
Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

85

GRAPH BASED WORKLOAD DRIVEN PARTITIONING

SYSTEM FOR NOSQL DATABASE

1
SHIVANJALI KANASE,

 2
SWATI

AHIRRAO

1
Symbiosis International University, Department of Computer Science, Pune

2
Symbiosis International University, Department of Computer Science, Pune

E-mail:
1
shivanjali.kanase@sitpune.edu.in ,

2
swatia@sitpune.edu.in

ABSTRACT

Cloud computing is the rising technology, which deploys the scalable web applications and provides the

storage solutions to the individuals and enterprises. The massively scalable NoSQL data store exhibits the

highly desirable scalability and availability by using various partitioning methods, to handle the

exponentially growing demands of the users. The data stores are partitioned horizontally and distributed

across the geographically dispersed data centers to balance the load. However, if the partitions are not

formed properly, it may result in expensive distributed transactions. There are number of existing

partitioning techniques available like Hash and Range partitioning, but they are not effectively applied to

the workload consisting of fairly small transactions, that touch fewer records and which also do not

considers the n-to-n relationship between them. In this paper, “Graph-based Workload Driven Partitioning

System for NoSQL Database using OLTP workload” is proposed to improve the scalability minimizing the

distributed transaction. This system works in two phases: 1) generates the graph from transaction workload

such as the database tuples are represented as nodes and number of tuples accessed in same transaction are

connected by edges. Then graph partitioning technique is applied to find min-cut balanced partition. 2)

Uses the decision tree classifier, which gives a range predicate partitioning identical to the partitions,

formed by the graph partitioning algorithm. The TPC-C schema is implemented by utilizing Apache

CouchDB NoSQL data store, in order to assess the proposed system. The experimental end result indicates

that the graph-based schemes significantly improves the response time and latency.

Keywords: Graph Partitioning Methods, OLTP Workload, Scalability, Distributed Transactions, NoSQL

Database, Decision Tree Classifier, Lookup Table.

1. INTRODUCTION

The emergence of Big Data, Internet of

Things and Hybrid Cloud applications enable the

business to perform faster, smarter and more

efficiently than ever. The companies need vigorous

foundation for data handling and running machine

critical applications in order to harness the

competitive edge. This tremendous growth of

unstructured data and new applications has caused

to an evolution in database management companies.

Nowadays these companies are shifting to the

NoSQL database from traditional relational

database, as they lack the flexibility and ability to

scale, to handle globally massive amounts of

unstructured data. Nowadays people are equalizing

NoSQL with the scalability.

 NoSQL database can be scale out

efficiently by utilizing various partitioning methods.

With the objective of improving scalability,

partitioning provides availability, easy maintenance

and improvised query performance to the database

users. In order to increase the scalability of

applications, many cloud providers, partition data

and distribute these partitions across geographically

dispersed data centers, to balance the load.

However, if the partitions are not correctly formed,

it may result in expensive distributed transactions.

 The existing partitioning schemes like

Round-robin, Range and Hash partitioning are

inefficiently applicable to the workloads having of

small transactions, which touch a couple of records

[1]. Moreover, these approaches also ignore the

relations among the database tuples and end up with

the cluster of unrelated tuples on the same partition

which eventually results in the costly distributed

transactions. In OLTP workloads to ascertain

transactional properties, distributed transactions

should use a distributed consensus protocol, which

might result in immoderate and undesirable

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

86

latencies, decreased throughput and network

messages [2]. Hence, it is necessary to find

partitioning technique, which will consider the

relativity among the tuples while partitioning and

minimize the adverse effects of multisite

transactions.

The proposed system frames the NoSQL

database workload in the form of graph wherein,

the nodes represent the database tuples and each

edge connects a couple of tuples accessed inside the

same transaction. Graph partitioning technique is

applied to find min-cut k balanced partitions which

minimizes the multisite transactions. Unless the

workload characteristics change drastically, and

tuples from a single partition are associated with

one another, the events and unfavorable

consequences of Distributed Transactions are

reduced rapidly. Lastly, the decision tree classifier

techniques are applied to extract the set of rules to

explore the predicates, which explain the graph

partitioning strategy. This step improves the

runtime of the query processing.

The strengths of proposed system are: i)

Not dependent on any schema layout. ii) Can be

implemented in the social networking data stores as

it considers the n-to-n relationship between data

tuples. iii) Fine-grained approach for NoSQL

database partitioning. This system is basically

designed for OLTP workload using TPC-C schema.

In addition to this new partitioning approach, the

proposed system offers some extra contributions:

• A design is presented based on decision

tree classifier which gives range predicate

partitioning similar to graph partitioning

algorithm and using this lookup table is a

built to improve query performance.

• A mapping of TPC-C schema to Apache

CouchDB NoSQL data store is presented.

• An integration of Apache CouchDB is

done with Neo4j NoSQL graph database

for representing OLTP workload in the

form of a graph.

• METIS graph partitioning algorithm is

implemented on the graph stored in Neo4j

graph database.

• The system takes a reasonable time that is

just a few minutes to partition the million

tuple dataset. Some heuristics like

Transaction level sampling, Tuple level

sampling and Relevance filtering are

proposed, to diminish the size of the graph

to additional improve partitioning time of

largely increasing graph.

• The practical implementation of graph-

based workload driven partitioning system

on Apache CouchDB is presented and its

performance is evaluated using TPC-C

schema.

Further this paper is structured as follows:

In Section 2, papers related to scalability and graph

database partitioning is discussed. Section 3 gives

brief overview of proposed system. Design of graph

based workload driven partitioning system is

presented in Section 4. An Implementation details

in Section 5 explains implementation and the

performance evaluation of the partitioning system.

In Section 6 and Section 7, experimental setup and

results are described respectively. Finally, Section 8

concludes the paper.

2. RELATED WORK

For more than few years, Scalable and

distributed database administration have been the

area of interest of the database research group.

Accordingly, a plenty of systems along with

techniques for scalable database transaction have

been documented in the literature. This chapter

discusses related work done on different

partitioning algorithms and graph partitioning

techniques.

2.1Workload-driven Partitioning Algorithms

Data-driven partitioning approach called

'Schism' is first introduced by Curino et al. [1], for

OLTP databases. Schism models the workload as a

graph and enforces k-way min-cut graph

partitioning algorithm to lessen the effect of

distributed transactions and increases the

throughput. However, the graph generated by

'Schism' is extremely massive and usually does not

deal with progressive workload deviation and

repartitioning.

Sudipto Das et. al presents “ ElasTras [3],

which is scalable and elastic to handle the varying

amount of loads with the additional functionality of

fault-tolerance and self-management. ElasTras

achieves the scalability by partitioning the large

database, using schema level partitioning which

restricts the transactional updates to a specific

database partition. The associated rows are grouped

together in a singular partition using schema

patterns. Despite the fact that the system possesses

the various functionalities, however, it lacks in

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

87

replication mechanism to benefit the high

availability.

J. Baker, et. al has developed a Megastore

[4] which is a scalable repository for interactive

online systems. Megastore integrates the scalability

of a NoSQL with regard to RDBMS and offers the

strong consistency and high availability. Megastore

gives full ACID properties inside the partitions.

This system partitions the data into a stock of entity

group that is the set of correlated data items which

independently replicated over the set of servers and

each update is replicated synchronously across the

identical partitions with acceptable latency. The

transaction which requires the strong consistent

view of the database to fulfill its execution restricts

its execution to a single entity group.

Ahirrao S. [5] invented a scalable

workload-driven data partitioning scheme

specifically designed for the NoSQL data store

based on the analysis of data access patterns. The

access patterns are examined by monitoring the

web access logs. Based on these access patterns,

partitions are formed which can be changed

adaptively, to balance the load among all partitions.

2.2 Graph Partitioning Methods

Graph partitioning problem has been the

area of interest of many researchers in last few

decades, which was then reviewed and applied in

many disciplines. The major objective function of

graph partitioning is to find balanced quality

partitions which reduce the edge cut. There have

been many solutions available to handle the

challenge of discovering the balanced graph

partitions which itself is the NP-complete problem.

 JA-BE-JA [6] is distributed graph

partition algorithm which uses sampling and

swapping techniques to see the balanced partitions

in graph. Every node is processed individually and

only the immediate adjacent of the vertex and a

small group of arbitrary vertices are needed to be

known locally. This algorithm does not require the

entire graph at the once, and processes only with

the partial information, hence, it is more efficient

for computing very big graphs. Originally, every

vertex is put into the random partitions and over the

time, they adaptively swap with the other vertices

to collocate the vertex with their highly related

neighbors in one partition to improve the

scalability. The swapping cost is also increased

when the number of partitions increases. Multilevel

algorithms for partitioning graphs were first

described by the Karypis and Kumar [7]. Typically

such multilevel schemes combine the vertices and

edges using matching techniques, to decrease the

size of the graph. This procedure recursively

iterates till the enough small size graph is formed.

Then this reduced graph is initially partitioned into

the k partitions which iteratively refines to find the

k partitions of the initial graph. It uses graph

coloring techniques to parallelize the procedures of

the multilevel partitioning algorithm, to provide the

high degree of concurrency.

A large community of the researchers

examined their partitioning designs on traditional

databases, yet there is a requirement for to build up

an effective partitioning framework for NoSQL

database which enables it to scale greatly.

Previously the graph partitioning techniques were

used in combination with the decision tree classifier

to improve the performance of SQL database. Here,

this exploration work concentrates on the same

magnificent integration of graph partitioning

techniques and machine learning technique like

decision tree classifier, along with some

improvisation on NoSQL database using TPC-C

workload.

3. PROPOSED SYSTEM OVERVIEW

Definition 1. Workload Driven

Partitioning System:

Workload driven partitioning systems are

the system in which the database is partition based

on the relativity of tuples and their access patterns.

The related tuples mean the numbers of tuples

which are accessed together in most of the

transaction are placed together in one partition.

The high-level architecture of the system

is shown in Figure 1. The proposed system is

designed to work as a scalable transactional layer

on the top of any distributed storage system such as

CouchDB or Amazon SimpleDB which implements

CRUD (create/ insert, read, update, and delete).

Operations. The users interact with the distributed

databases as if it is a centralized database system.

The system has 2 tier architecture: 1) backend

database nodes and 2) coordinator node. The

backend database nodes are the NoSQL database

servers (CouchDB Database server) which actually

handle the data. The coordinator node contains

query routers and the lookup table. A client sends

requests to a query router, which forwards it to the

partitions with the help of lookup table and returns

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

88

the responses to the clients. The queries from

multiple clients are processed in a parallel way by

the query router which also dispatches sub-queries

in a parallel manner to the backend. More

coordinator nodes can be added to distribute the

transaction load. The coordinator node is

connected to the number of geographically

dispersed data nodes where the actual database

partitions are placed. Individual data node is

synchronously replicated as Master-Master to

assure the high availability, thus here in this system

the tuple level replication is not explicitly handled.

The coordinator node has the partitioning metadata

and the network address for each backend data

node. The partitioning metadata contains the

pattern of division of the individual tuples into the

partitions and the patterns of the mapping of these

partitions to the backend nodes.

 Figure 1. System Architecture

Table 1. Gives a brief overview of our

graph-based data-driven partitioning system. The
input to the graph-based workload driven

partitioning system is workload trace and a number

of partitions required, the output is the balanced
partitions, which minimize the overall cost of

running the workload, with reducing expensive

distributed transactions. The basic process is
outlined in following steps:

Workload pre-processing: The system
takes the input as the workload trace that is the

collection of transactions and the tuples they
access. Each transaction is processed to extract the

set of read and update sub-queries contained in it.

For each sub-query, the unique ids of individual
tuples are retrieved.

Graph Representation: The tuples

accessed in the input transaction are represented as
nodes in the graph. The number of tuples accessed

in a single transaction is connected by edges. The
sampling techniques are used to reduce the size of

the graph.

Graph Partitioning: The graph
partitioning algorithm is applied on the created

graph. The output of the graph algorithm is a high-

quality balanced k partition. The individual node
from the graph is mapped to the unique partition,

such that the maximum of the adjacent edges is
collocated in the single partition. Then, these k

partitions are assigned to the k physical nodes.

Lookup Table Creation: Lookup table
stores the (tuple, partition) pair generated by the

graph partitioning. Basically, Lookup table is used

for forwarding the query to correct partition, as it
specifies which tuple is stored in which partition.

Decision Tree Classifier: Sub-queries
from transactions are analyzed to accumulate the

collection of frequently accessed attributes in the

WHERE clauses. The set of rules are extracted
using the decision tree classifier, which gives range

predicates partitioning based on the frequent

attribute values. This resultant partitioning is
identical to the graph partitioning.

The resulting data partitioning strategy can
be explicitly added into any NoSQL database,

which supports partitioning for scaling database in

distributed shared-nothing architecture.

Table 1. System Overview

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

89

4. DESIGN OF GRAPH BASED

WORKLOAD DRIVEN PARTITIONING

SYSTEM FOR NOSQL DATABASE

There are various NoSQL database

management systems available based on the key-

value, column family and document-oriented. For

designing the proposed approach Document

oriented NoSQL database (Apache CouchDB) has

been selected as it is more suitable to handle the

transactional TPC-C based e-commerce application

and provides a semi-structured schema for storing

the data.

4.1 Graph Representation

The transaction workload can be

represented in the form of a graph. The graph

representation approach is presented here with an

example. Although given example contains only

one transaction database, this approach works on

any number of transaction databases with any

schema layout. The example has one transaction

database called Order as shown in Figure 2. When

the new record is added into the document-oriented

database, it is stored as the new document with a

unique id. This Order transaction database records

the details of five order transaction executed on

different databases in the CouchDB. Each

transaction is inserted into the Order database as the

new document with unique O_ID. Each order

transaction document has the following attributes:

(O_ID, W_ID, D_ID, C_ID, I_ID, S_ID). The

attributes of each document is represented as the

nodes in the graph, which are connected by the

edges. The C_ID node is considered as the base

node and all other attribute from transaction of that

customer are connected to it with edges. The edge

cost indicates the total number of the transaction

which co-accesses this pair of tuples. (Example:

attributes with value (W2, D22, C2, I1, S12) are

accessed in O1 and O2 transaction, the cost of edge

between them is 2). When the new transaction

occurs, it first checks the presence of the node for

the particular attribute value in the graph. If absent

then, the new node for that attribute value is added

to the graph and respective cost on edges is also

updated.

4.1.1. Graph size reduction

The functional graph partitioning system

can handle huge databases. As the number of

transaction increases, the number of nodes

represented in the graph is also increased with

increasing the graph representation [1]. The

additional partitions are required for effective

handling of a large database. It results in the need

of finding more cuts into the graph. This increases

processing overhead and runtime of the algorithm.

Hence, there is a need for reducing the size of the

graph. As the reduced graph contains insufficient

information to form high quality partitions, the

number of heuristics for graph size reduction have

been introduced, which considerably increases the

runtime of the algorithm, with less effect on the

quality of partitions. The following Sampling

Techniques for graph size reduction have been

implemented in the proposed system:

Transaction-level sampling: It reduces

the number of edges by limiting the number of

transactions represented in the graph. As the TPC-C

transaction contains almost 45% of the transaction

as New Order Transaction (explained in section

5.2.1), Only the New Order Transaction workload

has been represented in the graph.

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

90

Tuple-level sampling: It limits the

number of tuples shown in the graph.

Relevance filtering: It removes rarely

accessed tuples from the graph as they give a little

information. For example, O_ID is not represented

in the graph as it is unique for each transaction and

carries less partitioning information.

These samplings techniques are validated

to be powerful in decreasing the graph size for

concerned TPC-C workload at the same time

keeping high-quality results.

4.2 Graph Partitioning

The system represents the transactional

workload in the form of the graph. The graph

partitioning algorithm divides the nodes from the

graph into k balanced partitions such that the

number of edges crossing the partitions is

minimized. This graph partitioning problem has

many applications in various fields like VLSI

design, parallel scientific computing, sparse matrix

reordering. However, this problem is identified as

NP-complete [9]. In last decades, many multilevel

schemes are introduced to solve this problem. For

finding solutions to the k way partitioning problem

Recursive bisection method has been used. First it

combines the random vertex and edges using the

matching technique to form the smaller graph. This

combined smaller graph is bisected initially, on

which refinement algorithm is applied to form the

two balanced partitions of the original graph, in

such a way that it has min-cut. These steps are

repeated until the k partitions of the original graph

are formed. This whole process is composed of

three phases as shown in Figure 3. Different

methods for these phases are described in many

papers [8, 9, 10]. We have selected some of this

methods with minor changes in it. These phases are

illustrated in detail as follows:

Coarsening phase: The fundamental

process in this phase is to combine the nodes and

edges to form the smaller graph. First, from the

graph representation, the adjacency matrix is

formed. For each base node in the graph, all

adjacent edges on it are sorted into the decreasing

order of their cost and added into the queue. At

each level, the first node from the queue is retrieved

and merged with the base node. Once the node is

merged into the base node it is marked as matched

and it cannot be added to another base node. This

merging of node continues until the small enough

graph is formed. The underlying merging technique

is called as Heavy Edge Maximal Matching. This

coarsening technique has the property that the

balanced partitioning of the small graph is identical

to the balanced partitioning of the original graph.

Initial partitioning Phase: In the second

phase, the smaller graph is partitioned into two

parts such that each of the partitions has equal node

weight. The equal number nodes to each partition is

assigned for balancing the partition. On this initial

partition, the refinement algorithm is applied to find

the final fine-grained partitions.

Uncoarsening Phase: Many refinement

algorithms are variants of the popular Kernighan–

Lin (KL) partitioning algorithm [11]. The initial

partitioning is assumed to be the best possible

partition for the higher level graph. The KL

algorithm iteratively swaps the subsets of a node

from one partition with the same number of nodes

from another partition in such a way that the edges

crossing the partition have the minimum cost. This

algorithm gives the best possible local optimum

solutions.

These phases are recursively applied till

the k balanced partitions of the original graph is

generated. The output of the whole partition system

is the fine-grained mapping between the nodes and

partition labels. As highly correlated nodes are

placed into one partition, this helps in minimizing

the distributed transaction and increases the system

performance.

Figure 3. Multilevel Recursive Bisection

4.2 Lookup Table Creation

A lookup table as shown in Table 2 is used

for storing the location of each node. This lookup

table is present at the coordinator node and helps

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

91

the router to forward the incoming query to the

appropriate physical node [12]. The router parses

the incoming query and retrieves the predicate over

the attribute values from the WHERE clause and

compares it with the lookup table entries, to find

the location of the attribute and execute the query

on the correct backend. This lookup table Structure

effectively increases the throughput of the system.

The lookup table needs to be stored in the RAM

memory of the router [1]. It stores the mapping of

unique key to the partition label. Each row in the

lookup table requires 10 bytes of the memory out of

which 8 bytes are for the unique key and 2 bytes for

the partition label. With this memory requirement,

the RAM of the single machine is sufficient to

handle the OLTP applications [12]. If lookup table

does not fit into the RAM of the single machine, it

can be distributed to several machines. When a new

tuple is to be inserted into the database, it is first

inserted into the random partition and eventually it

migrates to its correct partition. This technique is

efficient when the fine-grained partition is wanted

but it is not suitable for the insertion heavy

databases as it increases the network overhead.

One way to reduce the memory

requirements of the lookup table is to map the Fine-

grained mapping of lookup table with memory

efficient range predicate partitioning. For this

purpose, Analysis tool is used which gives the

range predicate partitioning identical to the graph

partition.

Table 2. Lookup Table generated form the graph in

Figure 2.

4.3 Explanation Phase Using Decision Tree

Classifier

The output of the partitioning phase is the

fine-grained mapping between attribute values and

the partition table. The compact model for the

generation of the lookup table is required which

stores the minimum number of mapping such that

the location of the target attribute can be predicted

[13]. For that purpose, Decision Tree Classifier is

used which generates the range predicate

partitioning based on rules generated by the

decision tree. Decision tree classifier takes the set

of (attribute value, partition label) pairs formed by

the graph partitioning as input and generates the

decision tree of the predicates over the attribute

values going down to leaf nodes with particular

partition labels. The location of the unlabeled

attribute value can find by traversing the tree

downwards and applying predicates at each level

till the leaf node with partition label is reached.

 The set of the rules generated from the

decision tree captures the core of the graph

partitioning in the compact form. For example from

Figure 2. rules identified by decision tree are:

(W_ID =W1) → Partition=1

(W_ID = W2) → Partition=2

As the every generated rule is not useful,

the rules which are generated based on the

frequently accessed attribute from the WHERE

clause are considered. (e.g., in this application more

than half of the queries use W_ID attribute from

their WHERE clause to route the transaction to the

appropriate partition and minimize the distributed

transaction.) The W_ID act as the reference key for

(Customer, District, Order, New Order, Order Line,

Stock, History) tables of TPC-C (Explained in the

section 5.2.1), hence this table can be classified

according to the value of W_ID using the decision

tree classifier.

5. IMPLEMENTATION DETAILS

In this Section, System implementation

details is presented followed by the experimental

evaluation of graph partition algorithm in Apache

CouchDB. The implementation of graph based

workload driven partitioning system in NoSQL

database is actually a challenge and requires some

modifications. Here additionally, some of the

design decisions made during the system

implementation are discussed.

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

92

5.1 System Implementation

5.1.1 Integration of Apache CouchDB with

Neo4j NoSQL graph database

Neo4j is the open source graph database

completely developed in java [17]. This schema-

free NoSQL graph database has been utilized for

the graph representation of the transactional

workload stored in CouchDB database. This two

NoSQL databases have been integrated to enable

automatic synchronization of the data in between

them. When new order transaction is executed on

the CouchDB, new node is being created

automatically in Neo4j graph database. The graph

partitioner takes the advantages of the relationships

provided by the Neo4j to collocate the related

tuples.

5.1.1 Implementation of Range Predicate

Partitioning based on Decision Tree

Classifier

The popular suite of machine learning that

is Weka 3 has been used to get range predicate

based explanation of the graph partitioning.

Training set creation: The system

extracts the sub-queries from each transaction and

attribute value accessed in transaction workload.

Each accessed attribute value is labeled with the

partition name generated by the graph partitioning.

This training set is given as the input to the decision

tree classifier to identify the candidate attributes.

Selection of Attribute: System parses the

sub-queries and counts the frequency of each

attribute in its WHERE clause. The attribute with

less frequency is discarded as it carries less

information for routing query to the right partition.

For example, in TPC-C for a stock table the two

frequently accessed attributes (S_W_ID, S_I_ID) is

got. These candidate attributes are inserted into

Weka's correlation based feature selection to

calculate the set of attributes which are correlated

with the partition label of the candidate attributes.

The candidate attribute which has a high number of

correlated attribute with same partition label are

selected as classification attribute and discards the

remaining. The selected attribute is used for

building the decision tree in which it acts as the

root node and classifies the target attributes to get

their location.

Build the Decision Tree Classifier: For

constructing decision tree classifier J48 has been

used which is java implementation of C4.5

Classifier algorithm [18]. The classification

attributes are the partition labels which has to be

learned from the candidate attribute. The rules

generated from this decision tree gives the range

predicate partitioning identical to the graph-based

partitioning. The rules with less support are

discarded to avoid the risk of over-fitting as they

are not that much useful. The classifier rules

indicates that all tuples from the TPC-C Item table

have to be replicated on all partitions as it don’t

have reference to other TPC-C tables and can be

placed independently on each partition. The overall

result of the range predicate partitioning is to

classify the database according to W_ID as it is the

frequently accessed attribute in all transaction with

highly correlated with other attributes and the item

table is replicated on each partition.

5.2 Performance Evaluation

 The performance of the system has been

evaluated by using TPC-C schema.

5.2.1 TPC-C benchmark

TPC-C benchmark is an authorized

yardstick for analyzing OLTP web applications

[15]. It stimulates OLTP Workload for the E-

commerce web application. There are total five

transactions, such as New Order, Payment, Order

Status, Stock Level, and Delivery. Every

transaction contains read and update sub-queries.

These 5 transaction are executed on the 9 tables of

the TPC-C which are: Warehouse, District,

Customer, Order, New Order, Order Line, History,

Stock, and Item as shown in a Figure 4. In a real

life scenario, typically 45% transactions are New

Order, 43% transactions are Payment and 4%

transactions are Delivery, Order Status and Stock

[5].

5.2.2 Mapping of TPC-C to Apache CouchDB
The TPCC schema are primarily designed

for the Relational database with the nine tables.

These 9 tables of TPC-C have been mapped to the 9

documents of CouchDB. CouchDB is the

document-oriented NoSQL database which

completely embraces the Web [16]. It stores the

data hierarchically in semi-structured format. Each

document, similar to the row from the relational

database is named uniquely with the ID. The

attribute W_ID is present in each table except Item

table.

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

93

Figure 4. Components of TPC-C

6. EXPERTIMENTAL SETUP

The proposed system is implemented

using java based NetBeans IDE and some tests are

carried over it. Where 3 machines are considered

for the experiments which have core i3 processor

with 2GB of Primary memory for the distributed

paradigm. All machines are interconnected through

D-Link 8 Port Ethernet. Proposed System uses

NoSQL CouchDB for the graph based workload

driven partitioning system. The Neo4j graph

database is used to stimulate the transactional

workload in the form of graph. The developed

system is tested in many scenarios to prove its

accuracy as mentioned in below tests.

7. RESULTS

In this section, the performance of the

graph based workload-driven partitioning is

extensively evaluated and compared with a TPCC

schema. The goal of this experiment is to validate

the scalability of system with varying number of

concurrent users. The scalability of the system is

measured in terms of response time. Figure shows

response time of the Graph Based Workload Driven

partitioning system and the TPCC schema. Along

x-axis, number of concurrent users and along the y-

axis, a response time (time in ms) is plotted. As

observed from below Figures, our system has lesser

response time than TPC-C schema.

7.1 Response Time Comparison between

TPC-C Schema and Graph Based Workload

Driven Partition

The response time comparison for all

TPC- C transactions can be depicted in the figures

given below:

Figure 5: Response Time Comparison for New Order

Transaction

Figure 6: Response Time Comparison for Payment

Transaction

Figure 7: Response Time Comparison for Delivery

Transaction

Figure 8: Time Comparison for Stock Level Transaction

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

94

Figure 9: Response Time Comparison for Order Status
Transaction

In all the above graphs it indicates that

transactions time is diminished as the Database is

partitioned and kept in different machines in

distributed paradigm. This clearly depicts that the

proposed method is efficiently incorporated and the

scalability is achieved.

8. CONCLUSION

In this paper, a graph based workload

driven partitioning system for NoSQL database is

presented. The proposed system represents the

workload in the form of the graph, to take the

advantage of the relationships between them. Using

the relationship characteristics between the tuples,

the highly connected tuples are combined together

in a single partition which reduces the distributed

transactions. Some heuristics like sampling

techniques are introduced to optimize the graph

representation and to improve the performance of

the system. The compact model for lookup table

based on range predicate partitioning is also

generated using decision tree classifier. TPC-C

schema used for the evaluation of the system shows

that the proposed system improves the response

time which is considerably less than the TPC-C

schema. The resulting data partitioning strategy can

be explicitly added into any distributed shared-

nothing NoSQL database to enhance its scalability.

REFERENCES

[1] Curino C, Jones E, Zhang Y, Madden S.

Schism: a workload-driven approach to

database replication and partitioning.

Proceedings of the VLDB Endowment. 2010

Sep 1;3(1-2):48-57.

[2] Quamar A, Kumar KA, Deshpande A.

SWORD: scalable workload-aware data

placement for transactional workloads. In

Proceedings of the 16th International

Conference on Extending Database

Technology 2013 Mar 18 (pp. 430-441).

ACM.

[3] Das S, Agrawal D, El Abbadi A. ElasTraS:

An elastic, scalable, and self-managing

transactional database for the cloud. ACM

Transactions on Database Systems (TODS).

2013 Apr 1;38(1):5.

[4] Baker J, Bond C, Corbett JC, Furman JJ,

Khorlin A, Larson J, Leon JM, Li Y, Lloyd A,

Yushprakh V. Megastore: Providing Scalable,

Highly Available Storage for Interactive

Services. InCIDR 2011 Jan 9 (Vol. 11, pp.

223-234).

[5] Ahirrao S, Ingle R. Scalable transactions in

cloud data stores. Journal of Cloud

Computing. 2015 Dec 1;4(1):1-4.

[6] Rahimian F, Payberah AH, Girdzijauskas S,

Jelasity M, Haridi S. Ja-be-ja: A distributed

algorithm for balanced graph partitioning.

[7] Karypis G, Kumar V. Parallel multilevel

series k-way partitioning scheme for irregular

graphs. Siam Review. 1999;41(2):278-300.

[8] Karypis G, Kumar V. multilevel k-way

partitioning scheme for irregular graphs.

Journal of Parallel and Distributed computing.

1998 Jan 10;48(1):96-129.

[9] Hendrickson B, Leland R. A multi-level

algorithm for partitioning graphs.

[10] Portugal D, Rocha RP. Partitioning Generic

Graphs into k Balanced Subgraphs. In

Proceedings of the 6th Iberian Congress On

Numerical Methods in Engineering (CMNE

2011), Coimbra, Portugal 2011 Jun 14 (pp.

13-16).

[11] Kernighan BW, Lin S. An efficient heuristic

procedure for partitioning graphs. Bell system

technical journal. 1970 Feb 1;49(2):291-307.

[12] Tatarowicz AL, Curino C, Jones EP, Madden

S. Lookup tables: Fine-grained partitioning

for distributed databases. In Data Engineering

(ICDE), 2012 IEEE 28th International

Conference on 2012 Apr 1 (pp. 102-113).

IEEE.

[13] Ranka S, Singh V. CLOUDS: A decision tree

classifier for large datasets. In Proceedings of

the 4th Knowledge Discovery and Data

Mining Conference 1998 (pp. 2-8).

Journal of Theoretical and Applied Information Technology
 15

th
 July 2016. Vol.89. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

95

[14] Kamal J, Murshed M, Buyya R. Workload-

aware incremental repartitioning of shared-

nothing distributed databases for scalable

OLTP applications. Future Generation

Computer Systems. 2016 Mar 31;56:421-35.

[15] Council TP. TPC benchmark C (standard

specification, revision 5.11), 2010. URL:

http://www. tpc. org/tpcc.

[16] Anderson JC, Lehnardt J, Slater N. CouchDB:

the definitive guide. " O'Reilly Media, Inc.";

2010 Jan 19.

[17] Miller JJ. Graph database applications and

concepts with Neo4j. In Proceedings of the

Southern Association for Information Systems

Conference, Atlanta, GA, USA 2013 Mar 23

(Vol. 2324).

[18] Jain D. A Comparison of Data Mining Tools

using the implementation of C4. 5 Algorithm.

International Journal of Science and Research

Vol3. 2014 Aug(8).

