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ABSTRACT 

 

The Identification of inimitable patterns (motif) occurring in a set of biological sequences could give rise to 

new biological discoveries and has been studied considerably due to its paramount importance. In the field 

of bioinformatics, motif search is the vital problem for its application in the detection of transcriptional 

regulatory elements and transcription factor binding sites (TFBS) which are crucial for the knowledge of 

drug design, human disease, gene function etc. Many aspects of the motif search problem have been 

identified in the literature. One of them is the planted (ℓ, d)-motif search problem. In this paper, we propose 

a parallel extension of the existing PMSPRUNE algorithm along with two additional features: those are 

neighbor generation on a demand basis and omitting the duplicate neighbor checking with the help of a bit 

vector implementation. The experimental result shows, the proposed multicore algorithm in C, handles the 

problem for larger d value with fix length ℓ with a speed up more than twice, without any additional 

requirement of space on a 2.4GHz PC with 4GB RAM. 

Keywords: PMSPRUNE, Planted Motif Search, Symmetric Multiprocessor (SMP), Message Passing    

                    Interface (MPI), Bit Map Vector 

 

1. INTRODUCTION  

 

In computational molecular biology and 

bioinformatics, the discovery of approximate 

patterns in DNA sequences has given rise to 

important solutions in the domain of many 

biological problems. For illustration, the 

recognition of patterns in protein sequences has 

ensured to be exceptionally helpful in domain 

recognition, locating the protease cleavage sites, 

identification of signal peptides, protein 

cooperation, resolution of protein degradation 

elements, identification of short functional motifs. 

Also, motifs are common sequence patterns in 

transcription factor binding sites that play 

significant roles in gene expression and regulation, 

understanding numerous human disease, gene 

function, drug design etc. As a result, in biological 

studies, the discovery of motifs plays an important 

and fundamental role.  In literature, several versions 

of the motif search problem have been studied 

extensively. For the instance, they include Simple 

Motif Search (SMS), Edit-distance-based Motif 

Search (EMS), and Planted (ℓ, d) Motif Search. In 

this paper, our focus is on Planted (ℓ, d) Motif 

Search (PMS). PMS is defined as follows: Inputs to 

the PMS are n sequences of length m each, two 

positive integers’ ℓ and d. The objective is to 

extract strings of length ℓ, such that any such string 

M is present in all n sequences with at most d 

mismatches. Formally, we can define the problem 

as follows:                                                                      

Definition 1.  Given a set of sequences 
n
iisS 1}{: ==  over an alphabet ∑={A,T,C,G}, with 

is = m and ℓ , d with 0 ≤ d < ℓ < m, the PMS 

involves identifying the (ℓ, d) motif x with x = ℓ 

such that xi is a substring of si of length ℓ and x 

differs from xi in at  most d places for i=1,…,n.  

In the literature, PMS algorithms are categorized 

into two approaches: exact and approximation 

algorithms on the basis of heuristic search and 

exhaustive enumeration search respectively. 

Generally PMS approximation, algorithms are 

faster and more popular than exact algorithms but 

they are not guaranteed to give correct motif 

always. The probabilistic approach [1], [2], [3], [4] 

is utilized by the approximate algorithm, which 

depends on the Position-Specific Scoring Matrix 

(PSSM) representation [5], or a combinatorial 
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approach [6], [7], [8],  [9], [10]. Extensively used 

analytical algorithms are the stochastic GibbsDNA 

algorithm [1], AlignACE [2], PhyloGibbs [3], 

BioProspector [4], TEIRESIAS [6], WINNOWER 

[7], Random Projection [8], MULTIPROFILER [9], 

Pattern Branching [10], CONSENSUS[11], MEME 

[12], MCEMDA[13] and Vine [14]  . The 

WINNOWER algorithm, proposed by Pevzner and 

Sze[7] constructs a graph considering the ℓ-mers as 

nodes  and there exist an edge between two ℓ-mers 

of different sequences if the mismatch among them 

is at most 2d. Then he maps PMS to the problem of 

finding a large clique, an NP-Hard problem. 

Random projections [8], by Buhler and Tompa, 

grouped ℓ-mers based on the similarity of the 

projections by considering k location from the 

entire ℓ-mers. The probability of getting the desired 

motif is more in the groups having a maximum 

number of ℓ-mers. Pattern Branching [10] algorithm 

uses the scoring method to assign a score to each 

neighbor of all ℓ-mers available in the sequence and 

then the best-scored neighbors are determined by 

the local search. The greedy CONSENSUS [11] 

employs statistical measures for the alignment of ℓ-

mers and finds probable motifs from the alignment 

while GibbsDNA [1] uses Gibbs sampling. MEME 

(Multiple Expectation-Maximization Elicitation) 

[12] is one of the widely used approximation 

algorithms, where the technique of expectation 

minimization is used. A Monte Carlo algorithm, 

MCEMDA[13], initiate from a starting model  and 

then it repeatedly executes the Monte Carlo 

simulation and parameter update till the 

convergence. Vine [14] a recent polynomial time 

Heuristic method based on WINNOWER[7]. 

Exact algorithms take exponential time to 

compute, but there is a guarantee of getting motifs. 

For the NP-hard nature of the exact algorithm, it is 

impractical to run on a very large instance and is 

therefore required to design the exact algorithm 

with small time and space overhead. Based on 

search space the exact algorithms built on two 

approaches: sample driven, test all (m- ℓ +1)
n
 

possible combinations of ℓ-mers of different strings, 

generate the common neighbor and pattern driven, 

verify all 4 
ℓ
 possible patterns to find the one that 

appear in all n sequences with minimum number of 

mutations. Some of the exact algorithms for solving 

PMS are SMILE [15], CENSUS [16], MITRA [17], 

PMS1 [18], PMS2 [18], Voting [19], and RISOTTO 

[20],  three algorithms namely PMSi, PMSP, and 

PMSprune by Davila et al. [21], Pompa[22], 

PMS4[23], .Many of these algorithms use a tree 

data structure like a suffix tree or a mismatch tree or 

tries to steadily generate motifs one character at a 

time. CENSUS [16] constructs a trie out of all ℓ-

mers from each of the input sequences. In the 

process of the trie generation, the nodes go on 

storing the number of mismatches from the motif, 

potentially pruning many branches of the trie. The 

algorithms SMILE[15] and RISOTTO[20] uses the 

suffix trees. Their theoretical space complexity is 

O(n
2
m) and time complexity is O(n

2
mN(ℓ,d)) where 

that N(ℓ,d) = ( )dd
i d

l
1

1
−∑∑ = 








. Among this 

RISOTTO [20] performs efficiently and uses suffix 

tree. MITRA [17] considers the mismatch tree data 

structure. He divides the space of patterns into a 

number of sub-spaces those starts with a stated 

prefix and then employ pruning to each of those 

sub-spaces.  PMS1, PMSi, PMS2 [18] are built on 

radix sort. They intersect efficiently the sorted d-

neighborhood of all ℓ-mers in the input sequences 

using a different technique. Voting [19] uses the 

hash table to store all possible ℓ-mers and thus the 

space requirement is huge for large instances. 

Davila et al. [21] proposed a series of PMS 

algorithms those are fast as well as well as 

comparatively economical on space. PMSP [21] 

explores the d-neighborhood of the first input 

sequence’s  all ℓ-mers and then apply an extensive 

search with the rest input sequences to compute the 

particular ℓ-mers in the found d-neighborhood 

which are motifs. Practically it performs better than 

the PMS1 instead of its worse theoretical worst case 

time complexity. PMSprune [21] is an advancement 

over PMSP having time complexity as 

O(nm
2
N(ℓ,d)) with a space complexity of O(nm). 

This uses the branch and bound approach to 

exploring all d-neighborhood and uses dynamic 

programming to compute the distance among them. 

Pampa [22] added the concept of wildcard 

characters over PMSprune to compute approximate 

motif patterns and then finds the actual motifs by 

doing a thorough mapping within the computed 

approximate pattern. PMS4 [23], a generic speedup  

approach to improving the execution time of any 

exact algorithm. The algorithm PMS5 [24], 

PMS6[25] and qPMS7[26] computes all the 

common neighbors of the three ℓ-mers iteratively 

using an integer linear programming formulation. 

PairMotif[27] selects a candidate ℓ-mer from the 

input string and then alter the alphabets one by one. 

All the above-mentioned approaches use serial 

computation. A recently proposed bit based parallel 

approach [28], [29] implemented on multicore and 

GPU architecture are the bottleneck on memory 

requirement as the increase in the ℓ and d values. 

 The algorithms PMSprune[21], Pampa[22], 

qPMSPrunel[26], and qPMS7[27] are based on 
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search tree of depth d which was introduced by 

Davila in algorithm PMSprune[21]. In this paper, 

we work more efficaciously by minimizing the 

search tree space. We decide to work on  PMSprune 

algorithm due to its advantages compared to other 

algorithms as discussed in [30]. We also develop a 

parallel version of PMSprune by using the SMP 

cluster for generation and process of many d-

neighborhoods. The relative speed of it comes from 

the way of d-neighborhood generation and its 

intersection, and the relative space from the way of 

storing the huge ℓ-mers. This paper is organized as 

follows. The PMSprune[21] algorithm is described 

in section 2 and its limitations in section 3. In 

section 4 proposed algorithm has discussed, 

followed by the implementation detail in section 5. 

The discussion and comparisons on the results we 

present in section 6. Finally, the paper is ended with 

a conclusion in section 7.  

2.  EXISTING PMSPRUNE   (A BRANCH AND    

        BOUND ALGORITHM) 
  

The PMSprune describes the solution of PMS in 

a geometric way through the concept of “distance” 

between a string and set of strings. We will use 

same notations and definitions as in [21] to state 

PMSprune.  

input Let two strings x and y with x = ℓ 

and, y = ℓ the Hamming distance dH(x,y) can be 

defined as the number of places where the 

mismatch occur. 

 Definition 2. Given 2 strings with ms = and 

x = ℓ respectively with ℓ <m. the notation sx l<     

 can be used to say x is a length ℓ substring of s or x 

is a ℓ-mer of s.  

Definition 3. Given a string x with, x =ℓ the 

vicinity or neighborhood of x is denoted as    

 l== yyxBd :{)( and }),( dxydH ≤ where dH is the 

Hamming distance. 

 Definition 4. Given two strings s and x of length 

m and ℓ respectively with ℓ <m, we denote by     

            

)',(min
'

),( xx
sx

sx HH dd
l<

=  

Definition 5. Given a string x with x  = ℓ and a 

sequence of n number of strings n
iisS

1
}{: == ,  

 with mS =i , we denote by 

)',(min
'

max
1

),(max
1

:),( xxHd

isx

n

i
isxHd

n

i

SxHd

l<=
=

=
=  

 Taking the advantage of these notation 

PMSPRUNE  has described the definition 1 in a 

mathematical way as follows which is equivalent to 

say that x is the required (ℓ,d) motif.  

)1(}),...,{,()(:
2

1 dssxHdydBxsy n ≤∧∈∃ l<   

PMSPRUNE follow the equation 1. For every 

element of Bd(y), while y is a ℓ-mer of s1, it 

evaluates the function )(., SHd . If it finds any x 

such as ),( sxd H ≤ d, then it output x as the motif. 

PMSPRUNE[21] strategy: For each ℓ-mer y in s1, it 

generate all possible neighbors  of y and check 

whether that is a candidate motif or not. The idea of 

PMSPRUNE is given below.   

a. It produces the neighbors for every ℓ-mer y of 

s1 in a branch and bound strategy using the 

help of a tree T (y) of height d, where the root 

of the tree is ℓ-mer y and the children are the 

neighbors of it. If x is a neighbor of y, then x 

appears in T (y) at height h iff dH(x,y)=h. 

Furthermore, if x’ is a child of x in T (y) then 

dH(x,x’)=1. In figure 1 we have shown the 

example of such a tree. 

b. The value of dH(x,S) and h are used to prune 

the descendants of x where x corresponds to a 

node in T (y). 

c. Using the approach of construction of T (y) the 

neighborhood, it calculates the )(.,SHd  in an 

incremental way.   

 

Figure 1. T (1010)  with d=2 and ∑ = {0,1} 

 Algorithm PMSPRUNE 

For every 1Sy l<  

i) Traverse T (y) using a DFS strategy evaluating       

             ),,( SxHd  where x Є T (y). 

ii) If( ),( SxHd  ≤ d) ,then output x. 
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iii) If( )),( hddSxHd −>− , then prune all the  

             descendents. 

iv) If ( ),( SxHd -d=d-h) , then consider only x’  

             which has ),'( SxHd = ),( SxHd  -1 

v) If ( ),( SxHd -d=d-h-1), then consider only x’  

             which has ),'( SxHd  ≤ ),( SxHd  

The ),( SxHd can be calculated in a incremental  

     way in a same procedure as [21]. 

3. LIMITATION  

1. Here, for each ℓ-mer y of string S1, it 

constructs all nodes of the tree T(y), then apply 

the pruning technique to discard the undesired 

nodes. However, the descendant nodes to the 

newly constructed node x are not required to be 

generated if  ),( SxHd  ≥ 2d-h.  

2. It is assumed that the possibilities of occurring 

two ℓ-mers at a different position of string S1 

are dissimilar, but this may not hold for the 

large string. Again when two ℓ-mers are in 

close proximity, then duplicate neighbors can 

be generated. So, duplicate tree construction 

must be avoided. In overall there is no 

technique available which can restrict the 

generation of the neighbor for which already 

the motif search has taken place. 

4. PROPOSED ALGORITHM 

 A series of algorithms Pampa[22], 

qPMSPrunel[26], and qPMS7[27] are based on the 

search tree mentioned in PMSPRUNE[21]. In the 

extended PMSPRUNE procedure, we add the 

following features in the neighbor generation 

technique of search tree as well as we paralyze that 

which improves the performance of the existing 

PMSPRUNE[21]. 

1. Firstly in the tree neighbor node will not be 

generated unless it is neither a motif nor any 

of its children becomes a motif. This way of 

tree generation on demand basis we achieve 

with the help of recursive procedure. 

2. Secondly we have avoided repeated 

generation of sub tree for same ℓ -mer of the 

string s1 and for neighbors which are available 

earlier as the neighbor for some other ℓ-mer. 

In the implementation, we use bit vector. For 

every possible ℓ -mer or neighbor of length ℓ, 

there is a corresponding bit in the bit vector. 

The bit represents whether the ℓ-mer or 

neighbor has been already considered (1) or 

not (0) in the motif search process. For fixed 

length ℓ, increasing d, gives rise to 

tremendous increase in the number of 

neighbors but the same bit vector can able to 

hold those. 

3. The efficiency is low in the serial 

implementation of the exact solution by single 

computer. Again most of the sequential 

algorithm contains lots of repeated, data-

independent operations.  This motivated us to 

propose a parallel way of implementing the 

existing exact planted (ℓ, d) motif search 

algorithm PMSprune[21] with some 

modification. 

Each recursive call produces a derived ℓ -mer x’ 

for the current ℓ -mer x. Here conditions must be 

checked before calling the recursive procedure for 

x’ to generate the tree for node x’. 

The relation between the current neighbor x and 

the derived neighbor x’ are 1)',( =xxHd  and if 

S={s1,…sn} then δ+= ),'(),( SxHdSxHd  where 

}1,0,1{−=δ that is the value of )(.,SHd does not 

differ too much between the neighbor and its 

derived one. Employing this property between 

current neighbor and its derived one, the following 

recursive call strategy is used. 

Let y be a ℓ-mer of s1 and x be a neighbor of y 

and let S={s1,…sn} be a set of strings.  Assume that 

∆+= dSxHd ),(  and x appears after h recursive 

calls, that is hxyHd =),( , then the following 

condition or statements holds. 

1.  power If Δ > d-h, then none of the derived 

neighbors x’ of x will be a motif hence 

generation of neighbors can be stopped. 

2. If Δ = d - h, then only those derived neighbors 

x’ having 1),(),'( −= SxHdSxHd  may yield a 

motif thus be included in the search space of 

motif. 

3.  If Δ = d-h-1 then only those derived x’ having 

),(),'( SxHdSxHd ≤  may yield a motif 

and thus be included in search space of motif. 

 Here we have used two bit vectors M1 and M2 of 

size 
][log�

2
∑

  each to store the neighbors of ℓ -mer 

y and motif respectively.  
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 Algorithm 1. Modified PMSPRUNE() 

Input: ℓ, d, S= { }n
iiS

1=
 

Output: Generate neighborhood of each ℓ-mer     

                 of S1 by calling the function find_child(). 

1:   let Bit vector M1 and M2 initially empty.  

2:    For each ]1[Sy l<
 do 

3:             For each pos=1 to ℓ do 

4:                      h=0 

5:                     find_child(pos, h, y) 

 

Figure 2. Sequential modified PMSprune 

pseudocode 

Algorithm 2. Find_child(pos, h, x) 

Input: pos, current location of the ℓ-mer where 

the alphabet or symbol has to be changed  h, current 

height of tree T(y) in the process of neighborhood 

generation, x, the ℓ-mer. 

Output:Generate all neighborhood x' of  ℓ-mer x 

for level h and check for the motif. If x' found to be 

the motif then save it in bit vector M2 or otherwise 

depending on the value of  dH(x’,S) call function  

find_child_less() or find_child_less_equal(). 

1. Increment h 

2:   For each ch=1 to ∑ -1 do 

3:   Find the neighbor of x as x’ such that     

              dH(x’,x)=1,  x[pos]≠x’[pos] and x’∉M1 

4:       add x’ to M1  

5:       If(dH(x’,S) ≤ d) then 

6:           add x’ to M2 

7:            if(h!=d) then 

 8:               for pos=pos+1 to ℓ do 

 9:                      find_child(pos,h,x’) 

10:         else if(dH(x’,S) –d=d-h) then 

11:              if(d!=h)then 

12:                  for pos=pos+1 to ℓ do 

13:                       find_child_less(pos,h,x’) 

14:        else if(dH(x’,S)-d=d-h-1) then 

15:             if(d!=h)then 

16:                for pos=pos+1 to ℓ do 

17:                      find_child_less_equal(pos,h,x’) 

Figure 3.   Pseudocode to find neighbors of ℓ-

mer x 

 

 Algorithm 3.  Find_child_less(pos, h, x) 

Input: pos, current location of the ℓ-mer where    

the alphabet or symbol has to be changed h,     

current height of tree T(y) in the process of     

neighborhood generation, x, the ℓ-mer. 

Output: Generate level h neighborhood x' of  ℓ-   

mer x  where dH(x’,S) < dH(x.,S) and  check for  

the motif. If x' found to be the motif then save  

 it in bit vector M2, otherwise depending on the  

value of  dH(x’,S) call function  find_child_less()    

1:    Increment h 

 2:     For each ch=1 to ∑ -1 do 

 3:       Find the neighbor of x as x’ such that    

                   dH(x’,x)=1,  x[pos]≠x’[pos] and x’∉M1 

 4:            add x’ to M1  

 5:            if(dH(x’,S) ≥ dH(x,S)) then 

 6:                    return 

 7:            else if(dH(x’,S) ≤ d) then 

 8:                   add x’ to M2 

 9:             else if(h!=d) then 

 10:                  for pos=pos+1 to ℓ do 

 11:                           find_child_less(pos,h,x’) 

Figure 4.   Pseudocode to find neighbors x’ of ℓ -

mer   x where dH(x’.,S)< dH(x.,S) 

 

Algorithm 4. find_child_less_equal(pos, h, x) 

Input: pos, current location of the ℓ-mer where     

 the alphabet or symbol has to be changed h, current 

height of tree T(y) in the process of neighborhood 

generation. x, the ℓ-mer 

Output: Generate level h neighborhood x' of  ℓ-

mer x where dH(x’,S) <= dH(x.,S) and check for the 

motif. If x' found to be the motif then save it in bit 

vector M2, otherwise call function  find_child_ 

less_equal()   . 

1:  Increment h 

 2:   For each ch=1 to ∑ -1 do 

 3:      Find the neighbor of x as x’ such that       

                   dH(x’,x)=1,  x[pos]≠x’[pos] and x’∉M1 

 4:           add x’ to M1  

 5:           if(dH(x’,S) > dH(x,S)) then 

 6:                    return 

 7:           else if(dH(x’,S) ≤ d) then 

 8:                    add x’ to M2 

 9:             else if(h!=d) then 

10:         for pos=pos+1 to ℓ do 
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11:               find_child_less(pos,h,x’ 

Figure 5.   Pseudocode to find neighbors x’ of ℓ -   

                   mer x where dH(x’.,S)≤ dH(x.,S) 

We have formulated the parallel version of the 

above sequential extended PMSPRUNE where we 

have used the coarse grain and fine grain 

parallelism as shown below. 

    

Algorithm 5. Parallel_ modified_PMSPRUNE() 

Input: ℓ, d, S= { }n
iiS

1=
 

Output: In parallel it generates neighborhood of     

                   each ℓ-mer of S1 and checks for motif 

1. M1= Ø and M2= Ø 

2. for each ]1[Sy l<
 do parallel using process 

3.      for each pos=1 to ℓ do using thread 

4.           find_child(pos, 0, y); 

5. M = U M2. 

Figure 6. Pseudocode of parallel version of 

algorithm1 

 

5.  IMPLEMENTATION OF PROPOSED     

        ALGORITHM 

We have applied a Client-Server(C/S) mode to 

our LAN, where we have one Server and multiple 

clients. The Server coordinates and synchronizes all 

the clients. There is n number of sequences of 

length m each. The possible ℓ-mers of length ℓ in 

sequence s1 are m- ℓ+1. Firstly   we exploit the 

process-level (i.e course grain) parallelism by 

distributing the (m-ℓ+1)/p      number of ℓ-mers of 

s1, n-1 sequences and PMS tasks evenly to each 

client process (i.e the   outer for loop of figure 6). 

The clients accept the individual nonoverlapping 

task with their domain and implement in a parallel 

way.  Secondly we exploit the thread-level 

parallelism where the different thread finds the 

different set of neighbors of ℓ-mer y (i.e in the 

inner for loop of figure 6). Finally, the merging of 

the intermediate results produced on the clients 

takes place in the server side.  

We have assumed the set of ‘n’ strings 

s:= { si
n
i 1} = is formed from the alphabet ∑= {A, C, 

G, T}. Each of these 4 distinct symbols can be 

represented by a binary string of length 2, that is 

A=00, G=01, T=10 and C=11. Using this 

phenomenon we consider every ℓ -mer as a 

sequence of the binary string. If a1, a2,…, a ℓ  is an ℓ 

-mer, then this can be represented as i1, i2, …, i2ℓ 

binary string where each pair of binary digits 

corresponds to successive residues of ℓ -mer.  Thus, 

a series of ℓ -residues can be replaced by an integer 

value in a natural way. For example when ℓ =16 

and size of the integer is 32 bits (depending on the 

machine), each ℓ -mer can be represented as an 

integer.  For each process, we have taken two-bit 

vectors of size half GB each for M1 and M2 to store 

the set of ℓ -mers which have gone through the 

motif search process and the set of found motif 

respectively. Each possible ℓ -mer in M1 or motif in 

M2 has corresponding bit position, which implies 

the presence (1) or absence (0) in the vectors. Bit 

vectors M1 and M2, initially contain all zeros. 

Whenever any ℓ -mer seems to be a motif or an ℓ -

mer is found to be a motif, the bit position of the 

corresponding ℓ -mer is set to 1 in bit vector M1 or 

M2 respectively. Due to the use of bit vector here 

the repeated checking of same ℓ-mer can be 

avoided and thus the time of computation can be 

minimized. 

5.1 Server Designing  

The server has the following functions according 

to its design: 

 Task distribution: In the consideration of 

simultaneous work of clients, the server divides the 

task into smaller subtasks depending upon the 

number of files or sequences present and distribute 

the task to the clients for the uniform computation. 

The clients return the produced results at the end.  

Database sharing:  All the bioinformatics 

information is stored in the main database on the 

server. The synchronization of the client is 

controlled by the server which is must to have the 

one to one correspondence between the modules. 

The start message is sent by the server after the 

distribution of the tasks so that they can start to 

work. After the completion of work, the client will 

send an End message and result to the server to say 

the completion of the task.  

Planted (ℓ, d) motif: The server begins to 

calculate the planted (ℓ, d) motif after receiving the 

End messages from all the clients. The server is 

configured with REDHAT Enterprise version-5 OS.  

 

5.2 Client Designing  

The clients simultaneously complete the task of 

getting DNA sequence into their database and 

computing Motif Finding from subsets of 

sequences under control of the server. For this we 

have another database on the clients which acts as a 

secondary database. In the client side, the download 

of the information starts from the server after 

receiving the tasks from it, and it stores those on the 
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secondary storage, by which the time delay due to 

successive accessing the primary storage can be 

solved. After completion of the current task, the 

output is submitted to the server by the clients with 

one End message to the server. The clients are 

configured with REDHAT Enterprise version-5 OS. 

6. EXPERIMENTAL RESULT AND     

        PERFORMANCE ANALYSIS  

  The algorithm that we proposed has been 

implemented in the C language using MPI library, 

Pthread library. The experiment is done in an 

environment where there is two nodes cluster with 

each of 2.4GHz Intel Pentium-IV processor having 

2GB RAM running under Red Hat Linux.  One 

Giga-bit/s Ethernet switch we have used to connect 

the nodes. Our parallel algorithm has been 

examined with all four nodes and the starting and 

ending execution time has been evaluated with the 

wall clock time. The running time here is the sum 

of its execution time, its communication delay and 

time to get input data from a file.  The algorithm 

allocates the sequence pairs based on the number of 

symmetric multiprocessor (SMP) nodes available. 

Due to our LAN connection the distance of 

transferring data or result between the server and 

the clients can be neglected as the distance of server 

and client is very short. 

Synchronization delay (sd) :-  to yield same the 

time of completion of the clients, the server divides 

the tasks basing on the number of files or 

sequences, by which the sizes of the subtasks are 

almost equal. The acceleration rate is mainly 

depends on synchronization delay due to the 

waiting of the server for the end message of its 

clients. 

 Data transfer delay (dt): -the clients download 

the sequences from the server and upload the result 

to the server. But due to voluminous data the Data 

transfer delay occur which is the main factor. The 

processing speed mainly depends on “Data transfer 

delay” and “Synchronization delay”.  

As mentioned previously, we have taken the 

number of sequences n=20 and length of each 

sequence as m=600 and experimented on a different 

value of ℓ and d. To show that our proposed new 

PMSprune run faster than the existing exact 

algorithms, we compare it against some of the 

previously fastest exact algorithms with different 

values of ℓ and d in Table1 below. In the parallel 

version of the proposed algorithm, the work to be 

done is distributed uniformly.  

 The first set of experiments is aimed at 

observing how lengths of the planted motif affect 

the performance of our parallel algorithm with 

respect  to existing PMSprune sequential algorithm 

[21] as shown in Figure 7. It is observed in all cases 

that correct planted motifs are found using both 

proposed sequential and parallel algorithm 

successfully. 

The next set of experiments investigates how the 

processing time is affected by varying Hamming 

distance for the different length of motifs. The 

Table 2 shows the behavior of new sequential and 

parallel PMSprune algorithm for various values of 

(ℓ,d).  

Our parallel algorithm is executed by creating 

two number of processes on a two node cluster and 

four number of processes on four node cluster. This 

distributes one process to each node. Curves in 

figure 8 indicates that the processing time has linear 

growth as the number of processors increase. 

The next experiment investigates how the 

processing time is affected by varying Hamming 

distance for the length of motif 15, 17, 19 as shown 

in figure 9, 10, and 11 respectively. Running time 

of the parallell agorithm on a two node cluster is 

compared with two nodes and four nodes, as well 

as with the new sequential PMSprune. With the 

increasing Hamming distance the curve indicates 

that the processing time has linear growth as the 

number of processors increase. 

7. CONCLUSION  

We have proposed and implemented parallel fast 

exact PMS algorithm by introducing a bit vector. 

The uses of bit vector minimize storage space 

requirement for a huge number of ℓ -mers 

generated during the tree construction by avoiding 

the redundant and repeated computation. This also 

produces motifs of higher Hamming distance (d). 

The proposed parallel algorithm distributes the 

tasks of finding planted (ℓ,d) motif from a set of 

sequences evenly among all the process in the 

cluster. Our experimental result justifies our claim 

that our proposed parallelization method on SMP 

cluster system improves the running time over 

existing sequential algorithms [21] and [24]. We 

implement the proposed algorithm on two nodes 

and four nodes SMP cluster system with each of 

2.4GHz Intel Pentium-IV having 4 GB RAM 

running under Red Hat Linux. The algorithm is also 

scalable i.e. by increasing the number of processes 

and number of sequences simultaneously maintains 

the speed up. 
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Table 1: Time Comparison Of Different Algorithms On Challenging Instances. 

               Instance 

Motif      

Algorithms 

(11,3) (13,4) (15,5) (16,3) (17,6) (19,7) (21,8) (23,9) 

Proposed parallel 

PMSprune 

3.07s 29.27s 4.23m 17.3m 25.85m 2.20h 8.98h 31h 

Proposed Sequential 

PMSprune 

4.6s 37.17s 6.92m 23m 47.03m 4.09h 10.39h 48h 

PMS5 - 117s 4.8m  21.7m 1.7h 9.7h 54h 

PMSprune 5s 53s 9m - 69m 9.10h -  

Pampa 4s 35s 5m - 40m 4.45h -  

PMSP 6.9s 152s 35m - 12h - -  

Votting - 104s 21.6m - - - -  

RISOTTO - 772s 106.4m - - - -  

 

 

Figure 7: Running Time Of Proposed Sequential And Parallel Pmsprune Algorithm W.R.T The  Existing Sequential 

Algorithm For N=20, And M= 600 As A Function Of (ℓ,D) Motifs For Different Values Of ℓ And D. 

 

Table 2: Time Comparison Of New Pmsprune For Different (ℓ,D) Instances. 

Length of 

the motif (ℓ) 

Hamming 

distance (d) 

Processing time for 

New sequential 

PMSprune 

Processing time for 

New parallel PMSprune 

Two CPU Four CPU 

 

15 

5 6.92m 4.23m 3.01m 

4 4.34s 3.3s 2.05s 

3 0.182s 0.154s 0.114s 

 

17 

6 47.03m 25.85m 17.39m 

5 2.37m 1.96m 0.97m 

4 0.47s 0.43s 0.31s 

 

19 

7 4.09h 2.20h 1.18h 

6 132m 111m 42m 

5 1.023s 0.849s 0.611s 
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Figure 8: Running Time Of Our New Parallel Pmsprune Algorithm (2P,4P) And New Sequential Algorithm    

                (SA) For N= 20, M= 600 As A Function Of (ℓ,D). 

 

 
Figure 9: Running Time Of Our New Pmsprune And Parallel Pmsprune Algorithm (2P,4P) For N=20, M= 600 And ℓ 

= 15 As A Function Of Hamming Distance Of Motifs. 

 

 Figure 10: Running Time Of Our New Pmsprune And Parallel Pmsprune Algorithm (2P,4P) For  N= 20, M=  

                   600 And ℓ = 17 As A Function Of Hamming Distance Of Motifs. 

 
Figure 11: Running Time Of Our New Pmsprune And Parallel Pmsprune Algorithm (2P, 4P) For N= 20, M=  

                  600 And ℓ = 19 As A Function Of Hamming Distance Of Motifs. 

 


