. The experiment is done in an

environment where there is two nodes cluster with

each of 2.4GHz Intel Pentium-IV processor having

2GB RAM running under Red Hat Linux. One

Giga-bit/s Ethernet switch we have used to connect

the nodes. Our parallel algorithm has been

examined with all four nodes and the starting and

ending execution time has been evaluated with the

wall clock time. The running time here is the sum

of its execution time, its communication delay and

time to get input data from a file. The algorithm

allocates the sequence pairs based on the number of

symmetric multiprocessor (SMP) nodes available.

Due to our LAN connection the distance of

transferring data or result between the server and

the clients can be neglected as the distance of server

and client is very short.

Synchronization delay (sd) :- to yield same the

time of completion of the clients, the server divides

the tasks basing on the number of files or

sequences, by which the sizes of the subtasks are

almost equal. The acceleration rate is mainly

depends on synchronization delay due to the

waiting of the server for the end message of its

clients.

 Data transfer delay (dt): -the clients download

the sequences from the server and upload the result

to the server. But due to voluminous data the Data

transfer delay occur which is the main factor. The

processing speed mainly depends on “Data transfer

delay” and “Synchronization delay”.

As mentioned previously, we have taken the

number of sequences n=20 and length of each

sequence as m=600 and experimented on a different

value of ℓ and d. To show that our proposed new

PMSprune run faster than the existing exact

algorithms, we compare it against some of the

previously fastest exact algorithms with different

values of ℓ and d in Table1 below. In the parallel

version of the proposed algorithm, the work to be

done is distributed uniformly.

 The first set of experiments is aimed at

observing how lengths of the planted motif affect

the performance of our parallel algorithm with

respect to existing PMSprune sequential algorithm

[21] as shown in Figure 7. It is observed in all cases

that correct planted motifs are found using both

proposed sequential and parallel algorithm

successfully.

The next set of experiments investigates how the

processing time is affected by varying Hamming

distance for the different length of motifs. The

Table 2 shows the behavior of new sequential and

parallel PMSprune algorithm for various values of

(ℓ,d).

Our parallel algorithm is executed by creating

two number of processes on a two node cluster and

four number of processes on four node cluster. This

distributes one process to each node. Curves in

figure 8 indicates that the processing time has linear

growth as the number of processors increase.

The next experiment investigates how the

processing time is affected by varying Hamming

distance for the length of motif 15, 17, 19 as shown

in figure 9, 10, and 11 respectively. Running time

of the parallell agorithm on a two node cluster is

compared with two nodes and four nodes, as well

as with the new sequential PMSprune. With the

increasing Hamming distance the curve indicates

that the processing time has linear growth as the

number of processors increase.

7. CONCLUSION

We have proposed and implemented parallel fast

exact PMS algorithm by introducing a bit vector.

The uses of bit vector minimize storage space

requirement for a huge number of ℓ -mers

generated during the tree construction by avoiding

the redundant and repeated computation. This also

produces motifs of higher Hamming distance (d).

The proposed parallel algorithm distributes the

tasks of finding planted (ℓ,d) motif from a set of

sequences evenly among all the process in the

cluster. Our experimental result justifies our claim

that our proposed parallelization method on SMP

cluster system improves the running time over

existing sequential algorithms [21] and [24]. We

implement the proposed algorithm on two nodes

and four nodes SMP cluster system with each of

2.4GHz Intel Pentium-IV having 4 GB RAM

running under Red Hat Linux. The algorithm is also

scalable i.e. by increasing the number of processes

and number of sequences simultaneously maintains

the speed up.

Journal of Theoretical and Applied Information Technology
 31

st
 July 2016. Vol.89. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

303

REFRENCES:

[1] C. Lawrence, S. Altschul, M. Boguski, J. Liu,

A. Neuwald, and J. Wootton, “Detecting

Subtle Sequence Signals: A Gibbs Sampling

Strategy for Multiple Alignment,” Science,

vol. 262, page 208-254, 1993.

[2] F.P. Roth, J.D. Hughes, P.W. Estep, and G.M.

Church, “Finding DNA Regulatory Motifs

within Unaligned Noncoding Sequences

Clustered by Whole-Genome mRNA

Quantization,” Nature Biot echnology, vol. 56,

page. 939-945, 1998.
[3] R. Siddharthan, E.D. Siggia, and E. van

Nimwegen , “Phylogibbs: A Gibbs Sampler

Incorporating Phylogenetic Information,”

PLoS Computational Biology, vol. 5, page

534- 556, 2005.

[4] X. Liu, J.S. Liu, and D.L. Brutlag,

“BioProspector: Discovering Conserved DNA

Motifs in Upstream Regulatory Regions of

Co-Expressed Genes,” Proc. Pacific Symp.

Biocomputing, page 527, 2005.

[5] P.A. Evans, A. Smith, and H.T. Wareham,

“On the Complexity of Finding Common

Approximate Substrings”, Theoretical

Computer Sc., vol. 306, page 407-430, 2003.

[6] I. Rigoutsos and A. Floratos, “Combinatorial

Pattern Discovery in Biological Sequences:

The TEIRESIAS Algorithm", Bioinf., vol.

54, page. 56-57, 1998.

[7] P.A. Pevzner and S.H. Sze, “Combinatorial

Approaches for Finding Subtle Signals in

DNA Sequences”, Intelligent Sys. For

Molecular Biology, page. 269-278, 2000.

[8] J. Buhler and M. Tompa, “Finding Motifs

Using Random Projections,” J. Computational

Biology, vol. 9, page 125-242, 2002.

[9] U. Keich and P.A. Pevzner, “Finding Motifs

in the Twilight Zone,” Bioinformatics, vol. 4,

page 374-385, 2002.

[10] A. Price, S. Ramabhadran, and P. Pevzner,

“Finding Subtle Motifs by Branching from

Sample Strings,” Proceeding. 2
nd

 European

Conf. Comput. Biology (ECCB ’03), Bioinfo.,

suppl. ed., page 1-7, 2003.

[11] G.Z. Hertz and G.D. Stormo, “Identifying

DNA and Protein Patterns with Statistically

Significant Alignments of Multiple

Sequences,” Bioinf. Vol. 55, page 563-577,

1999.

[12] T. Bailey and C. Elka, “Fitting a Mixture

Model by Expectation Maximization to

Discover Motifs in Biopolymers”, Proc.

Second Int’l Conf. Intelligent Systems for

Molecular Biology, page 28-36, 1994.

[13] Bi CP A monte carlo EM algorithm for De

Novo motif discovery in bio molecular

sequences. IEEE/ACM Trans. on

Computational Biology and Bioinformatics-6:

page 370–386, 2009.

[14] CW Huang, WS Lee, SY Hsieh An improved

heuristic algorithm for finding motif signals in

DNA sequences. IEEE/ACM Trans. on

Computational Biology and Bioinformatics .

page 959–975, 2011.

[15] L. Marsan and M.F. Sagot, “Extracting

Structured Motifs Using a Suffix Tree-

Algorithms and Application to Promoter

Consensus Identification”, Fourth Annual

International Conference on Computational

Molecular Biology (RECOMB), 2000.

[16] P. A. Evans and A. D. Smith , “Toward

optimal motif Enumeration”, Proc. Eighth

Int’l Workshop Algorithm and Data structures

(WADS 03), page 47-58, July/Aug. 2013.

[17] E. Eskin and P.A. Pevzner, “Finding

Composite Regulatory Patterns in DNA

Sequences,” Bioinformatics, vol. 4, page 354-

363, 2002.

[18] S. Rajasekaran, S. Balla, and C.-H. Huang,

“Exact Algorithms for the Planted Motif

Problem,” J. Computational Biology,vol. 12,

no. 8, page. 1117-1128, Oct. 2005.

[19] F.Y.L. Chin and H.C.M. Leung, “Voting

Algorithms for Discovering Long Motifs”,

Proceeding 3
rd

 Asia-Pacific Bioinfor. Conf.,

page 261-271, 2005.

[20] N. Pisanti, A.M. Carvalho, L. Marsan, and

M.F. Sagot, “RISOTTO: Fast Extraction of

Motifs with Mismatches”, Proceeding 7
th

Latin Am. Theoretical Symp., page 757-768,

2006.

[21] J. Davila, S. Balla, and S. Rajasekaran, “Fast

and Practical Algorithms for Planted(l,d)

Motif Search,”IEEE/ACM Trans. Comp.

Biology and Bioinf. vol 4,page 544-552, 2007.

[22] J. Davila, , S. Balla, and S. Rajasekaran,

Pampa: An Improved Branch and Bound

Algorithm for Planted (l, d) Motif Search,

Tech Report, University of Connecticut, 2007.

[23] S. Rajasekaran, H. Dinh, A speedup

technique for (l, d) motif finding algorithms,

BMC Research Notes, 4:54,1-7, 2011.

[24] H. Dinh, , S. Rajasekaran, and V. Kundeti,

PMS5: an efficient exact algorithm for the

(l,d) motif finding problem, BMC

Bioinformatics, 12:410, 2011.

[25] S. Bandyopadhyay, S. Sahni, and S

Rajasekaran, “PMS6: A Fast Algorithm for

Motif Discovery,” Proc. IEEE Second Int’l

Journal of Theoretical and Applied Information Technology
 31

st
 July 2016. Vol.89. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

304

Conf. Computational Advances in Bio and

Medical Sciences (ICCABS ’12),Feb. 2012

IEEE 2012:1-6.

[26] H. Dinh, S. Rajasekaran, and J. Davila,

“qPMS7: A Fast Algorithm for Finding(l, d)-

Motifs in DNA and Protein Sequences,”

PLoS One, vol. 7, no. 7, article e41425, July

2012.

[27] Q. Yu, H. Huo, Y. Zhang, and H. Guo,

“PairMotif: A New Pattern-Driven Algorithm

for Planted (l, d) DNA Motif Search,” PLoS

One, vol. 7(10), article e48442, Oct. 2012.

[28] N. S. Dasari, R. Desh, and M. Zubair, “An

efficient multicore implementation of planted

motif problem,” in Proceedings of the

International Conference on High

Performance Computing and Simulation, pp.

9–15, 2010.

[29] N. S. Dasari, R. Desh, and M. Zubair,

“Solving planted motif problem on GPU,” in

International Workshop on GPUs and

Scientific Applications, 2010.

[30] D. Sharma, S Rajasekaran, H Dinh: An

experimental comparison of PMSprune and

other algorithms for motif search. CoRR abs,

1108.5217, 2011.

Journal of Theoretical and Applied Information Technology
 31

st
 July 2016. Vol.89. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

305

Table 1: Time Comparison Of Different Algorithms On Challenging Instances.

 Instance

Motif

Algorithms

(11,3) (13,4) (15,5) (16,3) (17,6) (19,7) (21,8) (23,9)

Proposed parallel

PMSprune

3.07s 29.27s 4.23m 17.3m 25.85m 2.20h 8.98h 31h

Proposed Sequential

PMSprune

4.6s 37.17s 6.92m 23m 47.03m 4.09h 10.39h 48h

PMS5 - 117s 4.8m 21.7m 1.7h 9.7h 54h

PMSprune 5s 53s 9m - 69m 9.10h -

Pampa 4s 35s 5m - 40m 4.45h -

PMSP 6.9s 152s 35m - 12h - -

Votting - 104s 21.6m - - - -

RISOTTO - 772s 106.4m - - - -

Figure 7: Running Time Of Proposed Sequential And Parallel Pmsprune Algorithm W.R.T The Existing Sequential

Algorithm For N=20, And M= 600 As A Function Of (ℓ,D) Motifs For Different Values Of ℓ And D.

Table 2: Time Comparison Of New Pmsprune For Different (ℓ,D) Instances.

Length of

the motif (ℓ)

Hamming

distance (d)

Processing time for

New sequential

PMSprune

Processing time for

New parallel PMSprune

Two CPU Four CPU

15

5 6.92m 4.23m 3.01m

4 4.34s 3.3s 2.05s

3 0.182s 0.154s 0.114s

17

6 47.03m 25.85m 17.39m

5 2.37m 1.96m 0.97m

4 0.47s 0.43s 0.31s

19

7 4.09h 2.20h 1.18h

6 132m 111m 42m

5 1.023s 0.849s 0.611s

Journal of Theoretical and Applied Information Technology
 31

st
 July 2016. Vol.89. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

306

Figure 8: Running Time Of Our New Parallel Pmsprune Algorithm (2P,4P) And New Sequential Algorithm

 (SA) For N= 20, M= 600 As A Function Of (ℓ,D).

Figure 9: Running Time Of Our New Pmsprune And Parallel Pmsprune Algorithm (2P,4P) For N=20, M= 600 And ℓ

= 15 As A Function Of Hamming Distance Of Motifs.

 Figure 10: Running Time Of Our New Pmsprune And Parallel Pmsprune Algorithm (2P,4P) For N= 20, M=

 600 And ℓ = 17 As A Function Of Hamming Distance Of Motifs.

Figure 11: Running Time Of Our New Pmsprune And Parallel Pmsprune Algorithm (2P, 4P) For N= 20, M=

 600 And ℓ = 19 As A Function Of Hamming Distance Of Motifs.

