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ABSTRACT 

 

This paper analyzes the method of supplemented domains for the numerical simulation of viscous 

incompressible flow in the complex geometrical domain. The problem is considered in a discrete defined 

biconnected domain with the curved boundary. The spline interpolation of curved boundary is conducted. 

The Navier-Stokes equations for viscous incompressible fluid are selected for the numerical simulation. A 

stable finite-difference scheme and an algorithm of numerical implementation are developed. The 

numerical results are obtained  with different numbers of grid nodes. 
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1. INTRODUCTION  

 

Many problems of hydrodynamics, 

hydromechanics, hydraulics, acoustics, circulatory 

physiology, organization of technological processes 

due to a moderate speed of the medium, as well as 

phenomena observed in the atmosphere and ocean 

can be studied within a viscous incompressible 

fluid. 

At the present time, applied scientists have 

different problems, a thorough research of which 

can be carried out in most cases only by 

computational experiment (CE) or through a 

carefully staged physical experiment. However, the 

phenomena of practical interest and technological 

processes either cannot be fully physically 

simulated or the costs of such experiments are too 

high.  

An effective method for studying the dynamics 

of a homogeneous fluid flow is numerical 

simulation, which allows analyzing the flow in a 

wide range of changes in key parameters using 

computational experiments on a computer. Over the 

last years, questions of numerical simulation of the 

Navier-Stokes equations for incompressible fluid 

attracted much attention of mathematicians and 

engineers. 

Tasks of practical interest, as a rule, are 

characterized by multidimensionality, 

nonstationarity, nonlinearity, the presence of free 

boundaries and boundary layers and are described 

by the Navier-Stokes equations. The nonlinearity of 

the Navier-Stokes equations and the presence of a 

small parameter in the highest derivatives 

(especially in high Reynolds numbers) create 

serious difficulties both during their desk study (it 

is possible only for the model equations or specific 

tasks) and the numerical solution of these equations 

with the help of a computer. 

Recently, due to the rapid development of 

computer technology and computational 

mathematics the role of renewable energy for the 

simulation of complex nonlinear hydrodynamic 

problems has significantly increased. The basic 

principles underlying renewable energy are 

described in sufficient detail in the works by 

N.S. Bakhvalova, O.M. Belotserkovskii, 

G.I. Marchuk, A.A. Samarskii, P. Roach, 

N.N. Yanenko, their colleagues and students. 

The technological cycle of renewable energy 

includes the following main stages:  

1) the construction of a physical model - at this 

stage there is the clarification of the basic physical 

processes and mechanisms inherent to the studied 

phenomenon or process;  

2) to obtain quantitative information, a 

mathematical model is built that is corresponding to 

the physical one - a system of algebraic, 

differential, integral and integro-differential 
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equations with the necessary initial and boundary 

conditions;  

3) then the important step in the technological 

cycle is the construction of a computational 

algorithm that includes two main points: the 

construction of a discrete mathematical model, i.e. 

the approximation of the original difference 

problem, and the development of an efficient 

method for solving the difference problem;  

4) this is followed by writing, creating and 

debugging a program on the computer;  

5) then a series of test calculations for judging the 

correctness and accuracy of the algorithm and the 

program are carried out;  

6) finally, there are the numerical solution of the 

initial mathematical problem. 

Finally, a comparison of the results with the 

experimental data and calculations of other authors 

is carried out, on the basis of which a conclusion 

about the adequacy of the selected physical model 

of the phenomenon under investigation is made. It 

should be taken into account that the level of 

physical and mathematical models, the algorithm 

and its precision, as well as configuration, 

performance, and memory of computers should be 

mutually balanced. 

During the development of a physical model, it is 

necessary, first of all, to take into account the main 

features of the phenomenon and to try to get 

adequate results on the model as simple as possible, 

reflecting the essence of the phenomenon. 

Thus, the main mechanism in separated flows of 

viscous fluid is the mechanism, conditioned by the 

presence of liquid adhesion to the solid surface of 

the body. Errors in the simulation of this 

mechanism having a molecular nature can 

significantly affect the results obtained. Thus, in the 

simulation of separated flows, particular attention 

should be paid to the adequate representation of 

flow near the surface of the body, which is 

especially important with an increase in the 

Reynolds number (with a decrease in the thickness 

of the boundary layer). Moreover, in the range of 

the critical Reynolds numbers, when there is a loss 

of stability of the laminar boundary layer, and there 

are large-scale vortex formations - stains inside the 

boundary layer, it is necessary to correctly 

reproduce the birth and dynamics of these 

formations, i.e. for the calculation of such 

conditions it is necessary to use finite-difference 

grids with an appropriate resolution. 

On the other hand, a flow in the near wake of the 

body of a finite size for both laminar and turbulent 

flow conditions is characterized by the presence of 

large-scale vortices, the dimensions of which are 

comparable with the linear dimensions of the body, 

and therefore, the resolving power of a finite 

difference grid can herein be substantially 

weakened. Of course, there may be mistakes in the 

approximation of the dissipative mechanism of 

such vortices, but the main features of the 

phenomenon, including a number of quantitative 

characteristics, are being reproduced quite 

accurately. 

Most existing methods for solving the Navier-

Stokes equations do not allow to get reliable results 

in the study of properties of the viscous fluid of the 

bodies with complex shapes (ea. in determining the 

aerodynamic characteristics of modern aircraft and 

submarines), especially for large Reynolds numbers 

and for turbulent flow conditions. Rather precise 

quantitative data, comparable to a physical 

experiment, were obtained mainly for laminar flow 

conditions in the two-dimensional stationary tasks. 

Mathematical modeling of such complex flows as 

spatial separated flows, especially in high Reynolds 

numbers, flows with a free surface, flows of 

stratified fluid density and substantially three-

dimensional flows in technological devices and 

industrial buildings for special purposes, imposes a 

number of requirements for the applied and 

developed methods of solving equations describing 

these trends.  

These requirements include a high order of the 

approximation of finite difference schemes - second 

or higher; a minimum circuit dissipation and 

dispersion; the performance in a wide range of 

tested parameters (Reynolds numbers, and others) 

and the monotony. The latter feature is particularly 

important for simulation of flows with areas of 

large gradients of hydrodynamic parameters and 

calculations with a free surface, as well as flows of 

stratified fluid. 

Development of effective numerical methods as 

well as calculation of considerably nonlinear flows 

of incompressible fluid with their use is rather 

relevant. 

The theory of viscous incompressible flows 

represents one of the most important part of 

hydrodynamics for practice and the most interesting 

matter for mathematical researches. No wonder that 

Leray and Schauder made the first steps just in 

problems of viscous flow dynamics using methods 

of functional analysis. And over the last years, the 
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Navier-Stokes equations have become one of the 

first objects using the numeric methods. Many 

problems of viscous flow dynamics, for example 

the problem of numerical research of flows under 

high under and over critical numbers of Reynolds 

are not solved till nowadays and should be solved 

with great emphasis.  

Works of a famous French mathematician Roger 

Temam are dedicated to rather considerable 

exposition of questions of theory and particularly 

calculation aspects of viscous incompressible fluid, 

the questions of existence, uniqueness and 

regularity properties of boundary value problems 

for the Navier-Stokes equations are considered [1, 

2]; the most general and special methods used for 

study of different kinds of flows are offered in 

works of K. Fletcher [3].  

Numeric methods of the boundary value problem 

of mathematical physics in complex domains were 

considered in many works of foreign and national 

scientists: Baldybek [4], Vabishchevich [1], 

Mukhametzhanov, Otel’bayev and Smagulov [5], 

Smagulov and Otel'bayev [6], Danayev [7], 

Smagulov, Danayev and Temirbekov [8]. 

The Navier-Stokes equations are of the 

evolutionary nature. For the first time, this idea was 

put forward in the work [9]. Main elements of 

construction technology of adaptive differential 

grids in bidimensional and tridimensional domains, 

and basis of design methods of curvilinear grids are 

provided in the works [10] and [11]-[14]. 

Numerical simulation of established fluid flows 

within the curved boundaries is conducted in most 

papers on the basis of the viscous incompressible 

fluid model [15]. The algorithms based on the 

Navier-Stokes equations using the finite-difference 

method are widely distributed.  

Currently, there is a large number of numerical 

methods solving the Navier-Stokes equations that 

describe the flow of an incompressible viscous 

fluid. Most of these methods have been developed 

with reference to the system of equations written 

with respect to the stream function ψ and the vortex 

ω in the natural variables ( ( )pu ,
r

- a system or 

primitive equations). 

The common disadvantage of these methods is 

the use of some form of boundary conditions for the 

vortex in the variables ( )ωψ ,  and for pressure in 

the variables ( )pu ,
r

on a solid body surface, which 

is absent in the physical statement of the task. An 

additional iteration process associated with the 

specified boundary conditions for the vortex limits 

the rate of convergence of numerical algorithms. It 

is obvious that the difference scheme, which allows 

to calculate the flow of a viscous incompressible 

fluid without the use of the boundary conditions for 

the vortex on a solid surface, under all other equal 

conditions is more effective. 

This paper considers the algorithm of numerical 

realization of the Navier-Stokes equations for a 

viscous incompressible fluid in the variables 

( )ψ,u
r

, which will allow to get rid of these 

problems. 

At the present time, it is increasingly required to 

solve problems in complex areas with complex 

geometry. There are some methods of numerical 

solution of boundary value problems in complex 

geometrical domains as the curvilinear grids 

method and the fictitious domains method [16]. Use 

of the curvilinear grids method requires 

transformation of an equation into curvilinear 

coordinates which leads to more complicated 

equations than the original ones. Moreover, diverse 

requirements imposed on the difference grid, make 

building curvilinear grids a complex mathematical 

problem. 

The fictitious domains method in its traditional 

formulation is simple to use and is simply 

implemented. But its disadvantage is loss of 

accuracy because of presence of a small parameter 

in subsidiary equations which leads to ill-

conditioning of difference equations.  

In this work, the numerical simulation of viscous 

incompressible fluid flow in the discrete 

biconnected domain using the method of 

supplemented domains is studied. The algorithm of 

numerical implementation of the method offered in 

the work [4], in which there is no small parameter. 

2. FORMULATION OF THE PROBLEM 

 

We consider the Navier-Stokes equations in a 

two-dimensional domain Ω  with a boundary Ω∂ : 

( ) fupuu
t

u r

rrr

r

+∆=∇+∇⋅+
∂

∂
µ         

(1) 

0=⋅∇ u
r

         (2) 

with initial and boundary conditions  

( )yxuu ,
0
rr

=   when ( ) Ω∈yx, , 0=t   

( )tyxu ,,ϕ=
r

 
when ( ) Ω∂∈yx, , ( ]Tt ,0∈        (3) 
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where х,у are Cartesian coordinates, t is time, u
r

 is 

velocity field, p is deflection of pressure, µ  is 

viscosity coefficient.    

3. COMPUTATIONAL ALGORITHM 

 

The initial system of equations (1)-(2) is written 

with respect to an arbitrary curvilinear coordinate 

system. The pressure and speed pattern 

concordance was executed with the help of the 

fictitious domains method modified for calculation 

of the problem. The structured grids were used for 

creation of the discrete analogue of initial equations 

about a figure of complex geometry as basis 

equations. The multiblock computational 

technologies were used in the biconnected  domain. 

Such approach has allowed to develop a common 

methodology for calculation the viscous fluid flow 

in biconnected domains.  

The system of initial equations was integrated 

numerically using the method of supplemented 

domains. Derivatives in the viscous terms are 

approximated by central-difference scheme of 

second order. 

The whole considered domain of continuous 

variation of the argument is replaced by a discrete 

change domain, i.e. we introduce the following 

grid: 

( ) ( ) ;
2

1,
1

1,
2

2
2

,
1

1
1 








−=−====Ω hj
j

yhi
i

x
n

l
h

n

l
h

h
 

    

 .
2

,1,
1

,1 njni ==        (4) 

The staggered grid pattern was used in the work 

where pressure and divergence are determined in 

nodes of difference grid, stream function is in the 

center of the difference cell, and velocity 

components are in the center of its bounds.  

The use of the staggered grids allows to join the 

velocity components in neighboring points and 

avoids the appearance of oscillations in the 

calculation of the pressure field (Fig. 1, where  - 

component u ,  - component ω ,  - pressure).   

 

Figure 1: Staggered Grid Pattern 

 

The components of velocity, pressure and 

stream function are determined in the following 

points: 
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Difference analogs of (1), (2) are written in the 

form: 

q

n
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n
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We received the difference analogues of 

respective convectional and diffusion summands. 

The difference scheme taking into account a sign 

was used for the convectional summands, and the 

values of components are determined in the 

undetermined nodes by average-out. For example:  

2
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,

n
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n
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−+ +
=

υυ
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Let us describe the algorithm for the numerical 

solution of the problem (1)-(3). We use the splitting 

technique on physical processes for the numerical 

implementation.  

First of all, let us determine intermediate values 

of speed ( )υ,uu =
r

, excluding pressure: 
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Then, we determine a pressure field using 

intermediate values. In order to derive an equation 

for the pressure, we substitute the following 

expressions in (2’) 
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Speed components are calculated on a certain 

pressure field with the help of (6) and (7). The 

problem here is the absence of boundary conditions 

for pressure. We find values of the stream function 

related to the speed components on the second step 

instead of pressure field to avoid this problem by 

the following expressions [17]: 
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We have the following expressions to find 

values of the stream function 
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Using (9) and (10), we find the velocity field 
1+nu

r

. 

The problems (5), (6), (7), (8) and (5), (9), (10), 

(11) are equivalent. 

We add a parameter specifying the 

supplemented domain into equations (11) to use a 

method of supplemented domains by the numerical 

implementation, and the equations (11) are reduced 

to the following form: 
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0ψ  - stream function values on boundaries of the 

supplemented and fictitious domains. Let us 

suppose that the flow moves toward the direction of 
x  as it is shown on Fig.2. Then, the boundary 

conditions are determined as follows: 
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Boundary conditions were calculated at the 

boundaries of the streamlined body as follows. 

Using a physical sense of the stream function in the 

fictitious domain 2Ω , the values of stream function 

are considered as constant:  

)(5.0 1

2/1,2/1

1

2/1,2/1

1

2/1,2/1 2

+
−

++
−− += n

n

nn

ji ψψψ
     

(14) 

The methodical calculations were conducted 

using the offered method. Let us consider a 

curvilinear biconnected domain. We supplement 

the considered domain to a rectangle (Fig. 2) to 

apply the structured rectangular grids.  

If the boundaries of the physical domain were 

set by the discrete set of points  

( )( ) nixfx ii ,,1,, K= , 

the determination of grid nodes at the external and 

internal boundaries for provision of continuity and 

monotoneness of the boundary creates some 

difficulties, and it is often necessary to change a 

number of grid nodes by the numeric simulation.  

 

Figure 2: Biconnected Discretely Defined Domain 

The following cube spline interpolation [18] 

was used to provide continuity and monotoneness 

of the curvilinear boundary as well as automation 

of change in the number of grid nodes: 

( ) ( ) ( ) ( )32

62
i

i
i

i
iiii xx

d
xx

c
xxbaxs −+−+−+=      (15) 

The coefficients 
iiii dcba ,,,  are defined as 

follows: 
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    (17) 

where 
1−−= iii xxh .  

One of the challenges is the description of the 

curved boundaries of the streamlined body and 

boundary conditions for the stream functions of 

these borders.  

For the description of the boundaries of the 

streamlined body, a spline interpolation was used. 

In the course of spline interpolation some problems 

with conditions of arguments sequence in 

ascending order may occur as the considered 

physical domain is biconnected. To settle the 
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problems, the borders of biconnected space should 

be divided into the appropriate intervals. To solve 

an equation (17), the scalar sweep method is used.  

With the help of the described method, the 

results of numerical calculation with 30×30, 50×50 

and 100×100 numbers of grid nodes were obtained. 

In Fig. 3, there are isolines of stream functions 

where vortex motion and flow around of obstacles 

are well observed. In Fig. 4, there are fields of the 

velocity vector and borders of vortex motion. 

 
Figure 3: The Velocity Vector Field at The Grid 30×30 

 

Figure 4: The Velocity Vector Field at the Grid 100×100 

 

Figure 5: Isolines of the Stream Function at the Grid 

50×50 

 

Figure 6: Isolines of the Stream Function at the Grid 

100×100 

 

4. CONCLUSIONS 

 

Modern requirements for authenticity of the 

received numerical results and reliability of 

program-methodical provision need a detailed 

testing and verification of the developed complex 

of programs. Testing of the developed 

methodology, algorithms and complex of programs 

was made based on tasks of progress in flow of 

viscous incompressible fluid [19].  

This methodology of modeling incompressible 

fluid flow in the complex two dimensional 

geometrical domain deliver us from the small 

parameter and calculation of pressure  for that there 

are not boundary conditions setting up the problem. 

This technique can be used for laminar flows. 
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