
Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

148

 HBASE BULK LOADING JOB SCHEDULER FOR MULTI

USER ACCESSIBILITY

1
S. LIKHITHA,

 2
 D.RAJESWARA RAO (PHD)

1
M.Tech Cloud Computing, KL University Vaddeswaram, Vijayawada, AP, India

2
Professor Computer Science Department, KL University Vaddeswaram, Vijayawada, AP, India.

E-mail:
1
likhithasonti@gmail.com,

ABSTRACT

While the utilization of Map Reduce methods, (for example, Hadoop) for broad data research has been

normally known and investigated, we have of late seen an impact in the quantity of strategies made for

thinking data giving. These more recent techniques deal with “cloud OLTP” programs, though they

typically do not support ACID dealings. HBase is an open-source distributed NoSQL store that is

commonly used by many Internet businesses to manage their big information processing programs (e.g.

Face book or MySpace manages an incredible number of information each day with HBase). Optimizations

that can improve the efficiency of HBase are of vital passions for big information programs that use HBase

or Big Table like key-value shops. In this document we research the problems natural in mis-configuration

of HBase groups, such as circumstances where the HBase standard options can lead to inadequate

efficiency. We create HConfig, a semi automated settings administrator for improving HBase system

efficiency from several measurements. Due to the space restriction, this document will concentrate on how

to improve the efficiency of HBase information loading machine using HConfig. Through this research we

believe that the significance of source flexible and amount of work aware auto-configuration management

and the design concepts of HConfig. Our trial results show effective group map decreasing in information

research in database integration.

Keywords: Measurement, Performance, Bulk Loading; Optimization; Big Data, HBase Configuration

1. INTRODUCTION

 There has been an impact of new strategies

for data stockpiling and control "in the thinking."

Free frameworks incorporate Cassandra, HBase,

Voldemort and others. A few systems are given just

as thinking arrangements, either straight in the

circumstance of Amazon SimpleDB and Microsoft

association Pink SQL Services, or as an element of

a programming situation like Google's AppEngine

or Yahoo!' s YQL. Still different methods are

utilized just inside of a specific association, for

example, Yahoo's! PNUTS, Google's Big Table,

and Amazon's Generator. A hefty portion of these

"cloud" systems are likewise by and large known as

"key-quality stores" or "NoSQL strategies," yet

paying little mind to the name, they talk about the

targets of huge moving "on interest" (versatility)

and basic database combination and usage.

Figure 1: Cloud Data Processing With YCSB In Real

Time Applications.

 The past several years have seen an

appearance of large-scale desk shops that are more

easy and light-weight, and provide higher

scalability and accessibility than conventional

relational data source. As shown in above figure

client server processing achieves workload

parameter for cloud DB. Table shops, such as Big

Table, Generator, HBase and Cassandra, are an

implicit part of Internet services. Not only are these

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

149

shops used by data-intensive programs, such as

business statistics and medical information

research, but they are also used by crucial systems

infrastructure; for example, the next generation

Google data file program, called Colossus, shops all

data file program meta-data in Big Table. This

growing adopting, combined with spinning

scalability and shrinking efficiency specifications,

has led to the addition of a range of (often re-

invented) marketing features that considerably

increase the complexness of must behaviour and

efficiency of it. Table shops that started with a easy

desk design and single-row dealings have additions

with new systems for reliability, large insertions,

concurrency, information dividing, listing, and

question analysis.

Figure 2: Use Hbase Bulk Loading For Mapping In

Cloud Reduction.

Very few can answer the questions such as when

will the HBase standard settings no longer be

effective? What complication should be viewed

when modifying the standard setting of a specific

parameter? And how can we track the HBase

settings to further improve applying performance?

We believe that how to installation HBase groups

with good source usage and great program level

efficiency continues to be to be a significant task

for program directors, HBase designers and users.

 In this document we research the down

sides natural in mis-configuration of HBase groups,

such as circumstances where the HBase standard

options may lead to inadequate efficiency. For

example, we will display through tests that the

standard settings may provide inadequate source

usage of HBase group for some analyze situations.

We will also reveal that some simple optimizations

may even harm HBase efficiency, for example, by

modifying the HBase Coffee playback environment

to bigger heap size (from standard 1GB to 4GB),

the throughput efficiency may be deteriorated by

20~30% (throughput loss) in comparison with the

standard choice for some analyze situations. With

these issues in mind, we develop HConfig, a semi-

automated settings manager for improving HBase

program efficiency from several measurements.

Due to the space restriction, this document will

focus on how to boost the HBase large running

efficiency by HConfig. Through this research we

believe that the importance of source flexible and

amount of work aware auto settings management

and the design concepts of HConfig. Our tests

reveal that the HConfig improved large running can

significantly boost the efficiency of HBase large

running tasks in comparison to the HBase standard

settings, and achieve 2~3.7x speedup in throughput

under different customer discussions while

maintaining straight line horizontally scalability.

2. RELATED WORK

Environment giving methods offer run of the mill

objectives, in spite of the diverse architectures and

plan decisions. When all is said in done, these

frameworks go for:

• Scale-out: To bolster immense datasets (various

terabytes or pet bytes) and amazingly incredible

solicitation rates, thinking procedures are

architected to scale-out, so that broad is gotten

utilizing a great deal of item web servers, each

working copies of the data source programming. A

successful scale-out framework must adjust fill

crosswise over web servers and forestall

bottlenecks.

• Elasticity: While scale-out gives the capacity to

have immense systems, adaptability connotes that

we can add more ability to an implementing so as

to work project new cases of every part, and

moving fill to them.

• High accessibility: Cloud strategies must offer

incredible levels of openness. Specifically, they are

frequently multitenant strategies, which imply that

a disappointment effects a wide range of uses. In

addition, the utilization of item equipment means

that issues are moderately commonplace, and

mechanized recuperation must be a five star

operation of the project.

The primary motivation for growing new

thinking giving procedures is the trouble in giving

these components (particularly scale-out and

versatility) utilizing traditional data source

strategies. As a bargain, thinking methods by and

large trade off the confounded question capacities

and effective, modern arrangement models found in

ordinary strategies. Without the requirement for

confounded arranging and preparing of unites and

totals, scale-out and adaptability turn out to be

fundamentally more straightforward to get.

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

150

Similarly, scale-out (particularly to a few

information enters) is less difficult to get without

effective arrangement routines like two-stage

submit or Paxos. Specifically, it is difficult to at one

time ensure openness, unwavering quality and

allotment tolerance. Since system classes (or

misfortunes and issues which reenact segments) are

inescapable, methods must concentrate on either

availability or unwavering quality, and most

thinking procedures pick openness. Therefore,

thinking strategies for the most part offer a

dependability model that is weaker in different

courses than customary ACID information source.

• Study effectiveness contrasted with make

execution
In a sum program, it is hard to figure which history

will be perused or composed next. Unless all data

fits in memory, this infers one of a kind I/O to the

hard drive is expected to serve streams (e.g., instead

of outputs). Arbitrary I/O can be utilized for makes

too, however better make throughput can be

completed by adding all up-dates to a progressive

plate based log. In any case, log-organized methods

that just store redesign deltas can extremely

ineffectual for streams if the data is tweaked in the

long run, as by and large a few up-dates from

distinctive parts of the log must be consolidated

utilize a predictable history. Composing the

complete history to the log on every redesign keeps

the cost of remodel at read time, yet there is a

correspondingly more costly on update. Log sorted

out join plants avoid the cost of using so as to

remake on streams a foundation approach to

consolidate up-dates and amass records by essential

key, however the hard drive cost of this strategy

can diminish proficiency for different capacities.

Generally speaking, then, there is a regular bargain

between enhancing for streams and enhancing f.

3. HBASE CONFIGURATION

HBase is a free apportioned key-worth shop created

on top of the distributed storage room program

HDFS. A HBase program involves four noteworthy

segments as appeared in Fig.3: HMaster,

ZooKeeper bunch, Area Web servers (RSs), and

HBase Customer (HTable). HMaster is responsible

for observing all the Region Server cases in the

gathering, and is the interface for all meta-

information administration. ZooKeeper bunch saves

the possibility data access to the data held in the

HBase bunch. HBase Customer is responsible for

discovering Area Web servers that are giving the

specific line (key) range. Subsequent to finding the

required region(s) by questioning the meta-

information tables (.MATA. also, - ROOT-), the

purchaser can specifically contact the Area Server

assigned to taking care of that locale without

experiencing the HMaster, and issues the study or

make demand. Each of the Area Web servers is

responsible for giving and taking care of those

zones which are dispensed to it through server side

log shield and MemStore. HBase oversees

fundamentally two sorts of document sorts: the

make ahead log and the real data storage room

through the Area Web servers. The Area Web

servers shop every one of the documents in HDFS.

HBase Area Server and HDFS Data Node are

normally connected in the same gathering. The

fundamental data alteration capacities alluded to as

CRUD (stands for Create, Read, Update, and

Delete) and are connected in HBase as Put, Get and

Remove systems. Most running process

fundamentally utilizes the Put strategy. Quick

substantial running is gone for circling data to the

extra storage room of the HBase bunch hubs

proficiently and just as.

Figure 3: Hbase Architecture With Respect To YCSB

Work Order Analysis.
3(:min(4 *2*128 16384 ,10) 10 ... 10Split MB MB GB GB allare GB= =

 Area breaking and information running across areas

and RSs. When the amount of data information

loaded to an area gets to some specific limit described

in the standard settings, the area divided will be

activated. For example, the standard region divided

plan in HBase is the Increasing to Upper Bound Split-

Policy, which describes when the area divided should

happen:

For example, if the raw dataset is 10GB, then the

area split size for standard settings is
3(:min(1 *2*128 256 ,10) 256Split MB MB GB MB= =

3(:min(2 *2*128 2048 ,10) 2048Split MB MB GB MB= =

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

151

3(:min(3 *2*128 6912 ,10) 6912Split MB MB GB MB= =

3(min(*2*))region size regionSplitSizeSplitsize Num Flush Max=

There are two-types of fill balancer activates that

can reassign the produced areas across the RSs:

time pattern (default is 5 minutes) and the amount

of areas on each RS. Concretely, by establishing the

parameter area. slop, the re-balance will be

activated if the amount of areas organised by any

RS has surpassed the

average+(average*slop)regions. Upon each area

divided, one of the new areas will be reassigned to

another arbitrarily chosen RS.

4. CLUSTERED HBASE

CONFIGURATION IN YCSB

We existing customary labelling results for four

frameworks: Cassandra, HBase, PNUTS and

shaded MySQL. While both Cassandra and HBase

have a learning plan recently like that of Google's

Big Table, their genuine usage are entirely

diverse—HBase's structure is much the same as Big

Table (utilizing synchronous up-dates to a few

copies of data pieces), while Cassandra's is much

the same as Dynamo(e.g., utilizing bits of gossip

and extreme consistency). PNUTS has its own

particular data outline, furthermore differs

compositionally from alternate strategies. Our

execution of sharded MySQL (like different usage

we have experienced) does not help adaptable

advancement data re separating. Nonetheless, it

gives well as an administration in our tests,

containing a customary assigned information source

structure, as opposed to a cloud-situated project

created to be adaptable.

Here we survey the regular inactivity of requests.

The 95th and 99th percentile latencies are

not uncovered, but rather took after the same styles

as consistent dormancy. Taking everything into

account, our results appear:

• The guessed tradeoffs in the middle of make and

look advertising are clear practically speaking:

Cassandra and HBase have more noteworthy study

latencies on a concentrate substantial measure of

work than PNUTS and MySQL, lessening update

latencies on a compose extensive measure of work.

• PNUTS and Cassandra flaky well as the amount

of web servers and measure of work enhanced

relatively. HBase's proficiency was more sporadic

as it textured.

• Cassandra, HBase and PNUTS could grow

flexibly while the measure of work was performing.

Be that as it may, PNUTS offered the best, most

steady dormancy while flexibly re-dividing data.

HBase and HDFS group: we utilize HBase with

release 0.96.2 and Hadoop with version 5.2.0

(counting HDFS) in every one of the tests. What's

more, run HBase and HDFS in the same gathering

to get data territory (HMaster& Name Node on

executive hub, Region Server &Data Node on

every representative hub).

Bunch little: incorporates 13 hubs: 1 hub serves

both HMaster and Name Node as the head, 3 hubs

assortment Zookeeper bunch as the organizers and

9 hubs assortment Region Servers and Data Nodes

as the.

Cluster-large: includes 40 nodes: 1 node as

administrator, 3 nodes as the planners and 36 nodes

as the employees. YCSB benchmark: Yahoo!

Reasoning Providing Standard (YCSB) is a

structure for analyzing and comparing the

efficiency of different NoSQL information shops.

There are several factors described in this

benchmark, which can be designed on the customer

part to produce flexible workloads. The common

factors are the amount of customer discussions, the

objective variety of functions per second, the

history dimension (the variety of areas * each area

size), the amount of operations, the placement

purchase and so forth. We produce artificial amount

of work using YCSBload control with consistent

demand submission, hash-based place purchase,

and endless focus on variety of functions per

second (i.e., the YCSB customer will try to do as

many functions as possible). Moreover, we differ

the amount of customer discussions, the history

dimension, the amount of customer nodes to

understand how customer part configuration may

effect on most running efficiency.

 It is important that the results we audit

here are for specific releases of systems that are

experiencing continuous advancement, and the

productivity might adjust and improve in the up and

coming. Notwithstanding amid the period from the

preparatory conveyance of this archive to you

arranged release, both HBase and Cassandra

dispatched new versions that impressively

improved the throughput they could help. We offer

results principally for instance the exchange offs in

the middle of frameworks and show the estimation

of the YCSB gadget in consistent labeling

procedures. This worth is both to clients and

architects of thinking giving frameworks: for

instance, while attempting to understand one of our

normal labeling results, the HBase originators

found a bug and, after simple repairs, about

dramatically increased throughput for a few

workloads.

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

152

5. IMPLEMENTATION

For most tests, we utilized six server-class

devices (double 64-bit quad principle 2.5 GHz

Apple Xeon CPUs, 8 GB of RAM, 6 hard drives

RAID-10 territory and gigabit Ethernet) to run

every framework. We likewise ran PNUTS on a 47

server group to viably exhibit that YCSB can be

utilized to benchmark bigger frameworks. PNUTS

required two extra contraptions to work as an

arrangements server and remote switch, and HBase

required an extra framework called the "expert

server." These web servers were deliberately

stacked, and the outcomes we assessment here

depend essentially on capacity to the six space for

capacity web servers. The YCSB Customer kept

running on an individual 8 principle framework.

The Customer was keep running with up to 500

discussions, in view of the offered throughput. We

saw in our tests that the purchaser framework was

not a bottleneck; specifically, the CPU was

practically non-beneficial as most time was spent

sitting tight for the databases framework to react.

We existing the truths of the appraisal results for

greatest settings style as opposed to the standard

settings utilized as a part of existing HBase

produce.

We composed and redesigned every

system and in addition we knew how. Specifically,

we acquired thorough conforming help from people

the development gatherings of the Cassandra,

HBase and PNUTS strategies. For HBase, we doled

out 1GB of heap to Hadoop, and 5GB to HBase.

For PNUTS and sharded MySQL, we allocated 6

GB of RAM to the MySQL support offer. For

Cassandra, we appointed 3GB of heap to the JVM,

at the proposal of Cassandra creators, so whatever

remains of RAM could be utilized for the Linux

framework document framework shield. We

impaired duplication on every project with the goal

that we could benchmark the rule proficiency of the

system itself. In continuous work we are dissecting

the impact of duplication. For Cassandra, sharded

MySQL and PNUTS, all up-dates were synched to

hard drive before backtracking to the client. HBase

does not synchronize to hard drive, but rather

depends on in-memory duplication over different

web servers for strength; this enhances make

throughput and diminishes inactivity, yet might

prompt data lessening on coming up short. We ran

HBase tests with and without customer side

buffering; since spilling gave an essential

throughput advantage, we fundamentally survey on

those figures. Cassandra, and perhaps PNUTS and

sharded MySQL, might have profited on the off

chance that we had given them a dedicated log hard

drive. Notwithstanding, to guarantee a sensible

assessment, we planned all strategies with a solitary

RAID-10 assortment and no dedicated log hard

drive. Clients of YCSB cost nothing to set up

substitute parts arrangements to check whether they

can show signs of improvement proficiency. HBase

proficiency is comprehension of the measure of log

organized documents per key assortment, and the

measure of makes supported away. HBase

diminishes these figures utilizing compactions and

wipes out, separately, and they can be program or

client started.

Figure 4: Throughput Analysis With Respect To Time In

Memory Utilization.

We regularly used these functions during our

experiments; but HBase users must assess how

often such functions are essential in their own

atmosphere.

 In this research, we use the little group

(9RSs) to run Pre Divided with Continuous

Dimension Area Divided Plan to obtain cluster-

aware marketing (short for Pre Divided

configuration). According to the outline of Pre

Divided style, we can presplit most operating focus

on desk ‘user table’ into 9 areas as there are 9 RSs

in cluster-small we can see the Presplit settings

considerably speeds up the throughput compared

with the common settings (default configuration),

the speedup is from1.9x to 3.6x with different line

circumstances. As shown in above figure

throughput assurance with respect to time in

utilization of memory in commercial utilization of

cloud applications. And the more discussions case

gets the more speedup due to the high concurrency

from Presplit. What we should discuss here is the

best throughput circumstances of both Default and

Presplit are operating with 4 customer discussions

(Default: 13171 ops/sec -> Presplit: 30353 ops/sec,

2.3x speedup), and from the common latency of the

best throughput everything is still low. Searching

into the SYSSTAT CPU track, we find that CPU

becomes the bottleneck when the consumer

discussions ≥ 8, while using less than 2 discussions

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

153

the CPU is under used. So using 4 endless YCSB

discussions will use the CPU source without system

I/O bottleneck at the same time to obtain best

throughput and low latency. Same circumstances

appear in the following tests and we use 4

discussions as the best customer line parameter.

When the key variety submission is extremely

manipulated, a more carful setting in regards to

information dividing is very important. In HConfig,

we allow the exterior information dividing methods

to be connected to the information operating

machine. The final representation of memory

specification of processor processing clients with

processing their application in recent cloud

platform. So when the information produced by the

applying organised on HBase are always ≤ 5KB,

most operating (batch model) is more CPU delicate

than system I/O and larger Create Shield

Dimension should be developed to use it I/O.

6. CONCLUSION

We have given the Yahoo! Thinking

Providing Benchmark. This standard is made to

offer assets for one type to it's logical counterpart

examination of distinctive serving data shops. One

commitment of the standard is an extensible

measure of work inventor, the YCSB Client, which

can be utilized to top off datasets and perform

workloads over various data serving procedures.

Cooperation is the importance of five center

workloads, which begin to finish the region of

execution tradeoffs made by these methods. New

workloads can be effectively grown, for example,

general workloads to look at framework

fundamental standards, and more area particular

workloads to plan specific projects. As an open-

source bundle, the YCSB Client is accessible for

planners to utilize and increment to have the

capacity to effectively evaluate cloud procedures.

We have utilized this gadget to standard the

proficiency of four cloud serving procedures, and

saw that there are clear tradeoffs in the middle of

compose and consider productivity that outcome

from every framework's basic decisions. We show

through our trial investigate that the regular

arrangements in current HBase creates can soften

the basic execution up mass stacking paying little

mind to the dataset estimations and the gathering

estimations. The issues normal in mis-design are

settled by HConfig with giving source flexible and

measure of work mindful setups control. Our

evaluations demonstrate that the HConfig upgraded

gigantic working can fundamentally enhance the

execution of HBase tremendous working errands

instead of regular designs, and get 2~3.7x speedup

in throughput under diverse customer discussions

while keeping straightforwardly line side to side

adaptability.

References
[1] Xianqiang Bao, LingLiu,Nong Xiao, Fang

Liu,Qi Zhang†and Tao Zhu,“ HConfig:

Resource Adaptive Fast Bulk Loading in

HBase”, Proceedings of USENIX FAST'14,

Santa Clara, CA, February 2014.

[2] K. Shvachko, H. Kuang, S. Radia, and R.

Chansler. “The Hadoop Distributed File

System”. Proceedings of IEEE MSST'10,

Incline Village, Nevada, May 2010.

[3] D. Borthakur, K. Muthukkaruppan, K.

Ranganathan, S. Rash,et al. "Apache Hadoop

Goes Realtime at Facebook". Proceedings of

ACM SIGMOD'11, Athens, Greece, June

2011.

[4] K. Lee, L. Liu. "Efficient Data Partitioning

Model for Heterogeneous Graphs in the

Cloud", Proceedings of SC'13, Denver, CO,

USA, November 17-21, 2013.

[5] B. Wu, P. Yuang, H. Jin and L. Liu.

“SemStore: A Semantic- Preserving

Distributed RDF Triple Store”, Proceedings of

ACM CIKM'14. Nov. 3-7, 2014.

[6] Google App Engine.

http://appengine.google.com.

[7] Hypertable. http://www.hypertable.org/.

[8] B. Wu, P. Yuang, H. Jin and L. Liu.

“SemStore: A Semantic- Preserving

Distributed RDF Triple Store”, Proceedings of

ACM CIKM'14. Nov. 3-7, 2014.

[9] S.Das, D. Agrawal, A. Abbadi. "G-Store: A

Scalable Data Store for Transactional Multi

key Access in the Cloud”, Proceedings of

ACM SoCC’10, Indianapolis, Indiana, June

10-11 2010.

[10] B.F.Cooper, A. Silberstein, E. Tam, R.

Ramakrishnan, and R. Sears, “Benchmarking

Cloud Serving Systems with YCSB,”

Proceedings of the ACM SoCC’10,

Indianapolis, Indiana, June 10-11 2010.

[11] K. Muthukkaruppan,“Storage Infrastructure

Behind Facebook Messages.” Proceedings of

HPTS’11, Pacific Grove, California, October

2011.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh,

et al, “Bigtable: A Distributed Storage System

for Structured Data,” Proceedings of USENIX

SDI’06, WA, November 2006.

[13] S. Ghemawat, H. Gobioff, and S. Leung, “The

Google File System,” Proceedings of ACM

SOSP’03, NY, USA, October 19-22 2003.

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

154

[14] G.DeCandia, Hastorun, D., Jampani, M.,

Kakulapati, G., et al. "Dynamo: Amazon’s

highly available key-value store". Proceedings

of ACM SOSP’07, pp. 205–220, Stevenson,

WA, 2007.

[15] Voldemort, http://www.project-

voldemort.com/voldemort/.

[16] P. O'Neil, E. Cheng, D. Gawlick, and E.

O'Neil. "The log-structured merge-tree (LSM-

tree)". Acta Informatica, 33(4):351-385, 1996.

[17] SYSSTAT, http://sebastien.godard.pagesperso-

orange.fr/.

[18] A. Lakshman, P. Malik, and K. Ranganathan.

"Cassandra: A structured storage system on a

P2P network". Proceedings of

ACMSIGMOD’08,Vancouver, Canada, June

9-12, 2008.

[19] B. F. Cooper, R. Ramakrishna, U. Srivastava,

A. Silberstein, et al, “PNUTS: Yahoo!'s hosted

data serving platform”, Proceedings of the

VLDB Endowment, v.1 n.2, August 2008.

[20] I. Eure. Looking to the future with Cassandra.

http://blog.digg.com/?p=966.

[21] S. Gilbert and N. Lynch. Brewer’s conjecture

and the feasibility of consistent, available,

partition-tolerant web services. ACM SIGACT

News, 33(2):51–59, 2002.

[22] J. Gray, editor. The Benchmark Handbook For

Database and Transaction Processing Systems.

Morgan Kaufmann, 1993.

