
Journal of Theoretical and Applied Information Technology 
 31

st
 July 2016. Vol.89. No.2 

 © 2005 - 2016 JATIT & LLS. All rights reserved.   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
397 

 

NORMALIZED STEP SIZE APPROACH TO SIGNAL 

PROCESSING BASED ON LAGGED CROSS-CORRELATION 

OF PROBABILITY 
 

1
NAMYONG KIM,

 2
ANNA ANDONOVA, 

3
MINGOO KANG 

1
Division of electronic, inform. & comm. eng., Kangwon national university, Samcheok, S. Korea 

2
Faculty of electronic eng. and technologies, Technical university-Sofia, Sofia, Bulgaria 

3
Division of information and telecommunication engineering, Hanshin university, Osan, S. Korea 

E-mail:  
1
namyong@kangwon.ac.kr, 

2
ava@ecad.tu-sofia.bg, 

3
kangmg@hs.ac.kr   

 

 

ABSTRACT 

 

The signal processing algorithms based on the lagged cross-correlation of probability (LCCP) have been 

considered very effective in the multipath environment with impulsive and DC noise coexisting in visual 

light/power line communication (VLC/PLC) systems for energy saving intelligent buildings. To meet the 

demand for higher data rates and more complicated sensor node configuration, in this paper, performance 

enhancement methods by employing a normalized step size in the LCCP-based algorithms which are 

sensitive to the scaling of system input contaminated with impulses and DC noise are proposed through the 

analysis of the behavior of optimum weight and the role of magnitude controlled input (MCI) on influence 

of large errors. The normalized LCCP algorithm with the step size normalized with the averaged power of 

the current MCI shows a faster speed by about 5 times and has a lower minimum mean squared error by 

about 3 dB than the conventional LCCP algorithm in blind equalization simulation for indoor VLC/PLC 

channel models. 

Keywords: LCCP, Normalization, Step-Size, DC Bias, Impulsive Noise, VLC/PLC 

 

1. INTRODUCTION  

 

In energy saving buildings white LEDs for 

illumination are very useful due to their long 

lifetimes and energy efficiencies. But LEDs are not 

100 % efficient at converting input power to light. 

Some of the energy is converted into heat. For the 

purpose of further energy efficiency, effective 

assessment methods of the amount of heat 

generated by the LED have been studied [1]. When 

intelligent monitor and control systems through 

sensor networks are employed in those buildings, 

about 20% further savings can be yielded in energy 

usage [2]. Since running wires in buildings cover 50 

to 90% of the cost of the sensor networks, wireless 

communication links are highly recommendable for 

eliminating that cost [3]. It has been found that 

sensor node information in smart buildings can be 

transmitted through the light of those white LEDs 

modulated at high rates imperceptible to humans 

both for ambient lighting and for transmitting 

sensor data [4]. This technology of visible light 

communication (VLC) for both lighting and 

communication is considered essential for energy 

saving buildings as well as implementation with 

minimal incremental cost [4]. 

The line-of-sight (LOS) links in indoor VLC 

systems has small path loss but are susceptible to 

blockage [5]. On the other hand, the non line-of-

sight (NLOS) links utilize reflected paths of the 

light from indoor surfaces of wall, ceiling and 

furniture, so that they have strong robustness 

against blocking, but suffer from multipath 

problems [6][7]. Other obstacles besides the 

multipath effect are DC bias noise and impulsive 

noise. Background solar radiation from windows 

and ambient lighting are seriously affecting the 

received sensor signal as DC bias noise. When 

the illuminations are turned on or off by switches 

of a room or the sunlight suddenly comes in 

through the window by unfolding blinds, these 

ambient lights are playing as a role of DC bias 

noise in causing decreased sensitivity so that it is 

required to eliminate the DC noise included in 

the received signal [8][9]. The DC bias problem 

may also be mitigated if orthogonal frequency 

division multiplexing (OFDM) is employed and 

the OFDM receiver sets the DC carrier to zero as 

appeared in the work [10]. When the DC noise 
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changes with time, however, specified adaptive 

filtering techniques are needed to cope with the 

problem.  

Recently, based on the ubiquitous power line 

infrastructure and smart grids, integrated systems 

of VLC and power line communication (PLC) 

are emerging for sensor networks for energy 

saving buildings [11][12]. In the integrated 

VLC/PLC systems where received data from the 

LED lighting are retransmitted through the 

sockets of PLC systems, impulsive noise can 

occur by electrical switch, thermostat operations, 

plugging and unplugging of electrical plugs, 

motor starts of electrical devices, power surging 

on the PLC networks and so on [13]. Therefore, 

in the integrated VLC/PLC systems DC bias and 

impulsive noise can occur simultaneously. 

For the purpose of dealing with the DC and 

impulsive noise problems as appeared in VLC/PLC 

systems as well as multipath problems, adaptive 

signal processing algorithms based on lagged cross 

correlation of probability (LCCP) has been 

developed [14]. The decision feedback (DF) 

version of LCCP (DF-LCCP) has proved its 

excellence of performance in the indoor VLC/PLC 

systems [15]. A recursive approach to the gradient 

estimation of DF-LCCP for reduced computational 

complexity has eliminated the constraints of sample 

size where a large sample size is required for 

accurate estimation of probability density function 

(PDF) [16].   

   In this paper, the behavior of optimum weight of 

LCCP being robust to large errors due to impulsive 

noise is investigated and a normalized step size for 

the LCCP algorithm is proposed for improved 

performance of LCCP algorithm which is 

considered a recommendable signal processing 

algorithm for energy efficient buildings with sensor 

networks.  

This paper is organized as follows. In Section 2, 

we briefly describe the LCCP function and related 

algorithms. The magnitude-controlled input (MCI) 

of LCCP is derived and its role is explained in 

Section 3. In Section 4, normalized step size with 

averaged power of MCI is proposed. Section 5 

reports simulation results and discussions. Finally, 

concluding remarks are presented in Section 6. 

 

2. LCCP FUNCTION AND RELATED 

ALGORITHMS 

Defining the probability distribution function 

(PDF) of transmitted symbols as )(sfS  and the 

output PDF as )(yfY , the LCCP function 

)(τSYR for two PDFs )(sfS  and the output 

PDF )(yfY has been defined in [14] as   

 

 ∫ +⋅= αταατ dffR YSSY )()()(          (1) 

 

Under the assumption that the M symbol 

points },...,,{ 21 MSSS  are equiprobable at the 

transmitter, the )(sfS can be expressed with 

Dirac-delta functions )(sδ as   

 

...)()([
1

)( 21 +−+−= SsSs
M

sfS δδ  

         )](...)( Mm SsSs −++−+ δδ         (2) 

 

The output PDF )(yfY  for (3) is constructed by 

the kernel density estimation method as with 

)( yGσ and a block of N output samples 

{ }11,...,, +−− Nkkk yyy (sample size N ) [17].     
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Inserting (2) and (3) into (1) yields  
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In blind equalization with the linear filter 

k

T

ky XW=  with the weight 

T

Lwwww ],...,,,[ 210=W  and the input  

T

Lkkkk cxxx ],...,[ 1,1, +−−=X  ( c is a constant), the 

lag τ  is controllable by Lw  and c  as    

 

 cwL ⋅−=τ                           (5)  
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Now for the maximization of )(τDYR  we can 

use the steepest ascent method as  
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∂
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               (6) 

 

By differentiating (5) by the weight, we have the 

gradient  
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Then the LCCP blind algorithm with a step size 

µ  becomes   
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The DF structured DF-LCCP is composed of 

feed-forward section and feedback section. Then 

the weight vector of the feed-forward section can be 

updated by (9). Let the feedback section with 

Q weights have the weight vector 

[ ]TB

Qk

B
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B
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k
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 with kd

∧

 being 

the decided symbol for the system output 

[ ] [ ] 1
ˆ

−+ k

TB

kk

T

k DWXW . Then the weight update 

equation for 
B

kW as derived in [14] becomes       
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The recursive DF-LCCP for reduced 

computational complexity can be found in [16]. 

3. MAGNITUDE CONTROLLED INPUT  

The term )( im yS − may be defined as an error 

sample ime ,  since the term )( im yS − implies how 

far the output sample iy  is located from each 

desired symbol point mS . Then the gradient (7) can 

be written as   
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If we consider the sample-averaged operation 

∑
+−=

⋅
k

NkiN 1

)(
1

in (10) can be replaced with the 

statistical average ][⋅E  or vice versa for practical 

reasons, we may rewrite (10) as  
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At the optimum state of the system 

with
opt

W where 0
)(
=

∂
∂

W

τSYR
 , we have  

 

0])([
1

,, =∑
=

M

m

kkmkm eGeE Xσ                (12)                                             

 

On the other hand, the optimum condition of 

MSE criterion can be expressed as follows [18].  

 

0][ =kkeE X                            (13)  

 

From the similarity between (12) and (13), we 

may notice that ke of MSE criterion may 

correspond to kme , of the LCCP criterion and 

kX of MSE criterion can correspond to 

kkmeG X)( ,σ  as a modified input vector. This 

input modification implies that the magnitude of 

kX is controlled by )( ,kmeGσ . If kme , is negligibly 

small, the magnitude of kX is unchanged, but when 

kme , is a large value, the magnitude of kX is 

reduced. Knowing that large error samples kme , can 

make the algorithm (9) unstable, we can expect that 

the input modification may play an essential role in 

robustness of the LCCP algorithm against 

impulsive noise under which kme , can become a 

very large value. In this regard, it is appropriate that 

the term kkmeG X)( ,σ in (12) can be interpreted as 

a magnitude-controlled version of kX , so that we 
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may define 
MCI

km,X as a magnitude controlled input 

(MCI) in (14).  

 

kkm

MCI

km eG XX )( ,, σ=                          (14) 

 

Besides that the MCI in (14) keeps the algorithm 

stable even at the occurrences of large error by 

impulse noise, we may wonder if the averaging 

process ∑ ∑
= +−=

M

m

k

NkiNM 1 1

1
in (9) or (11) could 

mitigate the influence of impulses. But it does not 

seem to contribute much to blocking the influence 

of large errors since even an impulse can dominate 

the averaging operation.  

4. POWER ESTIMATION OF MCI FOR 

NORMALIZED STEP SIZE 

Similar to the NLMS (normalized LMS) that 

employs the modified step size that is normalized 

by the averaged power of the current input 

samples as introduced in [18][19], we propose 

two types of normalized step sizes 1NLCCPµ  and 

2NLCCPµ  for justification of the role of MCI 

MCI

km,X  in robustness against impulsive noise as  

 

∑
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where kkm

MCI

km xeGx )( ,, σ=  is from (14).   

Considering the fact that impulses can defeat the 

average operation as explained in Section 3, we 

may notice that the denominator of (15) or (16) 

may become large in an incident with impulsive 

noise. That means that impulsive noise can make 

those step sizes very small, so that it may induce a 

very slow convergence. To avoid this kind of 

situations, we need to track the averaged power 

)(kPave and )(kQave recursively as  

∑
=
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M

m
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1
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where β )10( << β  . 

 

The equations (17) and (18) can be expressed in 

the following z-transformed transfer function 

)(zA with its input ∑
=

−

M

m

mkx
M

1

21 and 

output )(kPave , ∑
=

M

m

MCI

kmx
M

1

2

,
1 and output 

)(kQave , respectively.  
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The parameter β  controls the time constant of the 

single-pole low-pass filter )(zA . Then the resulting 

LCCP-based algorithms become  
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k
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For convenience’s sake, equation (20) and (21) 

will be referred to in this paper as the normalized 

LCCP1 (NLCCP1) and NLCCP2, respectively. 

Their DF versions, DF-NLCCP1 and DF-NLCCP2 

are easily derived only by replacing the step 

size µ of the DF-LCCP in (9) and the work [13] 

with 
)(kPave

µ
 and

)(kQave

µ
.  

 
5. RESULTS AND DISCUSSION 

In this section the effectiveness of the proposed 

NLCCP1 and NLCCP2 will be investigated in the 

VLC/PLC environments with their DF versions. As 

in [7] for VLC, bi-polar symbol {+1,-1} (M=2) is 

transmitted through the channel of NLOS links in 

indoor VLC systems. The impulse response of 

NLOS links in VLC systems vary from room to 

room. The impulse responses for this simulation are 

worked out by the authors in [7] where they took an 

empty typical office room with a transmitter and 

two field-of-view (FOV) receivers Rx1 (40
o
) and 
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Rx2 (132
o
). They found that 132

o
 FOV is more 

prone to be affected by ISI, so that we opt the FOV 

132
o
 for this simulation. They also found that ISI 

has large influence on data rate performance at 

higher rates above 100 Mb/s. So we opt to use the 

following normalized impulse responses )(1 zH for 

150 Mb/s and )(2 zH for 200 Mb/s data rate as 

used in [7] and [15].  

 
21

1 0.57370.75401478.0)(
−− ++= zzzH

 
543 0.06740.12170.2455 −−− +++ zzz    

76 0.00870.0282 −− ++ zz        (22) 

 
321

2 3497.05512.06595.03041.0)( −−− +++= zzzzH  

7654 0418.00608.01064.01711.0 −−−− ++++ zzzz      
98 0076.00190.0 −− ++ zz          (23) 

 

 The impulsive noise kn composed of additive 

Gaussian white noise (AWGN) and impulses is 

generated according to the following PDF of 

Gaussian mixture model [15][20].  
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+

−
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where incident rate of the impulse ε , the variance 

of AWGN 
2

GNσ , and impulse variance 
2

INσ are 

0.0012, 0.001, and 50, respectively. Also the 

varying DC bias noise )40000/2sin(1 kπ⋅  starts 

to be added to the received signal from sample time 

20000=k  as depicted in Figure 1.  

The feed forward filter length of the DF filter is 

11 and its backward filter length is 4. The kernel 

size is 6.0=σ  and the sample size is 2=N . 

The convergence parameter 008.0=µ  is used for 

comparison at more complete convergence unlike 

0.01 used in [15].  

MSE performance for varying DC bias and 

impulsive noise is shown in Figure 2 for 

)(1 zH and in Figure 4 for )(2 zH . The well-

known constant modulus algorithm with DF (DF-

CMA) in [18][20] fails to converge even before the 

varying DC bias is added. When the DC bias begins 

to increase after the sample time k=20000, DF-

correntropy in [20] that has completely converged 

starts to show increasing MSE according to the DC 

bias increasing.  
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Figure 1: An Example of Noise composed of AWGN, 

Impulsive and DC Bias for Simulation 
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 Figure 2: MSE Learning Performance under )(1 zH with 

Impulsive Noise and Varying DC Bias. 
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Figure 3: Error Distribution for )(1 zH with

Impulsive Noise and Varying DC Bias. 
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Figure 4: MSE Learning Performance 

under )(2 zH with Impulsive Noise and Varying DC Bias. 
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Figure 5: Error Distribution for )(2 zH with

Impulsive Noise and Varying DC Bias. 

 

But the DF-LCCP type algorithms converge rapidly 

for both channel models being left undisturbed by 

the increasing DC bias noise. In the case of the 150 

Mb/s channel )(1 zH , the DF-LCCP and DF-

NLCCP1 show similar learning performance 

converging in about 5000 samples, but DF-

NLCCP1 has a lower steady state MSE by about 1 

dB. On the other hand, the DF-NLCCP2 converges 

in about 1000 samples showing the lowest steady 

state MSE decreased by about 3 dB when compared 

to DF-LCCP. The similar performance 

enhancement is observed in the 200 Mb/s channel 

)(2 zH in Figure 4 as well.   

From the comparison of DF-LCCP and DF-

NLCCP1 where DF-NLCCP1 shows faster 

convergence speed, the difference of steady state 

MSE is about 1 dB. The steady state MSE of DF-

NLCCP2 is lower than that of DF-LCCP by about 2 

dB.  

The superior performance of the proposed DF-

NLCCP2 against varying DC and impulsive noise 

can be observed also in the comparison of error 

distribution depicted in Figure 3 and 5 for 

)(1 zH and )(2 zH , respectively. All the DF-

LCCP type algorithms form a very concentrated 

distribution only on zero implying successful 

compensation for the DC noise for both channels. 

The error samples gather around zero with slight 

differences of concentration. The peak probability 

at zero for )(1 zH is 0.059 for DF-LCCP, 0.061 for 

DF-NLCCP1, and 0.063 for DF-NLCCP2, 

respectively. Similarly, the peak probability for 

)(2 zH is 0.026, 0.028, and 0.03 for DF-LCCP, 

DF-NLCCP1, and DF-NLCCP2, respectively. 

These results indicate that the DF-NLCCP2 has the 

highest peak probability among all those algorithms 

being compared.   

6. CONCLUSION 

The DF-LCCP algorithm is known to outperform 

MSE-based DF-CMA and other correntropy-based 

algorithms in the multipath environment where 

impulsive and DC noise are coexisting. This 

property is considered very useful in wireless 

VLC/PLC systems for sensor networks of energy 

saving intelligent buildings.      Though the problem 

of computational complexity of the DF-LCCP 

algorithm has been solved for practical reasons by 

recursive gradient estimation method in previous 

related works, its learning speed and error 

performance are needed to be more enhanced due to 

ever increasing number of sensor nodes and data 

rate. One of the methods for performance 

enhancement is to employ a time varying step size 

that controls the LCCP-based algorithms sensitive 

to the scaling of its input contaminated with 

impulses. In this paper, through the analysis of the 

behavior of optimum weight and the role of MCI on 

mitigation of influence from large error, NLCCP 

algorithm has been proposed that employs the step 

size normalized with the averaged power of the 

current MCI elements. For justification of the role 

of MCI in robustness against impulsive noise, two 

types of normalized step sizes are introduced and 

experimented with DF versions of LCCP through 

simulation.   

The normalized step size using input itself 

without magnitude control shows a small 

enhancement of performance as in convergence 

speed, minimum MSE, and error distribution. On 

the other hand, the one using MCI shows a faster 

speed by about 5 times and a lower minimum MSE 

by about 3 dB in channel model )(1 zH and 2 dB in 

)(2 zH , compared to DF-LCCP algorithm. These 
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results lead us to conclude that the step size 

normalization with the MIC power is significantly 

effective in the VLC/PLC systems for energy 

saving smart buildings.    
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