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ABSTRACT 

 

In the paper is considered a multidimensional orthogonal packing problem in general case. Are described 

packing methods developed for formation of placement schemes during solving the rectangular cutting and 

orthogonal packing problems of arbitrary dimensions. The presented packing model allows to describe all 

existing free spaces in containers. Are offered methods of placing and deleting of orthogonal objects, 

application of which in optimization packing algorithms will improve the quality of packing. Is described a 

new data structure providing increasing speed of packing formation. Efficiency of application of the 

packing methods is investigated on standard instances of three-dimensional orthogonal packing problems. 

All designed packing methods are realized in a form of an applied software which can be used in solving 

problems of resources allocation including container loading, cutting stock, scheduling, knapsack problems 

and many other practical important cutting and packing problems. 

Keywords: Packing, Orthogonal Packing Problem, Data Structure, Object-Oriented Programming, 

Applied Software 

 

1. INTRODUCTION  

 

The optimization packing problems combine a 

large set of various practical problems related with 

finding of the most optimal allocation of resources 

of one type into resources of another type. The first 

type of the resources is named by objects and the 

second is named by containers. In general case in 

most of packing problems it is necessary to pack all 

given objects into minimal number of containers. 

Optimization of the packing problems leads to more 

efficient usage of resources in practice. 

The extensive survey of packing problems was 

prepared in 2007 by G. Wascher, H. Haubner and 

H. Schumann. It was performed with consideration 

of more than four hundred papers related with 

different packing and cutting problems [1]. The 

most frequently the packing problems are occurred 

in solution of such practical problems as waste 

minimization in cutting, pallet building in logistics, 

filling up containers (including vehicle, air and ship 

cargo loading), traffic planning in computing and 

network systems, calendar planning, capital 

budgeting and many other important problems 

which deal with allocation and reallocation of 

resources [2–6]. 

Among the most popular types of packing 

problems in industry and manufacturing can be 

distinguished orthogonal bin packing problems, 

cutting stock problems and knapsack 

problems [2,5,7–9]. In these problems are 

considered containers and objects in a form of 

parallelepipeds. 

Packing problems with the dimension higher 

than three aside from only spatial dimensions 

additionally have often non-spatial dimensions as 

time for example. These problems take place as 

multidimensional orthogonal knapsack and packing 

problems usually in computing and scheduling [10–

12]. The most popular in practice are orthogonal 

packing problems with the dimension no higher 

than three [1]. 

2. STATEMENT OF THE PROBLEM 

 

Consider the statement of the orthogonal D-

dimensional packing problem in general case. Is 

given a set of N orthogonal containers (D-

dimensional parallelepipeds) with dimensions as 

follows: { }D

jjj WWW ,,, 21
K , { }Nj ,,1K∈ . Also is 

given a set of n orthogonal objects (D-dimensional 
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parallelepipeds) with dimensions { }D

iii www ,,, 21
K , 

{ }ni ,,1K∈ . 

Before packing all the objects are classified by 

different types. All objects that are belong to one 

type have all identical geometrical and physical 

characteristics. Geometrical characteristics of 

objects include dimensions, physical include 

weight, color, fragility and etc. [13] 

The goal is to find a placement of all objects into 

a minimum number of given containers under the 

following conditions of correct placement: 

• all edges of objects and containers are parallel; 

• all packed objects do not overlap with each 

other: 

{ } { } { } kinkiDdNj ≠∈∀∈∀∈∀ ,,,1,,,,1,,,1 KKK   

( ) ( )d

i

d

ij

d

kj

d

k

d

kj

d

ij wxxwxx +≥∨+≥ ; 

• all packed objects are within the bounds of the 

containers: 

{ } { } { }niDdNj ,,1,,,1,,,1 KKK ∈∀∈∀∈∀  

( ) ( )d

j

d

i

d

ij

d

ij Wwxx ≤+∧≥ 0 . 

The statement of D-dimensional orthogonal 

packing problem includes specifying a load 

direction of containers as the priority selection list 

of the coordinate axes: { }DP PPPL ;;; 21 K= , 

[ ] { }DdDPd ,,1;1 K∈∀∈ . 

As an example on figure 1 are shown placement 

schemes obtained for all possible load directions of 

a three-dimensional orthogonal container. 

 

Figure 1: Load Directions Of A Three-Dimensional 

Orthogonal Container. 

A solution of any dimensional packing problem 

is represented by a so-called placement string (also 

known as a chromosome) which contains a 

sequence of objects selected for placing into 

containers. 

The solving process of a packing problem 

includes three mandatory consecutive steps which 

are showed on the figure 2. 

1. Generation of a 

placement string

3. Estimation of the 

placement quality

Satisfactory 

quality?

Yes

No

2. Decoding of the 

placement string

Possible a local 

improvement?

Local improvement 

of a placement

Resulting packing

Yes

No

 

Figure 2: The Solving Process Of A Packing Problem. 

The first step is generation of a placement string 

which contains a sequence of objects to be packed 

into containers. In practice the most commonly 

accepted methods of generation of the solutions and 

the corresponding placement strings are the 

multiobjective optimization algorithms, mainly the 

heuristic and metaheuristic algorithms including 

evolutionary algorithms [14-19]. Need of 

application of such algorithms provides obtaining 

of suboptimal solutions is due to the fact that all 

optimization packing and cutting problems 

including orthogonal packing problems are belong 

to NP-completed problems so they cannot be solved 

in a time that polynomial depends on the dimension 

of the problem [20]. 

Decoding of a placement string is performed by a 

corresponding decoder. It selects objects from a 
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placement string one by one and place them into 

container on a particular algorithm. The quality of 

the resulting packing is estimated as the relative 

deviation of the solution from the lower bound of 

the considered problem [8]. 

The quality of a placement can be increased by 

its local improvement which performed by local 

replacing and deleting of sets of objects with 

subsequent new placing of all deleted objects into 

freed spaces. 

Obviously the major influence on the quality of a 

resulting packing render optimization heuristic and 

metaheuristic algorithms applied for generation 

placement strings. Nevertheless time and speed of 

packing formation by a given placement string are 

defined by used packing representation model as 

well as by algorithms and methods which used for 

generation a packing and for its improvement. We 

consider only packing methods intended for 

decoding of placement strings and which provide 

the possibility of placing objects and their 

subsequent replacement in solving of all existing 

orthogonal packing problems of arbitrary 

dimension. 

3. PACKING METHODS 

 

3.1 Packing Representation Model 

To describe placement schemes of orthogonal 

objects in containers was chosen previously 

developed packing representation model – model of 

potential containers. The efficiency of application 

of this model for orthogonal packing problems is 

shown in paper [21]. Below is given a general 

description of the model of potential containers. 

Any placement scheme of objects in a container 

is represented by a set of objects attached to points 

(nodes) of a container [7,8]. We understand by a 

potential container placed in a container at some its 

point is an imaginary orthogonal object with the 

largest possible dimensions that can be placed at 

this point without overlapping with any packed into 

the container object and edges of the container. 

Each potential container with number k is described 

with a vector { }D

kkk ppp ;;; 21
K , containing 

dimensions of this potential container and a vector 

{ }D

kkk xxx ;;; 21
K , containing coordinates of a point of 

the potential container which is closest to the origin 

of coordinates of the containing its container. 

All existing free orthogonal spaces located in a 

container are described by a set of potential 

containers. When a object is put into a free space of 

a container is necessary to verify the correctness of 

this placement. This model guarantees the correct 

placement of an object if this object overlap no 

borders of the potential container in which it is 

located. In this case when an object is put at some 

point of a container instead of checking on the 

intersection with all placed into the container 

objects is required to check only one condition of 

placement of this object entirely within the 

potential container, located at this point. This 

ensures a higher speed of placement objects on 

decoding a placement string. The condition of 

correct placement of a D-dimensional object i in a 

potential container k is expressed with inequality: 

( ) { }Ddpw d

k

d

i ,,1 K∈∀≤ . 

3.2 Placing Objects 

When an object is put into a potential container it 

divides this potential container on a set of smaller 

potential containers. Any D-dimensional orthogonal 

potential container is divided at 2D potential 

containers in the worst case. Any new formed 

potential container has a common face with the 

packed object. Because the total number of faces in 

a D-dimensional orthogonal object is equal 2D, 

hence the maximal number of new formed potential 

containers is also equal 2D. 

In common case when a D-dimensional 

orthogonal object i is packed into a potential 

container k all new potential containers formed in it 

can be separated into two sets [22]: 

1. Set of D potential containers 

{ }D

k

d

k

d

k

d

i

d

kkk ppxxppp ,;;;;;; 1121
KK

+− −  located at 

an origin of coordinates of the original potential 

container k: { }D

k

d

kkk xxxx ;;;;; 21
KK  produced 

under the conditions of overlap: 

( ) ( )d

k

d

k

d

i

d

k

d

i pxxxx +<∧>  { }Dd ,,1 K∈∀ ; 

2. Set of D potential containers 
D

k

d

k

d

i

d

i

d

k

d

k

d

kkk ppwxpxppp ;;;;;;; 1121
KK

+− −−+  

located at D points with coordinates 

{ }D

k

d

k

d

i

d

i

d

kkk xxwxxxx ;;;;;;; 1121
KK

+− +  which are 

produced under the following conditions of 

overlap: ( ) ( )d

k

d

k

d

i

d

i

d

k

d

i

d

i pxwxxwx +<+∧>+  

{ }Dd ,,1 K∈∀ . 

As an example on figure 3 are shown all 

potential containers which are formed in a three-

dimensional orthogonal container (by dots are 

marked origins of the coordinates of corresponding 

new potential containers). 
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Figure 3: New Potential Containers Formed In A Three-

Dimensional Container. 

The algorithm which decodes a placement string 

provides placement of all objects into containers 

according to a given priority selection list. Below 

are given all steps of the decoding algorithm for the 

considered packing representation model [23]. 

1. Select the next object i from a placement string. 

If all the objects are selected, jump to step 4. 

Select a first not fully filled container j 

containing at least one potential container. 

2. In the current container j produce a serial 

procedure of finding a potential container k 

nearest to origin of coordinates of the container j 

that is possible to correctly put into it the current 

object i. If the target potential container is not 

found then select the next container 1: += jj  

and retry this step. If the target potential 

container was not found among all the 

containers, jump to step 1. 

3. Place the object i into the found potential 

container k in the container j. Create a set of new 

potential containers and perform a method of 

searching and removing of embedded potential 

containers. Sort all potential containers by 

decreasing the priority of pack of new objects to 

them, i.e. for any potential container k of the 

container j the following inequality must be 

satisfied: 

∑ ∏∑ ∏
= =

+
= =











≤











++

D

h

D

Pd

d

j

P

k

D

h

D

Pd

d

j

P

k

h

h

h

h WxWx
1

1

1 11

. (1) 

Jump to step 1. 

4. End of the algorithm. 

This adapted to the model of potential containers 

algorithm provides forming of a packing by a given 

placement string. 

One of the major part of the algorithm of placing 

objects is a method of searching and removing of 

embedded potential containers that is performed 

after placing of each object into an orthogonal 

container. This algorithm allows to escape from all 

potential containers which are embedded each to 

other. The potential container 1k  is embedded into 

the potential container 2k  (i.e. it is contained 

wholly entirely within the potential container 2k ) if 

{ }Dd ,,1K∈∀  the conditions are: 

( ) ( )d

k

d

k

d

k

d

k

d

k

d

k pxpxxx
221121

+≤+∧≥ .  (2) 

The method of searching and removing of 

embedded potential containers includes the 

following steps. 

1. Generate in a current container j after placing 

into it an object i a list { }0L  containing a set of 

potential containers k if the condition is: 

[ ] d

i

d

i

d

k wxxDd +≤∈∃ :;1 . 

Generate an empty list of embedded potential 

containers { }1L . 

2. Check Eq. (2) to determine the embedding of a 

potential container 1k  into 2k  for each 

pair { } 21021 ,, kkLkk ≠∈   { }Dd ,,1K∈∀ . Copy 

all found embedded potential container 1k  to the 

list { }1L . 

3. Remove all potential containers stored in the list 

{ }1L  from the contained them container j. 

 

3.3 Storing The Potential Containers 

The most time consuming step of the algorithm 

of placing objects is sorting of coordinates of all 

potential containers which runs after placing of 

each new object into a container to provide 

performing the Eq. (1). 

To increase the time effectiveness of the 

algorithm of placing objects we offer for usage a 

proposed by us new data structure for packing 

problems – multilevel linked data structure that was 

firstly described in [23]. The basis of this data 

structure is the idea of presenting a set of 

coordinates of potential containers as a set of 

recursively embedded each to other linear queues 

that allows to increase the speed of access to 

potential containers during packing process. 

Using the multilevel linked data structure a set K 

of potential containers located in points 

{ } Kkxxx D

kkk ∈,;;; 21
K  is represented as a D-levels 

recursively embedded each to other linear queues 

which are ordered by increase of their items (see 

figure 4). Each item j of a queue i on a level dP  

contains a coordinate dd P

k

P

ji xs =,  of a potential 

container k that within each queue the inequality is 

satisfied [24]: Pd

P

ji

P

ji LPss dd ∈∀< +1,, . 
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Figure 4: Multilevel Linked Data Structure. 

As an example we consider a set of points of a 

three-dimensional orthogonal container 

(parallelepiped) j given in Table 1. For a load 

direction { }3;1;2=PL  this set of points must firstly 

be ordered by non-decreasing along the coordinate 

axis 2, then – along the axis 1, and finally – the 

axis 3 (see Table 2). 

Table 1: Original Coordinates Of Points. 

Number 1 2 3 4 5 6 7 8 9 10 

Coordinate 1 0 2 2 2 4 0 4 0 4 2 

Coordinate 2 1 3 7 9 1 2 1 2 1 7 

Coordinate 3 0 1 5 6 2 1 3 3 1 2 

 
Table 2: Coordinates Of Points After Sorting For The 

Load Direction {2;1;3}. 

Number 1 2 3 4 5 6 7 8 9 10 

Coordinate 2 1 1 1 1 2 2 3 7 7 9 

Coordinate 1 0 4 4 4 0 0 2 2 2 2 

Coordinate 3 0 1 2 3 1 3 1 2 5 6 

 

The multilevel linked data structures for all 

possible load directions of the considered container 

are shown on figures 5–10. 

 
0

1

0

2

1 3

2

3

1

7

2 5

9

6

4

1

1 2 3 

Figure 5: Multilevel linked data structure of the three-

dimensional container for a load direction {1;2;3}. 
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Figure 6: Multilevel linked data structure of the three-

dimensional container for a load direction {1;3;2}. 

 

1

0

0

4

1 2

2

0

1 3 1

2

2

9

2

63

2

3 7

5  

Figure 7: Multilevel linked data structure of the three-

dimensional container for a load direction {2;1;3}. 
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Figure 8: Multilevel linked data structure of the three-

dimensional container for a load direction {2;3;1}. 
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Figure 9: Multilevel linked data structure of the three-

dimensional container for a load direction {3;1;2}. 
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Figure 10: Multilevel linked data structure of the three-

dimensional container for a load direction {3;2;1}. 

 

When using this data structure to provide the 

performing of the Eq. (1) after packing a new 

object into a container is necessary only put 

coordinates of new formed potential containers in 

the corresponding positions of the data structure 

without sorting of coordinates of all existing 

potential containers. 

3.4 Deleting Objects 

One of the effective methods applied for 

increasing the quality of a resulting packing is its 

local improvement, which can be realized by 

deleting of one or more packed objects from a 

container with a subsequent more rational filling of 

the freed space by other objects. After deleting of 

an object it is necessary to reorganize all potential 

containers around this object. 

The developed method of deleting a D-

dimensional orthogonal object i from a container j 

includes the following steps. 
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1. Create a new free D-dimensional orthogonal 

container j′  with the dimensions equal to the 

dimensions of the original containers j. 

2. Put into the container j′  an object i′  with the 

dimensions d

i

d

i ww =′  { }Dd ,,1K∈∀  at a point 

with the coordinates equal to coordinates of the 

object i placed into the container j: d

i

d

i xx =′   

{ }Dd ,,1K∈∀ . 

3. Create a list { }L′  containing potential containers 

the position and dimensions of which can be 

modified in container j after deleting the object i. 

This list includes all potential containers k ′  
under the condition 

d

i

d

i

d

k wxx +≤′   { }Dd ,,1K∈∀ .   (3) 

4. Put into the container j′  at points d

kx ′  a set of 

objects with the dimensions  
d

k

d

k pw ′′ =  { }Dd ,,1 K∈∀ , { }Lk ′∈′ . (4) 

When placing objects into the container j′  allow 

them to overlap each other. Free orthogonal 

spaces remained in the container j′  are 

described by a set of potential containers placed 

in a list { }L ′′ . 

5. Create a new free D-dimensional orthogonal 

container j ′′  with the dimensions equal to the 

dimensions of the original containers j. 

6. Put into the container j ′′  at points d

kx ′′ , { }Lk ′′∈′′  

a set of objects with the dimensions: 
d

k

d

k pw ′′′′ =   { }Dd ,,1K∈∀ .   (5) 

When placing objects into the container j ′′  

allow them to overlap each other. Free 

orthogonal spaces remained in the container j ′′  

are described by a set of potential containers 

placed in a list { }L ′′′ . This list also describes a 

freed space of the original container j formed in 

the area of the object i which is to be deleted. 

7. Delete the object i from the container j. 

8. Replace in the container j the list of its potential 

containers { }L′  to { }L ′′′ . 

In result is obtained a set of potential containers 

fully describes all freely orthogonal spaces of a 

container after deleting an object from it in a 

process of solving of any orthogonal packing 

problem of arbitrary dimension. 

4. COMPUTATIONAL EXPERIMENTS 

 

This paper contains full description of methods 

applied for management objects and the most of 

which have been presented at several International 

conferences with publication of results of passed 

computation experiments in the corresponding 

papers. Below are given the major results of the 

performed computational experiments with the 

links on papers contained all details of the carried 

out computational experiments. 

Consider results of solving standard three-

dimensional orthogonal bin packing problems [9]. 

The test instances of orthogonal packing problems 

are grouped into 8 classes differing from each other 

by sets of objects to be packed. Containers are 

cubic in all considered test instances and have the 

dimensions 100 × 100 × 100. The aim is to pack all 

given objects into minimum count of the 

containers. For each test class were solved 

instances with a number of objects equal to 50, 100, 

150 and 200. Given a test class and an instance size 

we generated 10 different problem instances based 

on different random sets of packed objects. 

Following the results published in scientific 

literature [9,25] we did not consider the test 

classes II–III because they have the same properties 

with the class I. 

Results of solving of all test instances are 

summarized in Table 3. The best solutions in the 

table are bold. Were considered the following 

algorithms: 

• LB – an exact lower bound of the problem [3]; 

• HA – the heuristic algorithm proposed by 

Lodi et al. for the node model [18]; 

• C-EPBFD – the heuristic algorithm for the 

placement with the Extreme Points rule [8]; 

• MPC – the model of potential containers using 

the described packing methods. 

 
Table 3: The Tests Results For The Standard Three-

Dimensional Orthogonal Packing Problems. 

Test class LB HA C-EPBFD MPC 

Class I 124.0 132.3 130.5 129.4 

Class IV 292.2 294.3 294.0 300.3 

Class V 66.4 73.6 72.6 70.6 

Class VI 93.0 100.2 98.1 96.9 

Class VII 55.4 63.7 62.8 62.7 

Class VIII 77.8 87.1 85.4 88.2 

 

The model of potential containers provides for 

four of six classes of three-dimensional orthogonal 

test problems a higher density of packing compared 

with the solutions obtained by packing algorithms 

realized by other researchers. 

The described multilevel linked data structure in 

practice more than twice increases access to the 
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potential containers compared with the simple 

linear linked list [26] which needs in sorting [24]. 

This data structure is the most effective when it is 

using in packing of a large number of objects of 

several slightly different in size object types. 

Efficiency of application of the multilevel linked 

data structure increases with the number of packed 

objects as it shown in paper [23] on a two-

dimensional orthogonal packing problems as well 

in paper [27] where were considered standard three-

dimensional orthogonal packing problems. 

5. SOFTWARE FOR ORTHOGONAL 

PACKING PROBLEMS 

 

All the described methods were used at 

developing a class library for solving the cutting 

and packing problems. The class library is designed 

using object-oriented programming techniques and 

is created with the programming language C++. 

The UML diagram of the class library for 

orthogonal packing and problems is given on 

figure 11. 

Using the designed class library was developed 

an applied software intended for the optimization 

orthogonal packing and rectangular cutting 

problems [28]. The software allows to solve the 

following orthogonal cutting and packing problems: 

• one-dimensional bin packing problem 

(1DBPP) [29]; 

• rectangular non-guillotine cutting problem [30]; 

• strip packing problem (SPP) [30]; 

• two-dimensional bin packing problem (2DBPP); 

• three-dimensional bin packing problem 

(3DBPP). 

The developed software contains a library of 

standard test instances for a variety of orthogonal 

packing and cutting problems. This library includes 

the following standard problem instances: 

• SPP instances including classes C1–C6 [31] and 

classes C7–C10 [32]; 

• 2DBPP instances [33]; 

• 3DBPP instances [9]. 

As an example we consider a three-dimensional 

orthogonal packing problem. On figure 12 is shown 

a window of the developed software containing 

geometrical parameters of containers and objects in 

the considered packing problem. 

+Cheking a possibility of placement()

+Place the object()

-dimension of a problem

-geometrical parameters

-physical parameters

-other parameters

Orthogonal object

+Evaluation of free spaces()

+Delete a packed object()
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1
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+Insert a new coordinate()

+Delete a coordinate()

-linear linked list of coordinates

-axial number

Multilevel linked data structure

1

1..*

1

1

 

Figure 11: UML Diagram Of The Developed Class 

Library For Orthogonal Packing Problems. 
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Figure 12: Parameters Of Considered Three-

Dimensional Orthogonal Packing Problem. 

Solution of a packing problem is represented in 

the form of schemes of filling containers which are 

visualized on a tab “Result” of the software. For an 

example on figure 13 is given a packing scheme 

obtained for the forth container. 

The developed software allows to show all 

existing potential containers that are contained in 

any selected container. On figure 14 are presented 

all the potential containers which are inside the 

container shown on figure 13. 

Today the software we use during the 

computational experiments carried out over various 

algorithms and methods intended to solve various 

orthogonal packing and rectangular cutting 

problems. 

 

Figure 13: Visualization Of The Obtained Solution. 

 

 

 

 

 
 

Figure 14: Visualization Of All Potential Containers. 

 

6. CONCLUSION 

 

In this first part of the paper we have presented 

methods of placing and deleting of orthogonal 

objects which are used in formation of orthogonal 

packing schemes. They have the following obvious 

advantages: 

• possibility of solving orthogonal packing or 

rectangular cutting problems of any types; 

• possibility of packing objects in any load 

directions; 

• possibility of solving orthogonal packing 

problems of arbitrary dimensions; 

• full description of all free spaces in containers 

allows accurately estimate its real possibilities 

for packing; 

• possibility of any manipulations with objects 

during local improvement of a result packing; 

• fast packing due to usage the multilevel linked 

data structure. 

All presented methods and algorithms are 

realized in a form of applied software for solving 

the orthogonal packing and rectangular cutting 

problems. In our future work we are planning to 

expand the possibilities of the developing software 

in the following ways: 
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• programming of known and new developed 

heuristic and metaheuristic algorithms for 

optimization of the orthogonal packing problems; 

• including into the library of instances a new set 

of standard orthogonal packing and rectangular 

cutting problems; 

• generation of detailed reports with the 

instructions of procedures of loading containers 

for consumers of the software in real industries 

which allows to use it not only for testing 

algorithms and methods in our scientific 

researches as now. 

The presented method of deleting orthogonal 

objects of arbitrary dimension will be applied in 

algorithms of local improvement of resulting 

packing which are the subject of our subsequent 

research. 

ACKNOWLEDGMENTS 

This work was carried out with the financial 

support of the Ministry of Education and Science of 

Russian Federation in the framework of the state 

task in the field of scientific activity of MSTU 

«STANKIN» (No. 2014/105, Project No. 1441). 

 

REFERENCES 

[1] G. Wascher, H. Haubner, and H. Schumann, 

“An improved typology of cutting and 

packing problems”, European Journal of 

Operational Research, Vol. 183, No. 3, 2007, 

pp. 1109-1130. 

[2] A. Bortfeldt, and G. Wascher, “Constraints in 

container loading – a state-of-the-art review”, 

European Journal of Operational Research, 

Vol. 229, No. 1, 2013, pp. 1-20. 

[3] M. A. Boschetti, “New lower bounds for the 

finite three-dimensional bin packing 

problem”, Discrete Applied Mathematics, 

Vol. 140, 2004, pp. 241-258. 

[4] Y. Q. Gao, H. B. Guan, Z. W. Qi, Y. Hou, and 

L. Liu, “A multi-objective ant colony system 

algorithm for virtual machine placement in 

cloud computing”, Journal of Computer and 

System Sciences, Vol. 79, No. 8, 2013, 

pp. 1230-1242. 

[5] S. C. H. Leung, D. F. Zhang, C. L. Zhou, and 

T. Wu, “A hybrid simulated annealing 

metaheuristic algorithm for the two-

dimensional knapsack packing problem”, 

Computers & Operations Research, Vol. 39, 

No. 1, 2012, pp. 64-73. 

[6] A. Lodi, S. Martello, and M. Monaci, “Two-

dimensional packing problems: A survey”, 

European Journal of Operational Research, 

Vol. 141, No. 2, 2002, pp. 241-252. 

[7] V. A. Chekanin, and A. V. Chekanin, 

“Efficient Algorithms for Orthogonal Packing 

Problems”, Computational Mathematics and 

Mathematical Physics, Vol. 53, No. 10, 2013, 

pp. 1457-1465. 

[8] T. G. Crainic, G. Perboli, and R. Tadei, 

“Extreme point-based heuristics for three-

dimensional bin packing”, Informs Journal on 

Computing, Vol. 20, No. 3, 2008, pp. 368-384. 

[9] S. Martello, D. Pisinger, and D. Vigo, “The 

three-dimensional bin packing problem”, 

Operations Research, Vol. 48, No. 2, 2000, 

pp. 256-267. 

[10] S. P. Fekete, J. Schepers, and 

J. C. van der Veen, “An exact algorithm for 

higher-dimensional orthogonal packing”, 

Operations Research, Vol. 55, No. 3, 2007, 

pp. 569-587. 

[11] L. Lins, S. Lins, and R. Morabito, “An n-tet 

graph approach for non-guillotine packings of 

n-dimensional boxes into an n-container”, 

European Journal of Operational Research, 

Vol. 141, No. 2, 2002, pp. 421-439. 

[12] J. Westerlund, L. G. Papageorgiou, and 

T. Westerlund, “A MILP model for N-

dimensional allocation”, Computers & 

Chemical Engineering, Vol. 31, No. 12, 2007, 

pp. 1702–1714. 

[13] M. A. A. Martinez, F. Clautiaux, 

M. Dell'Amico, and M. Iori, “Exact 

algorithms for the bin packing problem with 

fragile objects”, Discrete Optimization, 

Vol. 10, No. 3, 2013, pp. 210-223. 

[14] V. A. Chekanin, and A. V. Chekanin, 

“Development of the multimethod genetic 

algorithm for the strip packing problem”, 

Applied Mechanics and Materials, Vol. 598, 

2014, pp. 377-381. 

[15] D. Chen, J. Liu, Y. Fu, and M. Shang, “An 

efficient heuristic algorithm for arbitrary 

shaped rectilinear block packing problem”, 

Computers & Operations Research, Vol. 37, 

No. 6, 2010, pp. 1068-1074. 

[16] J. F. Goncalves, and M. G. C. Resende, 

“A biased random key genetic algorithm for 

2d and 3d bin packing problems”, 

International Journal of Production 

Economics, Vol. 145, No. 2, 2013, pp. 500-

510. 

[17] I. Kierkosz, and M. Luczak, “A hybrid 

evolutionary algorithm for the two-



Journal of Theoretical and Applied Information Technology 
 30

th
 June 2016. Vol.88. No.3 

 © 2005 - 2016 JATIT & LLS. All rights reserved.   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
430 

 

dimensional packing problem”, Central 

European Journal of Operations Research, 

Vol. 22, No. 4, 2014, pp. 729-753. 

[18] A. Lodi, S. Martello, and D. Vigo, “Heuristic 

algorithms for the three-dimensional bin 

packing problem”, European Journal of 

Operational Research, Vol. 141, No. 2, 2002, 

pp. 410-420. 

[19] M. C. Riff, X. Bonnaire, and B. Neveu, “A 

revision of recent approaches for two-

dimensional strip-packing problems”, 

Engineering Applications of Artificial 

Intelligence, Vol. 22, No. 4-5, 2009, pp. 823-

827. 

[20] M. Garey, and D. Johnson, “Computers 

Intractability: a Guide to the Theory of NP-

completeness”, W.H.Freeman, San Francisco, 

1979. 

[21] V. A. Chekanin, and A. V. Chekanin, “An 

efficient model for the orthogonal packing 

problem”, Advances in Mechanical 

Engineering, Vol. 22, 2015, pp. 33-38. 

[22] A. V. Chekanin, and V. A. Chekanin, 

“Improved packing representation model for 

the orthogonal packing problem”, Applied 

Mechanics and Materials, Vol. 390, 2013, 

pp. 591-595. 

[23] V. A. Chekanin, and A. V. Chekanin, 

“Multilevel linked data structure for the 

multidimensional orthogonal packing 

problem”, Applied Mechanics and Materials, 

Vol. 598, 2014, pp. 387-391. 

[24] A. V. Chekanin, and V. A. Chekanin, 

“Effective data structure for the 

multidimensional orthogonal bin packing 

problems”, Advanced Materials Research, 

Vol. 962-965, 2014, pp. 2868-2871. 

[25] O. Faroe, D. Pisinger, and M. Zachariasen, 

“Guided local search for the three-dimensional 

bin packing problem”, INFORMS Journal on 

Computing, Vol. 15, No. 3, 2003, pp. 267-283. 

[26] M. A. Weiss, “Data Structures and Algorithm 

Analysis in C++”, Pearson Education, Boston, 

2014. 

[27] V. A. Chekanin, and A. V. Chekanin, 

“Improved data structure for the orthogonal 

packing problem”, Advanced Materials 

Research, Vol. 945-949, 2014, pp. 3143-3146. 

[28] V. A. Chekanin, and A. V. Chekanin, 

“Development of optimization software to 

solve practical packing and cutting problems”, 

Advances in Intelligent Systems Research, 

Vol. 123, 2015, pp. 379-382. 

[29] D. Pisinger, and M. Sigurd, “Using 

decomposition techniques and constraint 

programming for solving the two-dimensional 

bin-packing problem”, INFORMS Journal on 

Computing, Vol. 19, No. 1, 2007, pp. 36-51. 

[30] F. G. Ortmann, N. Ntene, and 

J. H van Vuuren, “New and improved level 

heuristics for the rectangular strip packing and 

variable-sized bin packing problems”, 

European Journal of Operational Research, 

Vol. 203, No. 2, 2010, pp. 306-315. 

[31] J. O. Berkey, and P. Y. Wang, “Two-

dimensional finite bin-packing algorithms”, 

Journal of the Operational Research Society, 

Vol. 38, No. 5, 1987, pp. 423-429. 

[32] S. Martello, and D. Vigo, “Exact solution of 

the two-dimensional finite bin packing 

problem”, Management Science, Vol. 44, 

No. 3, 1998, pp. 388-399. 

[33] S. P. Fekete, and J. Schepers, “New classes of 

lower bounds for bin packing problems”, 

Lecture Notes in Computer Science, 

Vol. 1412, 1998, pp. 257-270. 

 

 

 


