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ABSTRACT 

 

Cloud computing exists as a rising technology that provides the functionality of available and highly 

scalable web applications at extremely low cost. Building a scalable, available and consistent cloud data 

store is the challenge now a day’s. Scalability is improved by using primary technique that is data 

partitioning. Classical, Partitioning strategies are not able to track the patterns of the web applications. This 

paper implements workload-driven approach rest on data access patterns in MongoDB for improving 

scalability. As observed from results it generates less number of distributed transactions. Similarly, 

implementation and validation of scalable workload-driven partitioning scheme are accomplished via 

experimentation over cloud data store (MongoDB). An experimental outcome of the partitioning strategy is 

managed by utilizing the industry benchmark TPC-C. 

 

Keywords: Scalability, Oltp, Data Partitioning, Partitioning Scheme, Workload-Driven. 

 

1. INTRODUCTION  

 

Cloud computing has been derived as an extensive 

model for introducing web scale applications in 

huge computing infrastructures. The major enabling 

aspects of cloud comprise of on demand services, 

the elasticity of resources, the notion of limitless 

resources and enormous scalability. Probably the 

most primary use of the cloud is for a web hosting 

the vast number of internet applications, scalable 

data management techniques that force these 

applications, are a significant component into the 

cloud [4]. Constructing scalable and uniform data 

management has been the aim of database 

investigator for the last few years. Many 

applications on the web are deployed with its rising 

fame. They have suffered the problem of serving 

customers in thousands. Hence, scalability of 

browsing internet purposes has turned out to be the 

primary issue. These recent internet applications 

develop the massive quantity of data. The database 

management system plays vital role in managing a 

huge quantity of data. 

 

As the DBMS is beneficial to preserve uniform and 

affordable performance, it has to scale out at low 

price commodity hardware. Conventionally, 

Relational databases might not be scaled out at low 

price commodity servers. This gives a start to the 

NoSQL data stores [16]. NoSQL data stores include 

services such as availability, elasticity and 

scalability. The primary approach to achieve 

scalability is partitioning the data. In an e-

commerce application, when a customer wants to 

buy an item then request is processed by the 

warehouses. Whenever the warehouses on to the 

same partition are out of stock, an order is fulfilled 

through the warehouses on another partition [14]. 

Here, the pattern is formed that is which warehouse 

is most probable supplier warehouse for the 

processing warehouse. This behavior is tracked and 

the pattern is recognized. This pattern is called as 

Data Access Patterns [14]. Static partitioning 

techniques are techniques, in which partitions are 

formed by collocating the associated data items on 

one partition. Once partitions are formed, they do 

not change [4]. These partitioning techniques are 

referred as static partitioning. In dynamic 

partitioning techniques, partitions are changed 

dynamically but it costs overhead. 

In scalable workload-driven partitioning [14], 

analyzing a transaction logs and monitoring data 

access patterns that is data changes periodically is 

introduced in MongoDB. Traditional Partitioning 

mechanisms such as range, hash are simple to 

implement but generates large number of 

distributed transactions and does not track data 
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access patterns. We provide implementation of 

scalable workload-driven partitioning [14] in 

MongoDB. Scalable workload-driven partitioning 

is especially implemented for OLTP internet 

applications. This partitioning scheme allows 

execution of fewer amounts of shared transactions 

during transactions. The main contribution of the 

paper is structured as follows: 

 

• Design of workload-driven 

partitioning in MongoDB is 

introduced. It consistently handles the 

load with all partitions. The utilization 

of this workload-driven partitioning to 

restrict the transaction to one partition 

is exhibited.   

• Implementation of workload-driven 

partitioning in MongoDB.  

• The practical demonstration of the 

scalable workload-driven partitioning 

in a cloud data stores (MongoDB) is 

presented. It is evaluated using 

industry benchmark TPC-C. 

Further paper is arranged as follows: 

 

The survey of different partitioning techniques is 

performed in Section2. Section 3 discusses issues in 

existing system. The proposed work is presented in 

section 4. Section 5 consists of implementation 

details and Conclusion in Section 6. 

 

2. RELATED WORK 

Researchers have implemented various systems and 

partitioning techniques to upgrade the scalability of 

the transactions for web applications. In this paper, 

partitioning techniques which improve the 

scalability are studied. 

 

2.1 Partitioning Algorithms 

 

2.1.1 Schema level partitioning 

In schema level partitioning [4], 

partitioning depends on partitioning 

key and all associated items are 

placed on single partitions to avoid 

distributed transactions. Schema level 

partitioning is a static partitioning 

once the partitions are formed, it 

remains same. Schema level 

partitioning, limit transactional access 

to only one database partition. 

Schema level partitioning has used the 

technique that accesses large number 

database schemas but transactions 

access only less number of associated 

data items which is spread over 

different tables. 

 

2.1.2 Graph partitioning  

In Graph partitioning [5], each node in 

the graph represents the tuple. All 

related data items related to that node 

are linked to another node via edge, 

among two nodes. In the first phase, a 

graph is created with the node 

according to a tuple and edges within 

nodes are accessed by using the same 

transaction, later apply graph 

partitioner to separate the graph 

within k-balanced partitions to restrict 

the variety of cross-partition 

transactions [5]. The second phase 

makes use of machine learning 

methodologies to find a predicate-

based explanation of segregating 

scheme.  

 

2.2 Cloud Data Stores 

 

The partitioning techniques for different cloud data 

stores [1] and partition the cloud data store based 

on the partitioning and non-partitioning is 

discussed. The main aim of the author is a scalable 

database. Scalable workload-driven partitioning 

[14] which generates partition based on data access 

patterns of web applications. This is neither static 

nor dynamic. It lies between static and dynamic 

partitioning. Dynamic group formation can be 

completed by using association mining. Two 

approaches for association mining that is Apriori 

and FP-Growth.  

 

ElasTraS [4] comes into picture from the scalable 

Key-Value stores to decrease distributed 

transactions and eliminate scalability bottlenecks, 

as all know that partitioning the database is used for 

providing scalability. ElasTraS are based upon 

schema level partitioning scheme of the database to 

assist capability, despite the fact that transactions 

are restricted to single partitions [4]. Discover 

design concepts which are utilized in designing 

scalable systems concurrently assuming 

transactional guarantees. Elastras is appropriate for 

internet applications which access patterns are 

static. Elastras only focus on scalability, not 
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availability so no need to concentrate on 

replication. 

 

TAVPD [2] presents transaction-aware partitioning. 

It uses vertical partitioning for improving 

scalability. The main aim of author's [2] is to 

decrease response time and optimized cost of 

processing. The first approach is mini transactions, 

transactions are splits into sub-transactions. The 

second technique is partitioning the data that is a 

primary technique used for upgrading the 

performance of database that is scalability, 

implementing selective consistency with a 

classification of the data on their consistency index. 

 

The automating entity group which is a first paper 

who discuss the process of automatic creating entity 

groups [6]. Earlier days, transactions were done in 

the same entity group was guarantee full ACID 

properties but the problem with different entity 

groups. Author automatically creates entity-group 

and customer has to deliver feedback for 

automatically creating entity group. The author uses 

an edge-coverage algorithm for automatically 

creating entity-group. 

 

The Deuteronomy [8] discusses the effective and 

scalable transactions techniques by separating the 

data and transaction component. The idea of this 

paper consists of two separate components, 1) data 

component doesn't know about the transaction 

process and 2) transaction component doesn't know 

about physical address of the data.  Authors discuss 

the optimization methodologies which aid to 

upgrade the throughput and increase the 

performance of the system. 

 

The Schism [5] has graph partitioning strategies 

which increase the scalability. It uses partitioning 

for enhancing scalability and replication for 

availability approach for distributed databases. 

Partitions are organized based on the graph which 

contains nodes and edges. Schism models the 

workload as a graph and enforces k-way min-cut 

graph partitioning algorithm to lessen the effect of 

distributed transactions and increases the 

throughput. It uses static partitioning technique that 

is partitions are initiated only once and remain 

forever. 

 

Megastore [7] combines the scalability of a NoSQL 

data store with regard to a traditional RDBMS and 

offers the strong consistency and high availability. 

Megastore gives full ACID properties inside the 

partitions. This system partitions the data into 

multiple entity groups i.e. the set of correlated data 

items which independently replicated over the set 

of servers and each update is replicated 

synchronously across the identical partitions with 

acceptable latency. The transaction which requires 

the strong consistent view of the database to fulfill 

its execution restricts its execution to a single entity 

group. 

 

Cloud TPS [9] for a scalable transaction in the web 

applications which has followed strict ACID 

properties. It splits transaction manager within 

multiple Local Transaction Manager (LTMs) to 

support scalable transactions. The items are 

assigned to LTM applying consistent hashing 

mechanism to accomplish high scalability. Cloud 

TPS contains static partitioning technique to 

enhance scalability and suitable for those 

applications, whose access pattern act as static. 

 

3. ISSUES 

 
Sharding the database is the primary techniques to 

scale out a database to different nodes. Normally, a 

database is divided by splitting the individual tables 

within the database. Common partitioning 

techniques used are range partitioning or hash 

partitioning. Range partitioning contains dividing 

the tables into non-overlapping ranges of their keys 

and then mapping the ranges to a set of nodes. In 

hash partitioning, the hash keys are utilize to assign 

rows across various nodes. These partitioning 

methodologies are simple to implement, but the 

main limitation of such techniques is that they 

result in the need for large numbers of distributed 

transactions to access data partitioned across 

various servers. As a result, the scalability of such 

systems is limited due to the costs of distributed 

transactions.  

 

Therefore, the challenge is to partition the database 

such that most accesses are limited to a single 

partition. Existing techniques are worked well when 

data access patterns are static but when it 

dynamically changes it costs overhead. Considering 

all these issues we are designed and implemented a 

system in MongoDB to overcome these limitations. 

It offers the less quantity of distributed transactions, 

less response time and higher throughput. 
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4. PROPOSED WORK 

 

4.1 Design of Scalable Workload-Driven 

Partitioning in MongoDB 

 
Now a day’s e-commerce application plays an 

important role, so there are enormous numbers of 

customers who place an order for different items. 

So pattern is formed between these that is which 

warehouse places an order, if current warehouse is 

out of stock, then supplier warehouse processes that 

item. This process which is tracked is called data 

access patterns [14] as shown in Figure 1.  Those 

patterns are analyzed and transaction logs are 

monitored, So that distributed transactions are 

avoided and scalability is accomplished. For 

example, if customer from warehouse in Pune wish 

to place an order but the item is out of stock then it 

is fulfilled by another warehouse in Mumbai. These 

warehouses have to be located on same partition to 

minimize distributed transactions. Likewise these 

patterns are changed dynamically by analyzing 

transactions logs and monitoring access patterns. 

4.2 Data Partitioning Technique 

In this partitioning, an extensive analysis is done to 

discover the top load distribution. All feasible 

combinations of partition are identified as shown in 

Figure 2. 

 

The total association and load are estimated for all 

feasible combinations of partition. The Heuristic 

Search mechanism is utilized to discover advance 

solutions. The particular combinations are obtained 

applying mutation in the genetics algorithm. 

Mutation is the mechanism that is utilized in 

genetic algorithms for originating variation. 

Mutation aids in obtaining better combinations 

[14]. In mutation, the result may alter totally from 

the previous result. Therefore, a genetic algorithm 

can occur to a superior solution by utilizing 

mutation. The partition with feasible association 

and load are chosen and given a higher throughput. 

 

4.3 Load 

 

Load is estimated by using the warehouse data 

(transaction data) that is warehouse included in the 

database. The transactions are executed and the 

warehouses are found out while executing 

transactions. The static distribution of those 

warehouses to form the partition is estimated [14]. 

If there are six warehouses w1, w2, w3, w4, w5, w6 

then distribute them as w1 and w2 on one partition, 

w3 and w4 on one partition and w5 and w6 on 

another partition. All transaction data regarding 

those warehouses should be accessed while 

executing transactions. After the static distribution 

of warehouses, find out all the combination of 

warehouses according to mutation algorithm. 

Estimate the average load by summation of all 

partition load divided by number of partitions 

involve. Lastly find the load on that particular 

partition that is number of transactions executing on 

that partition from average load. 
 

4.4 Association 

 

Association is estimated by finding out the number 

of local transaction executed and number of remote 

transactions (distributed transaction) executed on 

that partition. Number of transaction means the 

transaction is performed by home warehouse that is 

customer of warehouse w1 is placed an order and 

an order is processed by warehouse w1. If the order 

is processed by another warehouse that is customer 

is related to w1 and order is processed by 

warehouse w2 that is remote warehouse. The 

association of number of transaction and distributed 

transaction executed on the partition should be 

estimated. 

 

4.5 Scalable Workload-Driven Partitioning 

Algorithm 

Scalable workload-driven partitioning algorithm 

[14] takes input as number of warehouses, 

transaction data and gives output as optimized 

partitions. Firstly the warehouses have to be 

distributed statically. For example, if there are 4 

warehouses as w1, w2, w3, w4 then distribute them 

statically that is w1, w2 is combination on one 

partition and w3, w4 is combination on another 

partition. The number of combinations of all 

warehouses by using mutation algorithm should be 

found out after that. Estimate the load distribution 

[14] of all possible combination using standard 

deviation to find out the load on each partition. The 

Rank the combination as higher rank value to the 

higher standard deviation and lower rank value to 

the lower standard deviation. Association [14] of 

combinations is estimated by executing the local 

transactions and number of distributed transaction 

on that particular combination.  The ranking of 

association depends on association, higher rank 

value to the lower association and lower rank value 

to the higher association. Perform the addition of 

load rank and association rank. Arrange these 
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combinations in ascending order. Select the top 

combinations on the basis of top ranks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After algorithm is running, it gives the optimized 

load and association as an output. Then the last 

solution which is generated from scalable workload 

driven partitioning is utilize to populate the data. 

Mentioned algorithm, scans the transaction log and 

builds all various combinations of the feasible 

partitions and estimate the overall load and total 

association of that partition. Then, the rank values 

are allocated to each combination accordingly their 

load in ascending order and an association in 

descending order. Then, estimate the addition of 

both the load rank and association rank and 

generate the ultimate combination. Then high three 

partitions are chosen depending on the final rank 

and repeat steps two to nine for three times, to get 

more number of partitions. Once the combinations 

are generated, additionally choose top three 

partitions and execute the algorithm again from 2 to 

9 for 3 times. Implementing this to form a more 

number of partitions to check whether the 

combinations that are generated are equal or not. 
 

 

 

5. IMPLEMENTATION 

 
This section includes implementation details of 

scalable workload-driven partitioning [14] in 

MongoDB. Various data models are supported by 

NoSQL data store. Challenge of scalable workload-

driven partitioning is to execute the transaction with 

respect to response time having scalability and 

restrict the number of distributed transactions. 

Scalable workload-driven partitioning is being 

implemented by utilizing outstanding and generally 

used NoSQL data stores: MongoDB. 

 

5.1 TPC-C Benchmark 

 

TPC-C is the benchmark of industry which is 

utilized as simulating the e-business application 

workload [15]. It indicates the standard of 

measurement OLTP workload. The benchmark 

represents a wholesale provider with the 

geographically distributed warehouses and districts. 

Workload-Driven partitioning technique is enforced 

to a standard web application like TPC-C to exhibit 

its performance. Workload-Driven partitioning 

technique is evaluated by using a benchmark TPC-

C. The Benchmark comprises of 5 transactions by 

analyzing business obligation of e-commerce 

applications: 

 

5.1.1 New order 

 

New order transaction [15] is the combination of 

read and writes transactions. It creates a new order 

for the customer and places an order according to 

the customer need.  

 

5.1.2 Payment 

 

Payment transaction [15] is also the combination of 

read and writes transaction. When a payment 

transaction is executed it updates the balance of 

customer.  

 

5.1.3 Order status 

 

Order status transaction [15] is read only 

transaction. It tracks a status of the customer that is 

customer’s last order.  

 

5.1.4 Delivery 

 

Delivery transaction [15] is also a read and writes 

transaction. It consists of group of 10 new orders 

that is orders not yet delivered to the customer.  

 

Algorithm 1: Scalable Workload-Driven 

Partitioning Algorithm 

 

Input: Number of warehouses, Transaction 

data 

Output: Optimized load and association for 

the partition. 

 

Step1: Static Distribution of warehouses. 

Step2: Find all the possible combination of                   

partition. 

Step3: Calculate the load distribution for all     

possible combination using standard deviation. 

Step4: Sort the load distribution in ascending 

order. 

Step5: Calculate the association by executing 

the number of transactions and distributed 

transactions on that combination.  

Step6: Sort the association in descending 

order. 

Step7: Summation of both load rank and 

association rank. 

Step8: Sort the rank value in ascending order. 

Step9: Select top two combinations. 

Step10: Select the top combinations which 

have optimized load and association. 
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5.1.5 Stock level 

 

Stock level transaction [15] is ready only 

transaction. It decides the quantity of recently sold 

things which have stock below the threshold. 

 

In reality, usually NEW ORDER transactions are 

45%, PAYMENT transactions are 43% and 

ORDER STATUS, STOCK and DELIVERY 

transactions are 4%. 

 

 

5.2 Conversion of TPC-C schema to MongoDB 

Collection 

 

TPC-C was originally designed for internet 

applications with relational databases as backend, 

hence it is necessary to covert the data model of 

TPC-C in relational database to MongoDB NoSQL 

data model [12]. In this section, the design of 

MongoDB has been modeled from TPC-C schema. 

Mapping of these nine tables (warehouse, customer, 

district, history, new_order, item, order, order_line 

and stock) into collection of MongoDB is 

performed.  

 

5.3 Results and Discussions 

 

System uses NoSQL MongoDB Cloud Data Store 

for the experiments of the proposed system for 

scalable workload-driven partitioning system and 

the developed system is put under hammer in many 

situations, to prove its authenticity as mentioned in 

below tests: 

 

5.3.1 Response Time for TPC-C New Order 

Transactions 

 

Time comparison for TPC-C new order 

transaction can be depicted in the below shown 

table 1. 

 

Here, we are comparing the results of new order 

transaction of TPC-C with the scalable workload-

driven partitioning in MongoDB. As observed from 

results is generates less number of distributed 

transactions and required low response time. 

 

5.3.2 Response Time for TPC-C Payment 

Transaction 

 

Time comparison for TPC-C payment 

transaction can be depicted in the below shown 

Table 2. 

  

Here, we are comparing the results of payment 

transaction of TPC-C with the scalable workload-

driven partitioning in MongoDB. As observed from 

results is generates less number of distributed 

transactions and required low response time. 

 

5.3.3 Response Time for TPC-C Delivery 

Transaction 

 

Time comparison for TPC-C Delivery transaction 

can be depicted in the below shown Table 3. 

 

Here, we are comparing the results of delivery 

transaction of TPC-C with the scalable workload-

driven partitioning in MongoDB. As observed from 

results is generates less number of distributed 

transactions and required low response time. 

 

5.3.4 Response Time for TPC-C Stock level 

Transaction 

 

Time comparison for TPC-C stock level 

transaction can be depicted in the below shown 

table 4. 

 

Here, we are comparing the results of stock level 

transaction of TPC-C with the scalable workload-

driven partitioning in MongoDB. As observed from 

results is generates less number of distributed 

transactions and required low response time. 

 

5.3.5 Response Time for TPC-C Order Status 

Transaction 

 

Time comparison for TPC-C order status 

transaction can be depicted in the below shown 

table 5. 

 

Here, we are comparing the results of stock level 

transaction of TPC-C with the scalable workload-

driven partitioning in MongoDB. As observed from 

results is generates less number of distributed 

transactions and required low response time. 

 

5.4 Experimental Setup 

 

Some experiments are taken to show the 

performance of the proposed system on windows 

machine using java Netbeans as IDE, where 4 

machines are considered for experiments which are 

having core i3 processor with 2GB of Primary 

memory for the distributed paradigm. Machines are 

connected to form a distributed environment using 

CAT 5 cable. MongoDB having version 3.0.2 is 

used for experiments. 
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6. CONCLUSION 

 

Here, scalable workload-driven partitioning in 

MongoDB is implemented to fulfill the 

requirements of latest cloud related applications. 

The solutions by experimentation over MongoDB 

cloud data store are validated. The industry 

benchmark TPC-C for assessment of partitioning 

scheme is utilized. By implementing the concerned 

scheme using the benchmark TPC-C, it has been 

observed that scalable workload-driven partitioning 

in MongoDB reduces the number of distributed 

transactions and gives lesser response time as 

compared to TPC-C. 
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Figure 1: Data Access Patterns 

 

 

 
Figure 2: Design of Scalable Workload Driven Partitioning 
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Figure 3: TPC-C Benchmark 

 

 

 
 

Figure 4: Figure 4: Time Comparison for TPC-C 

New Order Transaction 
 

 

 
 

Figure 5: Time Comparison for TPC-C Payment 

Transaction 
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Figure 6: Time Comparison for TPC-C Delivery 

Transaction 
 

 

Table 1: Time Comparison for TPC-C new order 

Transaction 

 

 
 

 

 

 

 
 

Figure 8: Time Comparison for TPC-C order status 

Transaction 

 

 

 

 
Figure 7: Time Comparison for TPC-C Stock Level 

Transaction 
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Table 3: Time Comparison for TPC-C Delivery 

Transaction 

 

 
 

 

 

Table 4: Time Comparison for TPC-C stock level  

Transaction 

 

 
 

 

Table 2: Time Comparison for TPC-C payment 

transaction 

 

 
 

 

 

Table 5: Time Comparison for TPC-C Order Status 

Transaction 

 

 
 

 


