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ABSTRACT 

 

Cloud computing is the rising technology, which deploys the scalable web applications and provides the 

storage solutions to the individuals and enterprises. The massively scalable NoSQL data store exhibits the 

highly desirable scalability and availability by using various partitioning methods, to handle the 

exponentially growing demands of the users. The data stores are partitioned horizontally and distributed 

across the geographically dispersed data centers to balance the load. However, if the partitions are not 

formed properly, it may result in expensive distributed transactions. There are number of existing 

partitioning techniques available like Hash and Range partitioning, but they are not effectively applied to 

the workload consisting of fairly small transactions, that touch fewer records and which also do not 

considers the n-to-n relationship between them. In this paper, “Graph-based Workload Driven Partitioning 

System for NoSQL Database using OLTP workload” is proposed to improve the scalability minimizing the 

distributed transaction. This system works in two phases: 1) generates the graph from transaction workload 

such as the database tuples are represented as nodes and number of tuples accessed in same transaction are 

connected by edges. Then graph partitioning technique is applied to find min-cut balanced partition. 2) 

Uses the decision tree classifier, which gives a range predicate partitioning identical to the partitions, 

formed by the graph partitioning algorithm. The TPC-C schema is implemented by utilizing Apache 

CouchDB NoSQL data store, in order to assess the proposed system. The experimental end result indicates 

that the graph-based schemes significantly improves the response time and latency. 

Keywords: Graph Partitioning Methods, OLTP Workload, Scalability, Distributed Transactions, NoSQL 

Database, Decision Tree Classifier, Lookup Table. 

 

1. INTRODUCTION    

 

The emergence of Big Data, Internet of 

Things and Hybrid Cloud applications enable the 

business to perform faster, smarter and more 

efficiently than ever.  The companies need vigorous 

foundation for data handling and running machine 

critical applications in order to harness the 

competitive edge. This tremendous growth of 

unstructured data and new applications has caused 

to an evolution in database management companies. 

Nowadays these companies are shifting to the 

NoSQL database from traditional relational 

database, as they lack the flexibility and ability to 

scale, to handle globally massive amounts of 

unstructured data. Nowadays people are equalizing 

NoSQL with the scalability. 

 NoSQL database can be scale out 

efficiently by utilizing various partitioning methods. 

With the objective of improving scalability, 

partitioning provides availability, easy maintenance 

and improvised query performance to the database 

users. In order to increase the scalability of 

applications, many cloud providers, partition data 

and distribute these partitions across geographically 

dispersed data centers, to balance the load. 

However, if the partitions are not correctly formed, 

it may result in expensive distributed transactions. 

 The existing partitioning schemes like 

Round-robin, Range and Hash partitioning are 

inefficiently applicable to the workloads having of 

small transactions, which touch a couple of records 

[1]. Moreover, these approaches also ignore the 

relations among the database tuples and end up with 

the cluster of unrelated tuples on the same partition 

which eventually results in the costly distributed 

transactions. In OLTP workloads to ascertain 

transactional properties, distributed transactions 

should use a distributed consensus protocol, which 

might result in immoderate and undesirable 



Journal of Theoretical and Applied Information Technology 
 15

th
 July 2016. Vol.89. No.1 

 © 2005 - 2016 JATIT & LLS. All rights reserved.   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
86 

 

latencies, decreased throughput and network 

messages [2]. Hence, it is necessary to find 

partitioning technique, which will consider the 

relativity among the tuples while partitioning and 

minimize the adverse effects of multisite 

transactions. 

The proposed system frames the NoSQL 

database workload in the form of graph wherein, 

the nodes represent the database tuples and each 

edge connects a couple of tuples accessed inside the 

same transaction. Graph partitioning technique is 

applied to find min-cut k balanced partitions which 

minimizes the multisite transactions. Unless the 

workload characteristics change drastically, and 

tuples from a single partition are associated with 

one another, the events and unfavorable 

consequences of Distributed Transactions are 

reduced rapidly. Lastly, the decision tree classifier 

techniques are applied to extract the set of rules to 

explore the predicates, which explain the graph 

partitioning strategy. This step improves the 

runtime of the query processing. 

The strengths of proposed system are: i) 

Not dependent on any schema layout. ii) Can be 

implemented in the social networking data stores as 

it considers the n-to-n relationship between data 

tuples. iii) Fine-grained approach for NoSQL 

database partitioning. This system is basically 

designed for OLTP workload using TPC-C schema. 

In addition to this new partitioning approach, the 

proposed system offers some extra contributions: 

• A design is presented based on decision 

tree classifier which gives range predicate 

partitioning similar to graph partitioning 

algorithm and using this lookup table is a 

built to improve query performance. 

• A mapping of TPC-C schema to Apache 

CouchDB NoSQL data store is presented. 

• An integration of Apache CouchDB is 

done with Neo4j NoSQL graph database 

for representing OLTP workload in the 

form of a graph. 

• METIS graph partitioning algorithm is 

implemented on the graph stored in Neo4j 

graph database. 

• The system takes a reasonable time that is 

just a few minutes to partition the million 

tuple dataset. Some heuristics like 

Transaction level sampling, Tuple level 

sampling and Relevance filtering are 

proposed, to diminish the size of the graph 

to additional improve partitioning time of 

largely increasing graph. 

• The practical implementation of graph-

based workload driven partitioning system 

on Apache CouchDB is presented and its 

performance is evaluated using TPC-C 

schema. 

Further this paper is structured as follows: 

In Section 2, papers related to scalability and graph 

database partitioning is discussed. Section 3 gives 

brief overview of proposed system. Design of graph 

based workload driven partitioning system is 

presented in Section 4. An Implementation details 

in Section 5 explains implementation and the 

performance evaluation of the partitioning system. 

In Section 6 and Section 7, experimental setup and 

results are described respectively. Finally, Section 8 

concludes the paper. 

2. RELATED WORK 

For more than few years, Scalable and 

distributed database administration have been the 

area of interest of the database research group. 

Accordingly, a plenty of systems along with 

techniques for scalable database transaction have 

been documented in the literature. This chapter 

discusses related work done on different 

partitioning algorithms and graph partitioning 

techniques. 

 

2.1Workload-driven Partitioning Algorithms 

Data-driven partitioning approach called 

'Schism' is first introduced by Curino et al. [1], for 

OLTP databases. Schism models the workload as a 

graph and enforces k-way min-cut graph 

partitioning algorithm to lessen the effect of 

distributed transactions and increases the 

throughput. However, the graph generated by 

'Schism' is extremely massive and usually does not 

deal with progressive workload deviation and 

repartitioning. 

 

Sudipto Das et. al presents “ ElasTras [3], 

which is scalable and elastic to handle the varying 

amount of loads with the additional functionality of 

fault-tolerance and self-management. ElasTras 

achieves the scalability by partitioning the large 

database, using schema level partitioning which 

restricts the transactional updates to a specific 

database partition. The associated rows are grouped 

together in a singular partition using schema 

patterns. Despite the fact that the system possesses 

the various functionalities, however, it lacks in 
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replication mechanism to benefit the high 

availability. 

J. Baker, et. al has developed a Megastore 

[4] which is a scalable repository for interactive 

online systems. Megastore integrates the scalability 

of a NoSQL with regard to RDBMS and offers the 

strong consistency and high availability. Megastore 

gives full ACID properties inside the partitions. 

This system partitions the data into a stock of entity 

group that is the set of correlated data items which 

independently replicated over the set of servers and 

each update is replicated synchronously across the 

identical partitions with acceptable latency. The 

transaction which requires the strong consistent 

view of the database to fulfill its execution restricts 

its execution to a single entity group. 

Ahirrao S. [5] invented a scalable 

workload-driven data partitioning scheme 

specifically designed for the NoSQL data store 

based on the analysis of data access patterns. The 

access patterns are examined by monitoring the 

web access logs. Based on these access patterns, 

partitions are formed which can be changed 

adaptively, to balance the load among all partitions. 

2.2 Graph Partitioning Methods  

Graph partitioning problem has been the 

area of interest of many researchers in last few 

decades, which was then reviewed and applied in 

many disciplines. The major objective function of 

graph partitioning is to find balanced quality 

partitions which reduce the edge cut. There have 

been many solutions available to handle the 

challenge of discovering the balanced graph 

partitions which itself is the NP-complete problem. 

  

 JA-BE-JA [6] is distributed graph 

partition algorithm which uses sampling and 

swapping techniques to see the balanced partitions 

in graph. Every node is processed individually and 

only the immediate adjacent of the vertex and a 

small group of arbitrary vertices are needed to be 

known locally. This algorithm does not require the 

entire graph at the once, and processes only with 

the partial information, hence, it is more efficient 

for computing very big graphs.  Originally, every 

vertex is put into the random partitions and over the 

time, they adaptively swap with the other vertices 

to collocate the vertex with their highly related 

neighbors in one partition to improve the 

scalability. The swapping cost is also increased 

when the number of partitions increases. Multilevel 

algorithms for partitioning graphs were first 

described by the Karypis and Kumar [7]. Typically 

such multilevel schemes combine the vertices and 

edges using matching techniques, to decrease the 

size of the graph. This procedure recursively 

iterates till the enough small size graph is formed. 

Then this reduced graph is initially partitioned into 

the k partitions which iteratively refines to find the 

k partitions of the initial graph. It uses graph 

coloring techniques to parallelize the procedures of 

the multilevel partitioning algorithm, to provide the 

high degree of concurrency. 

 

A large community of the researchers 

examined their partitioning designs on traditional 

databases, yet there is a requirement for to build up 

an effective partitioning framework for NoSQL 

database which enables it to scale greatly. 

Previously the graph partitioning techniques were 

used in combination with the decision tree classifier 

to improve the performance of SQL database. Here, 

this exploration work concentrates on the same 

magnificent integration of graph partitioning 

techniques and machine learning technique like 

decision tree classifier, along with some 

improvisation on NoSQL database using TPC-C 

workload. 
 

3.  PROPOSED SYSTEM OVERVIEW 

Definition 1. Workload Driven 

Partitioning System: 

Workload driven partitioning systems are 

the system in which the database is partition based 

on the relativity of tuples and their access patterns. 

The related tuples mean the numbers of tuples 

which are accessed together in most of the 

transaction are placed together in one partition.  

The high-level architecture of the system 

is shown in Figure 1. The proposed system is 

designed to work as a scalable transactional layer 

on the top of any distributed storage system such as 

CouchDB or Amazon SimpleDB which implements 

CRUD (create/ insert, read, update, and delete). 

Operations. The users interact with the distributed 

databases as if it is a centralized database system. 

The system has 2 tier architecture: 1) backend 

database nodes and 2) coordinator node. The 

backend database nodes are the NoSQL database 

servers (CouchDB Database server) which actually 

handle the data. The coordinator node contains 

query routers and the lookup table. A client sends 

requests to a query router, which forwards it to the 

partitions with the help of lookup table and returns 
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the responses to the clients. The queries from 

multiple clients are processed in a parallel way by 

the query router which also dispatches sub-queries 

in a parallel manner to the backend.  More 

coordinator nodes can be added to distribute the 

transaction load.  The coordinator node is 

connected to the number of geographically 

dispersed data nodes where the actual database 

partitions are placed. Individual data node is 

synchronously replicated as Master-Master to 

assure the high availability, thus here in this system 

the tuple level replication is not explicitly handled. 

The coordinator node has the partitioning metadata 

and the network address for each backend data 

node.  The partitioning metadata contains the 

pattern of division of the individual tuples into the 

partitions and the patterns of the mapping of these 

partitions to the backend nodes. 

 
 Figure 1. System Architecture 

Table 1. Gives a brief overview of our 

graph-based data-driven partitioning system. The 
input to the graph-based workload driven 

partitioning system is workload trace and a number 

of partitions required, the output is the balanced 
partitions, which minimize the overall cost of 

running the workload, with reducing expensive 

distributed transactions. The basic process is 
outlined in following steps: 

 

Workload pre-processing: The system 
takes the input as the workload trace that is the 

collection of transactions and the tuples they 
access. Each transaction is processed to extract   the 

set of read and update sub-queries contained in it. 

For each sub-query, the unique ids of individual 
tuples are retrieved. 

Graph Representation:  The tuples 

accessed in the input transaction are represented as 
nodes in the graph. The number of tuples accessed 

in a single transaction is connected by edges. The 
sampling techniques are used to reduce the size of 

the graph. 

Graph Partitioning:  The graph 
partitioning algorithm is applied on the created 

graph. The output of the graph algorithm is a high-

quality balanced k partition.  The individual node 
from the graph is mapped to the unique partition, 

such that the maximum of the adjacent edges is 
collocated in the single partition. Then, these k 

partitions are assigned to the k physical nodes. 

Lookup Table Creation: Lookup table 
stores the (tuple, partition) pair generated by the 

graph partitioning. Basically, Lookup table is used 

for forwarding the query to correct partition, as it 
specifies which tuple is stored in which partition. 

Decision Tree Classifier: Sub-queries 
from transactions are analyzed to accumulate the 

collection of frequently accessed attributes in the 

WHERE clauses. The set of rules are extracted 
using the decision tree classifier, which gives range 

predicates partitioning based on the frequent 

attribute values. This resultant partitioning is 
identical to the graph partitioning. 

The resulting data partitioning strategy can 
be explicitly added into any NoSQL database, 

which supports partitioning for scaling database in 

distributed shared-nothing architecture. 
 

Table 1. System Overview 
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4. DESIGN OF GRAPH BASED 

WORKLOAD DRIVEN PARTITIONING 

SYSTEM FOR NOSQL DATABASE 

There are various NoSQL database 

management systems available based on the key-

value, column family and document-oriented. For 

designing the proposed approach Document 

oriented NoSQL database (Apache CouchDB) has 

been selected as it is more suitable to handle the 

transactional TPC-C based e-commerce application 

and provides a semi-structured schema for storing 

the data.  

 

4.1 Graph Representation 

The transaction workload can be 

represented in the form of a graph. The graph 

representation approach is presented here with an 

example. Although given example contains only 

one transaction database, this approach works on 

any number of transaction databases with any 

schema layout. The example has one transaction 

database called Order as shown in Figure 2. When 

the new record is added into the document-oriented 

database, it is stored as the new document with a 

unique id. This Order transaction database records 

the details of five order transaction executed on 

different databases in the CouchDB. Each 

transaction is inserted into the Order database as the 

new document with unique O_ID. Each order 

transaction document has the following attributes: 

(O_ID, W_ID, D_ID, C_ID, I_ID, S_ID).  The 

attributes of each document is represented as the 

nodes in the graph, which are connected by the 

edges. The C_ID node is considered as the base 

node and all other attribute from transaction of that 

customer are connected to it with edges. The edge 

cost indicates the total number of the transaction 

which co-accesses this pair of tuples. (Example: 

attributes with value (W2, D22, C2, I1, S12) are 

accessed in O1 and O2 transaction, the cost of edge 

between them is 2). When the new transaction 

occurs, it first checks the presence of the node for 

the particular attribute value in the graph.  If absent 

then, the new node for that attribute value is added 

to the graph and respective cost on edges is also 

updated. 

4.1.1. Graph size reduction 

The functional graph partitioning system 

can handle huge databases. As the number of 

transaction increases, the number of nodes 

represented in the graph is also increased with 

increasing the graph representation [1]. The 

additional partitions are required for effective 

handling of a large database. It results in the need 

of finding more cuts into the graph. This increases 

processing overhead and runtime of the algorithm. 

Hence, there is a need for reducing the size of the 

graph. As the reduced graph contains insufficient 

information to form high quality partitions, the 

number of heuristics for graph size reduction have 

been introduced, which considerably increases the 

runtime of the algorithm, with less effect on the 

quality of partitions. The following Sampling 

Techniques for graph size reduction have been 

implemented in the proposed system: 

Transaction-level sampling: It reduces 

the number of edges by limiting the number of 

transactions represented in the graph. As the TPC-C 

transaction contains almost 45% of the transaction 

as New Order Transaction (explained in section 

5.2.1), Only the New Order Transaction workload 

has been represented in the graph.  
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Tuple-level sampling: It limits the 

number of tuples shown in the graph. 

Relevance filtering: It removes rarely 

accessed tuples from the graph as they give a little 

information. For example, O_ID is not represented 

in the graph as it is unique for each transaction and 

carries less partitioning information. 

These samplings techniques are validated 

to be powerful in decreasing the graph size for 

concerned TPC-C workload at the same time 

keeping high-quality results. 

4.2 Graph Partitioning 

The system represents the transactional 

workload in the form of the graph. The graph 

partitioning algorithm divides the nodes from the 

graph into k balanced partitions such that the 

number of edges crossing the partitions is 

minimized. This graph partitioning problem has 

many applications in various fields like VLSI 

design, parallel scientific computing, sparse matrix 

reordering. However, this problem is identified as 

NP-complete [9]. In last decades, many multilevel 

schemes are introduced to solve this problem. For 

finding solutions to the k way partitioning problem 

Recursive bisection method has been used. First it 

combines the random vertex and edges using the 

matching technique to form the smaller graph. This 

combined smaller graph is bisected initially, on 

which refinement algorithm is applied to form the 

two balanced partitions of the original graph, in 

such a way that it has min-cut. These steps are 

repeated until the k partitions of the original graph 

are formed. This whole process is composed of 

three phases as shown in Figure 3. Different 

methods for these phases are described in many 

papers [8, 9, 10]. We have selected some of this 

methods with minor changes in it. These phases are 

illustrated in detail as follows: 

Coarsening phase:  The fundamental 

process in this phase is to combine the nodes and 

edges to form the smaller graph. First, from the 

graph representation, the adjacency matrix is 

formed. For each base node in the graph, all 

adjacent edges on it are sorted into the decreasing 

order of their cost and added into the queue.  At 

each level, the first node from the queue is retrieved 

and merged with the base node. Once the node is 

merged into the base node it is marked as matched 

and it cannot be added to another base node.  This 

merging of node continues until the small enough 

graph is formed. The underlying merging technique 

is called as Heavy Edge Maximal Matching.  This 

coarsening technique has the property that the 

balanced partitioning of the small graph is identical 

to the balanced partitioning of the original graph. 

Initial partitioning Phase: In the second 

phase, the smaller graph is partitioned into two 

parts such that each of the partitions has equal node 

weight. The equal number nodes to each partition is 

assigned for balancing the partition. On this initial 

partition, the refinement algorithm is applied to find 

the final fine-grained partitions. 

Uncoarsening Phase: Many refinement 

algorithms are variants of the popular Kernighan–

Lin (KL) partitioning algorithm [11].  The initial 

partitioning is assumed to be the best possible 

partition for the higher level graph. The KL 

algorithm iteratively swaps the subsets of a node 

from one partition with the same number of nodes 

from another partition in such a way that the edges 

crossing the partition have the minimum cost. This 

algorithm gives the best possible local optimum 

solutions. 

 

These phases are recursively applied till 

the k balanced partitions of the original graph is 

generated. The output of the whole partition system 

is the fine-grained mapping between the nodes and 

partition labels. As highly correlated nodes are 

placed into one partition, this helps in minimizing 

the distributed transaction and increases the system 

performance. 

Figure 3. Multilevel Recursive Bisection 

 

4.2  Lookup Table Creation 

A lookup table as shown in Table 2 is used 

for storing the location of each node. This lookup 

table is present at the coordinator node and helps 
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the router to forward the incoming query to the 

appropriate physical node [12]. The router parses 

the incoming query and retrieves the predicate over 

the attribute values from the WHERE clause and 

compares it with the lookup table entries, to find 

the location of the attribute and execute the query 

on the correct backend. This lookup table Structure 

effectively increases the throughput of the system. 

The lookup table needs to be stored in the RAM 

memory of the router [1]. It stores the mapping of 

unique key to the partition label. Each row in the 

lookup table requires 10 bytes of the memory out of 

which 8 bytes are for the unique key and 2 bytes for 

the partition label. With this memory requirement, 

the RAM of the single machine is sufficient to 

handle the OLTP applications [12]. If lookup table 

does not fit into the RAM of the single machine, it 

can be distributed to several machines. When a new 

tuple is to be inserted into the database, it is first 

inserted into the random partition and eventually it 

migrates to its correct partition. This technique is 

efficient when the fine-grained partition is wanted 

but it is not suitable for the insertion heavy 

databases as it increases the network overhead. 

 

One way to reduce the memory 

requirements of the lookup table is to map the Fine-

grained mapping of lookup table with memory 

efficient range predicate partitioning. For this 

purpose, Analysis tool is used which gives the 

range predicate partitioning identical to the graph 

partition. 
 

Table 2. Lookup Table generated form the graph in 

Figure 2. 

 
 

4.3 Explanation Phase Using Decision Tree 

Classifier 

The output of the partitioning phase is the 

fine-grained mapping between attribute values and 

the partition table.  The compact model for the 

generation of the lookup table is required which 

stores the minimum number of mapping such that 

the location of the target attribute can be predicted 

[13].  For that purpose, Decision Tree Classifier is 

used which generates the range predicate 

partitioning based on rules generated by the 

decision tree. Decision tree classifier takes the set 

of (attribute value, partition label) pairs formed by 

the graph partitioning as input and generates the 

decision tree of the predicates over the attribute 

values going down to leaf nodes with particular 

partition labels.  The location of the unlabeled 

attribute value can find by traversing the tree 

downwards and applying predicates at each level 

till the leaf node with partition label is reached. 

  The set of the rules generated from the 

decision tree captures the core of the graph 

partitioning in the compact form. For example from 

Figure 2. rules identified by decision tree are: 

(W_ID =W1) → Partition=1 

(W_ID = W2) → Partition=2 

As the every generated rule is not useful, 

the rules which are generated based on the 

frequently accessed attribute from the WHERE 

clause are considered. (e.g., in this application more 

than half of the queries use W_ID attribute from 

their WHERE clause to route the transaction to the 

appropriate partition and minimize the distributed 

transaction.) The W_ID act as the reference key for 

(Customer, District, Order, New Order, Order Line, 

Stock, History) tables of TPC-C (Explained in the 

section 5.2.1), hence this table can be classified 

according to the value of W_ID using the decision 

tree classifier. 

5. IMPLEMENTATION DETAILS 

In this Section, System implementation 

details is presented followed by the experimental 

evaluation of graph partition algorithm in Apache 

CouchDB. The implementation of graph based 

workload driven partitioning system in NoSQL 

database is actually a challenge and requires some 

modifications. Here additionally, some of the 

design decisions made during the system 

implementation are discussed.  
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5.1  System Implementation 

5.1.1 Integration of Apache CouchDB with 

Neo4j NoSQL graph database 

Neo4j is the open source graph database 

completely developed in java [17]. This schema-

free NoSQL graph database has been utilized for 

the graph representation of the transactional 

workload stored in CouchDB database. This two 

NoSQL databases have been integrated to enable 

automatic synchronization of the data in between 

them. When new order transaction is executed on 

the CouchDB, new node is being created 

automatically in Neo4j graph database. The graph 

partitioner takes the advantages of the relationships 

provided by the Neo4j to collocate the related 

tuples. 

5.1.1 Implementation of Range Predicate 

Partitioning based on Decision Tree 

Classifier 

The popular suite of machine learning that 

is Weka 3 has been used to get range predicate 

based explanation of the graph partitioning. 

Training set creation: The system 

extracts the sub-queries from each transaction and 

attribute value accessed in transaction workload. 

Each accessed attribute value is labeled with the 

partition name generated by the graph partitioning.  

This training set is given as the input to the decision 

tree classifier to identify the candidate attributes. 

Selection of Attribute:  System parses the 

sub-queries and counts the frequency of each 

attribute in its WHERE clause. The attribute with 

less frequency is discarded as it carries less 

information for routing query to the right partition.  

For example, in TPC-C for a stock table the two 

frequently accessed attributes (S_W_ID, S_I_ID) is 

got. These candidate attributes are inserted into 

Weka's correlation based feature selection to 

calculate the set of attributes which are correlated 

with the partition label of the candidate attributes.  

The candidate attribute which has a high number of 

correlated attribute with same partition label are 

selected as classification attribute and discards the 

remaining. The selected attribute is used for 

building the decision tree in which it acts as the 

root node and classifies the target attributes to get 

their location. 

Build the Decision Tree Classifier: For 

constructing decision tree classifier J48 has been 

used which is java implementation of C4.5 

Classifier algorithm [18]. The classification 

attributes are the partition labels which has to be 

learned from the candidate attribute. The rules 

generated from this decision tree gives the range 

predicate partitioning identical to the graph-based 

partitioning. The rules with less support are 

discarded to avoid the risk of over-fitting as they 

are not that much useful. The classifier rules 

indicates that all tuples from the TPC-C Item table 

have to be replicated on all partitions as it don’t 

have reference to other TPC-C tables and can be 

placed independently on each partition. The overall 

result of the range predicate partitioning is to 

classify the database according to W_ID as it is the 

frequently accessed attribute in all transaction with 

highly correlated with other attributes and the item 

table is replicated on each partition. 

 

5.2 Performance Evaluation 

  The performance of the system has been 

evaluated by using TPC-C schema. 

5.2.1    TPC-C benchmark  

TPC-C benchmark is an authorized 

yardstick for analyzing OLTP web applications 

[15]. It stimulates OLTP Workload for the E-

commerce web application. There are total five 

transactions, such as New Order, Payment, Order 

Status, Stock Level, and Delivery. Every 

transaction contains read and update sub-queries. 

These 5 transaction are executed on the 9 tables of 

the TPC-C which are: Warehouse, District, 

Customer, Order, New Order, Order Line, History, 

Stock, and Item as shown in a Figure 4. In a real 

life scenario, typically 45% transactions are New 

Order, 43% transactions are Payment and 4% 

transactions are Delivery, Order Status and Stock 

[5]. 

5.2.2  Mapping of TPC-C to Apache CouchDB 
The TPCC schema are primarily designed 

for the Relational database with the nine tables. 

These 9 tables of TPC-C have been mapped to the 9 

documents of CouchDB. CouchDB is the 

document-oriented NoSQL database which 

completely embraces the Web [16]. It stores the 

data hierarchically in semi-structured format. Each 

document, similar to the row from the relational 

database is named uniquely with the ID. The 

attribute W_ID is present in each table except Item 

table. 
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Figure 4. Components of TPC-C 

 

6. EXPERTIMENTAL SETUP 

The proposed system is implemented 

using java based NetBeans IDE and some tests are 

carried over it. Where 3 machines are considered 

for the experiments which have core i3 processor 

with 2GB of Primary memory for the distributed 

paradigm. All machines are interconnected through 

D-Link 8 Port Ethernet. Proposed System uses 

NoSQL CouchDB for the graph based workload 

driven partitioning system. The Neo4j graph 

database is used to stimulate the transactional 

workload in the form of graph. The developed 

system is tested in many scenarios to prove its 

accuracy as mentioned in below tests. 

7. RESULTS 

In this section, the performance of the 

graph based workload-driven partitioning is 

extensively evaluated and compared with a TPCC 

schema. The goal of this experiment is to validate 

the scalability of system with varying number of 

concurrent users. The scalability of the system is 

measured in terms of response time. Figure shows 

response time of the Graph Based Workload Driven 

partitioning system and the TPCC schema. Along 

x-axis, number of concurrent users and along the y-

axis, a response time (time in ms) is plotted. As 

observed from below Figures, our system has lesser 

response time than TPC-C schema. 

7.1  Response Time Comparison between 

TPC-C Schema and Graph Based Workload 

Driven Partition 

 

The response time comparison for all 

TPC- C transactions can be depicted in the figures 

given below: 

 

 

Figure 5: Response Time Comparison for New Order 

Transaction 

 

 
 

Figure 6: Response Time Comparison for Payment 

Transaction 

 

 
 

Figure 7: Response Time Comparison for Delivery 

Transaction 

 

Figure 8: Time Comparison for Stock Level Transaction 
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Figure 9: Response Time Comparison for Order Status 
Transaction 

In all the above graphs it indicates that 

transactions time is diminished as the Database is 

partitioned and kept in different machines in 

distributed paradigm. This clearly depicts that the 

proposed method is efficiently incorporated and the 

scalability is achieved. 

8. CONCLUSION 

In this paper, a graph based workload 

driven partitioning system for NoSQL database is 

presented. The proposed system represents the 

workload in the form of the graph, to take the 

advantage of the relationships between them. Using 

the relationship characteristics between the tuples, 

the highly connected tuples are combined together 

in a single partition which reduces the distributed 

transactions. Some heuristics like sampling 

techniques are introduced to optimize the graph 

representation and to improve the performance of 

the system. The compact model for lookup table 

based on range predicate partitioning is also 

generated using decision tree classifier. TPC-C 

schema used for the evaluation of the system shows 

that the proposed system improves the response 

time which is considerably less than the TPC-C 

schema. The resulting data partitioning strategy can 

be explicitly added into any distributed shared-

nothing NoSQL database to enhance its scalability. 
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