
Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

190

SCALABLE TRANSACTIONS USING MONGODB CLOUD

DATA STORE

1
 LALITA CHAPLE,

 2
DR. SWATI AHIRRAO

1,2
Computer Science Symbiosis Institute of Technology (SIT),

Symbiosis International University (SIU), Lavale, Pune, India,

E-mail:
1
lalita.chaple@sitpune.edu.in ,

2
swatia@sitpune.edu.in

ABSTRACT

Cloud computing exists as a rising technology that provides the functionality of available and highly

scalable web applications at extremely low cost. Building a scalable, available and consistent cloud data

store is the challenge now a day’s. Scalability is improved by using primary technique that is data

partitioning. Classical, Partitioning strategies are not able to track the patterns of the web applications. This

paper implements workload-driven approach rest on data access patterns in MongoDB for improving

scalability. As observed from results it generates less number of distributed transactions. Similarly,

implementation and validation of scalable workload-driven partitioning scheme are accomplished via

experimentation over cloud data store (MongoDB). An experimental outcome of the partitioning strategy is

managed by utilizing the industry benchmark TPC-C.

Keywords: Scalability, Oltp, Data Partitioning, Partitioning Scheme, Workload-Driven.

1. INTRODUCTION

Cloud computing has been derived as an extensive

model for introducing web scale applications in

huge computing infrastructures. The major enabling

aspects of cloud comprise of on demand services,

the elasticity of resources, the notion of limitless

resources and enormous scalability. Probably the

most primary use of the cloud is for a web hosting

the vast number of internet applications, scalable

data management techniques that force these

applications, are a significant component into the

cloud [4]. Constructing scalable and uniform data

management has been the aim of database

investigator for the last few years. Many

applications on the web are deployed with its rising

fame. They have suffered the problem of serving

customers in thousands. Hence, scalability of

browsing internet purposes has turned out to be the

primary issue. These recent internet applications

develop the massive quantity of data. The database

management system plays vital role in managing a

huge quantity of data.

As the DBMS is beneficial to preserve uniform and

affordable performance, it has to scale out at low

price commodity hardware. Conventionally,

Relational databases might not be scaled out at low

price commodity servers. This gives a start to the

NoSQL data stores [16]. NoSQL data stores include

services such as availability, elasticity and

scalability. The primary approach to achieve

scalability is partitioning the data. In an e-

commerce application, when a customer wants to

buy an item then request is processed by the

warehouses. Whenever the warehouses on to the

same partition are out of stock, an order is fulfilled

through the warehouses on another partition [14].

Here, the pattern is formed that is which warehouse

is most probable supplier warehouse for the

processing warehouse. This behavior is tracked and

the pattern is recognized. This pattern is called as

Data Access Patterns [14]. Static partitioning

techniques are techniques, in which partitions are

formed by collocating the associated data items on

one partition. Once partitions are formed, they do

not change [4]. These partitioning techniques are

referred as static partitioning. In dynamic

partitioning techniques, partitions are changed

dynamically but it costs overhead.

In scalable workload-driven partitioning [14],

analyzing a transaction logs and monitoring data

access patterns that is data changes periodically is

introduced in MongoDB. Traditional Partitioning

mechanisms such as range, hash are simple to

implement but generates large number of

distributed transactions and does not track data

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

191

access patterns. We provide implementation of

scalable workload-driven partitioning [14] in

MongoDB. Scalable workload-driven partitioning

is especially implemented for OLTP internet

applications. This partitioning scheme allows

execution of fewer amounts of shared transactions

during transactions. The main contribution of the

paper is structured as follows:

• Design of workload-driven

partitioning in MongoDB is

introduced. It consistently handles the

load with all partitions. The utilization

of this workload-driven partitioning to

restrict the transaction to one partition

is exhibited.

• Implementation of workload-driven

partitioning in MongoDB.

• The practical demonstration of the

scalable workload-driven partitioning

in a cloud data stores (MongoDB) is

presented. It is evaluated using

industry benchmark TPC-C.

Further paper is arranged as follows:

The survey of different partitioning techniques is

performed in Section2. Section 3 discusses issues in

existing system. The proposed work is presented in

section 4. Section 5 consists of implementation

details and Conclusion in Section 6.

2. RELATED WORK

Researchers have implemented various systems and

partitioning techniques to upgrade the scalability of

the transactions for web applications. In this paper,

partitioning techniques which improve the

scalability are studied.

2.1 Partitioning Algorithms

2.1.1 Schema level partitioning

In schema level partitioning [4],

partitioning depends on partitioning

key and all associated items are

placed on single partitions to avoid

distributed transactions. Schema level

partitioning is a static partitioning

once the partitions are formed, it

remains same. Schema level

partitioning, limit transactional access

to only one database partition.

Schema level partitioning has used the

technique that accesses large number

database schemas but transactions

access only less number of associated

data items which is spread over

different tables.

2.1.2 Graph partitioning

In Graph partitioning [5], each node in

the graph represents the tuple. All

related data items related to that node

are linked to another node via edge,

among two nodes. In the first phase, a

graph is created with the node

according to a tuple and edges within

nodes are accessed by using the same

transaction, later apply graph

partitioner to separate the graph

within k-balanced partitions to restrict

the variety of cross-partition

transactions [5]. The second phase

makes use of machine learning

methodologies to find a predicate-

based explanation of segregating

scheme.

2.2 Cloud Data Stores

The partitioning techniques for different cloud data

stores [1] and partition the cloud data store based

on the partitioning and non-partitioning is

discussed. The main aim of the author is a scalable

database. Scalable workload-driven partitioning

[14] which generates partition based on data access

patterns of web applications. This is neither static

nor dynamic. It lies between static and dynamic

partitioning. Dynamic group formation can be

completed by using association mining. Two

approaches for association mining that is Apriori

and FP-Growth.

ElasTraS [4] comes into picture from the scalable

Key-Value stores to decrease distributed

transactions and eliminate scalability bottlenecks,

as all know that partitioning the database is used for

providing scalability. ElasTraS are based upon

schema level partitioning scheme of the database to

assist capability, despite the fact that transactions

are restricted to single partitions [4]. Discover

design concepts which are utilized in designing

scalable systems concurrently assuming

transactional guarantees. Elastras is appropriate for

internet applications which access patterns are

static. Elastras only focus on scalability, not

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

192

availability so no need to concentrate on

replication.

TAVPD [2] presents transaction-aware partitioning.

It uses vertical partitioning for improving

scalability. The main aim of author's [2] is to

decrease response time and optimized cost of

processing. The first approach is mini transactions,

transactions are splits into sub-transactions. The

second technique is partitioning the data that is a

primary technique used for upgrading the

performance of database that is scalability,

implementing selective consistency with a

classification of the data on their consistency index.

The automating entity group which is a first paper

who discuss the process of automatic creating entity

groups [6]. Earlier days, transactions were done in

the same entity group was guarantee full ACID

properties but the problem with different entity

groups. Author automatically creates entity-group

and customer has to deliver feedback for

automatically creating entity group. The author uses

an edge-coverage algorithm for automatically

creating entity-group.

The Deuteronomy [8] discusses the effective and

scalable transactions techniques by separating the

data and transaction component. The idea of this

paper consists of two separate components, 1) data

component doesn't know about the transaction

process and 2) transaction component doesn't know

about physical address of the data. Authors discuss

the optimization methodologies which aid to

upgrade the throughput and increase the

performance of the system.

The Schism [5] has graph partitioning strategies

which increase the scalability. It uses partitioning

for enhancing scalability and replication for

availability approach for distributed databases.

Partitions are organized based on the graph which

contains nodes and edges. Schism models the

workload as a graph and enforces k-way min-cut

graph partitioning algorithm to lessen the effect of

distributed transactions and increases the

throughput. It uses static partitioning technique that

is partitions are initiated only once and remain

forever.

Megastore [7] combines the scalability of a NoSQL

data store with regard to a traditional RDBMS and

offers the strong consistency and high availability.

Megastore gives full ACID properties inside the

partitions. This system partitions the data into

multiple entity groups i.e. the set of correlated data

items which independently replicated over the set

of servers and each update is replicated

synchronously across the identical partitions with

acceptable latency. The transaction which requires

the strong consistent view of the database to fulfill

its execution restricts its execution to a single entity

group.

Cloud TPS [9] for a scalable transaction in the web

applications which has followed strict ACID

properties. It splits transaction manager within

multiple Local Transaction Manager (LTMs) to

support scalable transactions. The items are

assigned to LTM applying consistent hashing

mechanism to accomplish high scalability. Cloud

TPS contains static partitioning technique to

enhance scalability and suitable for those

applications, whose access pattern act as static.

3. ISSUES

Sharding the database is the primary techniques to

scale out a database to different nodes. Normally, a

database is divided by splitting the individual tables

within the database. Common partitioning

techniques used are range partitioning or hash

partitioning. Range partitioning contains dividing

the tables into non-overlapping ranges of their keys

and then mapping the ranges to a set of nodes. In

hash partitioning, the hash keys are utilize to assign

rows across various nodes. These partitioning

methodologies are simple to implement, but the

main limitation of such techniques is that they

result in the need for large numbers of distributed

transactions to access data partitioned across

various servers. As a result, the scalability of such

systems is limited due to the costs of distributed

transactions.

Therefore, the challenge is to partition the database

such that most accesses are limited to a single

partition. Existing techniques are worked well when

data access patterns are static but when it

dynamically changes it costs overhead. Considering

all these issues we are designed and implemented a

system in MongoDB to overcome these limitations.

It offers the less quantity of distributed transactions,

less response time and higher throughput.

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

193

4. PROPOSED WORK

4.1 Design of Scalable Workload-Driven

Partitioning in MongoDB

Now a day’s e-commerce application plays an

important role, so there are enormous numbers of

customers who place an order for different items.

So pattern is formed between these that is which

warehouse places an order, if current warehouse is

out of stock, then supplier warehouse processes that

item. This process which is tracked is called data

access patterns [14] as shown in Figure 1. Those

patterns are analyzed and transaction logs are

monitored, So that distributed transactions are

avoided and scalability is accomplished. For

example, if customer from warehouse in Pune wish

to place an order but the item is out of stock then it

is fulfilled by another warehouse in Mumbai. These

warehouses have to be located on same partition to

minimize distributed transactions. Likewise these

patterns are changed dynamically by analyzing

transactions logs and monitoring access patterns.

4.2 Data Partitioning Technique

In this partitioning, an extensive analysis is done to

discover the top load distribution. All feasible

combinations of partition are identified as shown in

Figure 2.

The total association and load are estimated for all

feasible combinations of partition. The Heuristic

Search mechanism is utilized to discover advance

solutions. The particular combinations are obtained

applying mutation in the genetics algorithm.

Mutation is the mechanism that is utilized in

genetic algorithms for originating variation.

Mutation aids in obtaining better combinations

[14]. In mutation, the result may alter totally from

the previous result. Therefore, a genetic algorithm

can occur to a superior solution by utilizing

mutation. The partition with feasible association

and load are chosen and given a higher throughput.

4.3 Load

Load is estimated by using the warehouse data

(transaction data) that is warehouse included in the

database. The transactions are executed and the

warehouses are found out while executing

transactions. The static distribution of those

warehouses to form the partition is estimated [14].

If there are six warehouses w1, w2, w3, w4, w5, w6

then distribute them as w1 and w2 on one partition,

w3 and w4 on one partition and w5 and w6 on

another partition. All transaction data regarding

those warehouses should be accessed while

executing transactions. After the static distribution

of warehouses, find out all the combination of

warehouses according to mutation algorithm.

Estimate the average load by summation of all

partition load divided by number of partitions

involve. Lastly find the load on that particular

partition that is number of transactions executing on

that partition from average load.

4.4 Association

Association is estimated by finding out the number

of local transaction executed and number of remote

transactions (distributed transaction) executed on

that partition. Number of transaction means the

transaction is performed by home warehouse that is

customer of warehouse w1 is placed an order and

an order is processed by warehouse w1. If the order

is processed by another warehouse that is customer

is related to w1 and order is processed by

warehouse w2 that is remote warehouse. The

association of number of transaction and distributed

transaction executed on the partition should be

estimated.

4.5 Scalable Workload-Driven Partitioning

Algorithm

Scalable workload-driven partitioning algorithm

[14] takes input as number of warehouses,

transaction data and gives output as optimized

partitions. Firstly the warehouses have to be

distributed statically. For example, if there are 4

warehouses as w1, w2, w3, w4 then distribute them

statically that is w1, w2 is combination on one

partition and w3, w4 is combination on another

partition. The number of combinations of all

warehouses by using mutation algorithm should be

found out after that. Estimate the load distribution

[14] of all possible combination using standard

deviation to find out the load on each partition. The

Rank the combination as higher rank value to the

higher standard deviation and lower rank value to

the lower standard deviation. Association [14] of

combinations is estimated by executing the local

transactions and number of distributed transaction

on that particular combination. The ranking of

association depends on association, higher rank

value to the lower association and lower rank value

to the higher association. Perform the addition of

load rank and association rank. Arrange these

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

194

combinations in ascending order. Select the top

combinations on the basis of top ranks.

After algorithm is running, it gives the optimized

load and association as an output. Then the last

solution which is generated from scalable workload

driven partitioning is utilize to populate the data.

Mentioned algorithm, scans the transaction log and

builds all various combinations of the feasible

partitions and estimate the overall load and total

association of that partition. Then, the rank values

are allocated to each combination accordingly their

load in ascending order and an association in

descending order. Then, estimate the addition of

both the load rank and association rank and

generate the ultimate combination. Then high three

partitions are chosen depending on the final rank

and repeat steps two to nine for three times, to get

more number of partitions. Once the combinations

are generated, additionally choose top three

partitions and execute the algorithm again from 2 to

9 for 3 times. Implementing this to form a more

number of partitions to check whether the

combinations that are generated are equal or not.

5. IMPLEMENTATION

This section includes implementation details of

scalable workload-driven partitioning [14] in

MongoDB. Various data models are supported by

NoSQL data store. Challenge of scalable workload-

driven partitioning is to execute the transaction with

respect to response time having scalability and

restrict the number of distributed transactions.

Scalable workload-driven partitioning is being

implemented by utilizing outstanding and generally

used NoSQL data stores: MongoDB.

5.1 TPC-C Benchmark

TPC-C is the benchmark of industry which is

utilized as simulating the e-business application

workload [15]. It indicates the standard of

measurement OLTP workload. The benchmark

represents a wholesale provider with the

geographically distributed warehouses and districts.

Workload-Driven partitioning technique is enforced

to a standard web application like TPC-C to exhibit

its performance. Workload-Driven partitioning

technique is evaluated by using a benchmark TPC-

C. The Benchmark comprises of 5 transactions by

analyzing business obligation of e-commerce

applications:

5.1.1 New order

New order transaction [15] is the combination of

read and writes transactions. It creates a new order

for the customer and places an order according to

the customer need.

5.1.2 Payment

Payment transaction [15] is also the combination of

read and writes transaction. When a payment

transaction is executed it updates the balance of

customer.

5.1.3 Order status

Order status transaction [15] is read only

transaction. It tracks a status of the customer that is

customer’s last order.

5.1.4 Delivery

Delivery transaction [15] is also a read and writes

transaction. It consists of group of 10 new orders

that is orders not yet delivered to the customer.

Algorithm 1: Scalable Workload-Driven

Partitioning Algorithm

Input: Number of warehouses, Transaction

data

Output: Optimized load and association for

the partition.

Step1: Static Distribution of warehouses.

Step2: Find all the possible combination of

partition.

Step3: Calculate the load distribution for all

possible combination using standard deviation.

Step4: Sort the load distribution in ascending

order.

Step5: Calculate the association by executing

the number of transactions and distributed

transactions on that combination.

Step6: Sort the association in descending

order.

Step7: Summation of both load rank and

association rank.

Step8: Sort the rank value in ascending order.

Step9: Select top two combinations.

Step10: Select the top combinations which

have optimized load and association.

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

195

5.1.5 Stock level

Stock level transaction [15] is ready only

transaction. It decides the quantity of recently sold

things which have stock below the threshold.

In reality, usually NEW ORDER transactions are

45%, PAYMENT transactions are 43% and

ORDER STATUS, STOCK and DELIVERY

transactions are 4%.

5.2 Conversion of TPC-C schema to MongoDB

Collection

TPC-C was originally designed for internet

applications with relational databases as backend,

hence it is necessary to covert the data model of

TPC-C in relational database to MongoDB NoSQL

data model [12]. In this section, the design of

MongoDB has been modeled from TPC-C schema.

Mapping of these nine tables (warehouse, customer,

district, history, new_order, item, order, order_line

and stock) into collection of MongoDB is

performed.

5.3 Results and Discussions

System uses NoSQL MongoDB Cloud Data Store

for the experiments of the proposed system for

scalable workload-driven partitioning system and

the developed system is put under hammer in many

situations, to prove its authenticity as mentioned in

below tests:

5.3.1 Response Time for TPC-C New Order

Transactions

Time comparison for TPC-C new order

transaction can be depicted in the below shown

table 1.

Here, we are comparing the results of new order

transaction of TPC-C with the scalable workload-

driven partitioning in MongoDB. As observed from

results is generates less number of distributed

transactions and required low response time.

5.3.2 Response Time for TPC-C Payment

Transaction

Time comparison for TPC-C payment

transaction can be depicted in the below shown

Table 2.

Here, we are comparing the results of payment

transaction of TPC-C with the scalable workload-

driven partitioning in MongoDB. As observed from

results is generates less number of distributed

transactions and required low response time.

5.3.3 Response Time for TPC-C Delivery

Transaction

Time comparison for TPC-C Delivery transaction

can be depicted in the below shown Table 3.

Here, we are comparing the results of delivery

transaction of TPC-C with the scalable workload-

driven partitioning in MongoDB. As observed from

results is generates less number of distributed

transactions and required low response time.

5.3.4 Response Time for TPC-C Stock level

Transaction

Time comparison for TPC-C stock level

transaction can be depicted in the below shown

table 4.

Here, we are comparing the results of stock level

transaction of TPC-C with the scalable workload-

driven partitioning in MongoDB. As observed from

results is generates less number of distributed

transactions and required low response time.

5.3.5 Response Time for TPC-C Order Status

Transaction

Time comparison for TPC-C order status

transaction can be depicted in the below shown

table 5.

Here, we are comparing the results of stock level

transaction of TPC-C with the scalable workload-

driven partitioning in MongoDB. As observed from

results is generates less number of distributed

transactions and required low response time.

5.4 Experimental Setup

Some experiments are taken to show the

performance of the proposed system on windows

machine using java Netbeans as IDE, where 4

machines are considered for experiments which are

having core i3 processor with 2GB of Primary

memory for the distributed paradigm. Machines are

connected to form a distributed environment using

CAT 5 cable. MongoDB having version 3.0.2 is

used for experiments.

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

196

6. CONCLUSION

Here, scalable workload-driven partitioning in

MongoDB is implemented to fulfill the

requirements of latest cloud related applications.

The solutions by experimentation over MongoDB

cloud data store are validated. The industry

benchmark TPC-C for assessment of partitioning

scheme is utilized. By implementing the concerned

scheme using the benchmark TPC-C, it has been

observed that scalable workload-driven partitioning

in MongoDB reduces the number of distributed

transactions and gives lesser response time as

compared to TPC-C.

REFERENCES

[1] S. Ahirrao and R. Ingle, “Scalable Transactions

in Cloud Data Stores,” in 3rd IEEE

International Advance Computing Conference,

India, 2013, pp. 978-1-4673-4529.

[2] S. Phansalkar and Dr. A. Dani, “Transaction

Aware Vertical Partitioning Of Database

(tavpd) For Responsive Oltp Applications In

Cloud Data Stores,” Journal of Theoretical and

Applied Information Technology, Vol. 59 No.1,

January 2014.

[3] G. DeCandia, D. Hastorun, M. Jampani, G.

Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, W. Vogels,

“Dynamo: Amazon’s Highly Available Key-

Value store,” proc. of the 21st ACM

Symposium on Operating Systems Principles,

2007, pp. 978-1-59593-591.

[4] S. Das, S. Agarwal, D. Agrawal, and A.

ElAbbadi, “ElasTraS: An Elastic, Scalable, and

Self Managing Transactional Database for the

Cloud,” in Technical Report 2010-04, CS,

UCSB, 2010.

[5] Curino, E. Jones, Y. Zhang, and S. Madden,

“Schism: A Workload- Driven Approach to

Database Replication and Partitioning,” proc.

Of the VLDB Endowment, Vol. 3, No. 1, 2010.

[6] Bin Liu, Junichi Tatemura, Oliver Po, Wang-

Pin Hsiung, Hakan Hacıg¨um¨us, “Automatic

Entity-Grouping for OLTP Workloads,” in

30th IEEE International Conference On Data

Engineering, USA, 2014, pp. 978-1-4799-

2555.

[7] J. Baker, C. Bond, J. C. Corbett, J. Furman, A.

Khorlin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd

and V. Yushprakh, “Megastore: Providing

Scalable, Highly Available Storage for

Interactive Services,” in 5
th

 Biennial

Conference on Innovative Data Systems

Research, USA, 2011.

[8] J. J. Levandoski, D. Lomet, M. F. Mokbel and

K.K. Zhao, “Deuteronomy: Transaction

Support for Cloud Data,” in 5
th

 Biennial

Conference on Innovative Data Systems

Research, USA, 2011.

[9] Wei, G. Pierre, and C.-H. Chi. (December

2012). CloudTPS: Scalable Transactions for

Web Applications in the Cloud. IEEE Trans.

On Services Computing Vol. 5, N0. 4.

Available: http://www.globule.org/cloudtps.

[10] P. A. Bernstein, I. Cseri, N. Dani, N. Ellis,

A.Kalhan, G. Kakivaya, D.B. Lomet, R.

Manner, L. Novik and T. Talius, “Adapting

Microsoft SQL Server for Cloud Computing,”

in 27
th

 International Conference on Data

Engineering, 2011.

[11] D. Agrawal, A. El Abbadi, S. Antony, and S.

Das, “.Data Management Challenges in Cloud

Computing Infrastructures,” Proc. of the 6th

international conference on Databases in

symposium on Cloud computing, 2010, pp. 1-

10.

[12] MongoDB. http://www.mongodb.org/.

[13] S. Ahirrao and R. Ingle, “Dynamic workload-

aware partitioning in OLTP cloud data stores,”

Journal of Theoretical and Applied

Information Technology, Vol. 60 No.1,

February 2014.

[14] S. Ahirrao and R. Ingle, “Scalable Transactions

in cloud data stores,” Journal of Cloud

Computing: Advances, Systems and

Applications, 2015.

[15] http://www.tpc.org/tpcc/

[16] Grolinger K, Higashino WA, Tiwari A,

Capretz MAM (2013),”Data Management in

Cloud Environments: NoSQL and NewSQL

Data Stores,” Journal of Cloud Computing:

Advances Systems and Applications, 2013.

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

197

Z

Figure 1: Data Access Patterns

Figure 2: Design of Scalable Workload Driven Partitioning

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

198

Figure 3: TPC-C Benchmark

Figure 4: Figure 4: Time Comparison for TPC-C

New Order Transaction

Figure 5: Time Comparison for TPC-C Payment

Transaction

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

199

Figure 6: Time Comparison for TPC-C Delivery

Transaction

Table 1: Time Comparison for TPC-C new order

Transaction

Figure 8: Time Comparison for TPC-C order status

Transaction

Figure 7: Time Comparison for TPC-C Stock Level

Transaction

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

200

Table 3: Time Comparison for TPC-C Delivery

Transaction

Table 4: Time Comparison for TPC-C stock level

Transaction

Table 2: Time Comparison for TPC-C payment

transaction

Table 5: Time Comparison for TPC-C Order Status

Transaction

