
Journal of Theoretical and Applied Information Technology
 30

th
 June 2016. Vol.88. No.3

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

421

IMPLEMENTATION OF PACKING METHODS FOR THE

ORTHOGONAL PACKING PROBLEMS

1
CHEKANIN VLADISLAV A.,

 2
CHEKANIN ALEXANDER V.

Moscow State University of Technology «STANKIN»,

Department Of Theoretical Mechanics And Strength Of Materials,

3a Vadkovsky lane, Moscow, 127055, Russian Federation

E-mail:
1
vladchekanin@rambler.ru,

2
avchekanin@rambler.ru

ABSTRACT

In the paper is considered a multidimensional orthogonal packing problem in general case. Are described

packing methods developed for formation of placement schemes during solving the rectangular cutting and

orthogonal packing problems of arbitrary dimensions. The presented packing model allows to describe all

existing free spaces in containers. Are offered methods of placing and deleting of orthogonal objects,

application of which in optimization packing algorithms will improve the quality of packing. Is described a

new data structure providing increasing speed of packing formation. Efficiency of application of the

packing methods is investigated on standard instances of three-dimensional orthogonal packing problems.

All designed packing methods are realized in a form of an applied software which can be used in solving

problems of resources allocation including container loading, cutting stock, scheduling, knapsack problems

and many other practical important cutting and packing problems.

Keywords: Packing, Orthogonal Packing Problem, Data Structure, Object-Oriented Programming,

Applied Software

1. INTRODUCTION

The optimization packing problems combine a

large set of various practical problems related with

finding of the most optimal allocation of resources

of one type into resources of another type. The first

type of the resources is named by objects and the

second is named by containers. In general case in

most of packing problems it is necessary to pack all

given objects into minimal number of containers.

Optimization of the packing problems leads to more

efficient usage of resources in practice.

The extensive survey of packing problems was

prepared in 2007 by G. Wascher, H. Haubner and

H. Schumann. It was performed with consideration

of more than four hundred papers related with

different packing and cutting problems [1]. The

most frequently the packing problems are occurred

in solution of such practical problems as waste

minimization in cutting, pallet building in logistics,

filling up containers (including vehicle, air and ship

cargo loading), traffic planning in computing and

network systems, calendar planning, capital

budgeting and many other important problems

which deal with allocation and reallocation of

resources [2–6].

Among the most popular types of packing

problems in industry and manufacturing can be

distinguished orthogonal bin packing problems,

cutting stock problems and knapsack

problems [2,5,7–9]. In these problems are

considered containers and objects in a form of

parallelepipeds.

Packing problems with the dimension higher

than three aside from only spatial dimensions

additionally have often non-spatial dimensions as

time for example. These problems take place as

multidimensional orthogonal knapsack and packing

problems usually in computing and scheduling [10–

12]. The most popular in practice are orthogonal

packing problems with the dimension no higher

than three [1].

2. STATEMENT OF THE PROBLEM

Consider the statement of the orthogonal D-

dimensional packing problem in general case. Is

given a set of N orthogonal containers (D-

dimensional parallelepipeds) with dimensions as

follows: { }D

jjj WWW ,,, 21
K , { }Nj ,,1K∈ . Also is

given a set of n orthogonal objects (D-dimensional

Journal of Theoretical and Applied Information Technology
 30

th
 June 2016. Vol.88. No.3

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

422

parallelepipeds) with dimensions { }D

iii www ,,, 21
K ,

{ }ni ,,1K∈ .

Before packing all the objects are classified by

different types. All objects that are belong to one

type have all identical geometrical and physical

characteristics. Geometrical characteristics of

objects include dimensions, physical include

weight, color, fragility and etc. [13]

The goal is to find a placement of all objects into

a minimum number of given containers under the

following conditions of correct placement:

• all edges of objects and containers are parallel;

• all packed objects do not overlap with each

other:

{ } { } { } kinkiDdNj ≠∈∀∈∀∈∀ ,,,1,,,,1,,,1 KKK

() ()d

i

d

ij

d

kj

d

k

d

kj

d

ij wxxwxx +≥∨+≥ ;

• all packed objects are within the bounds of the

containers:

{ } { } { }niDdNj ,,1,,,1,,,1 KKK ∈∀∈∀∈∀

() ()d

j

d

i

d

ij

d

ij Wwxx ≤+∧≥ 0 .

The statement of D-dimensional orthogonal

packing problem includes specifying a load

direction of containers as the priority selection list

of the coordinate axes: { }DP PPPL ;;; 21 K= ,

[] { }DdDPd ,,1;1 K∈∀∈ .

As an example on figure 1 are shown placement

schemes obtained for all possible load directions of

a three-dimensional orthogonal container.

Figure 1: Load Directions Of A Three-Dimensional

Orthogonal Container.

A solution of any dimensional packing problem

is represented by a so-called placement string (also

known as a chromosome) which contains a

sequence of objects selected for placing into

containers.

The solving process of a packing problem

includes three mandatory consecutive steps which

are showed on the figure 2.

1. Generation of a

placement string

3. Estimation of the

placement quality

Satisfactory

quality?

Yes

No

2. Decoding of the

placement string

Possible a local

improvement?

Local improvement

of a placement

Resulting packing

Yes

No

Figure 2: The Solving Process Of A Packing Problem.

The first step is generation of a placement string

which contains a sequence of objects to be packed

into containers. In practice the most commonly

accepted methods of generation of the solutions and

the corresponding placement strings are the

multiobjective optimization algorithms, mainly the

heuristic and metaheuristic algorithms including

evolutionary algorithms [14-19]. Need of

application of such algorithms provides obtaining

of suboptimal solutions is due to the fact that all

optimization packing and cutting problems

including orthogonal packing problems are belong

to NP-completed problems so they cannot be solved

in a time that polynomial depends on the dimension

of the problem [20].

Decoding of a placement string is performed by a

corresponding decoder. It selects objects from a

Journal of Theoretical and Applied Information Technology
 30

th
 June 2016. Vol.88. No.3

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

423

placement string one by one and place them into

container on a particular algorithm. The quality of

the resulting packing is estimated as the relative

deviation of the solution from the lower bound of

the considered problem [8].

The quality of a placement can be increased by

its local improvement which performed by local

replacing and deleting of sets of objects with

subsequent new placing of all deleted objects into

freed spaces.

Obviously the major influence on the quality of a

resulting packing render optimization heuristic and

metaheuristic algorithms applied for generation

placement strings. Nevertheless time and speed of

packing formation by a given placement string are

defined by used packing representation model as

well as by algorithms and methods which used for

generation a packing and for its improvement. We

consider only packing methods intended for

decoding of placement strings and which provide

the possibility of placing objects and their

subsequent replacement in solving of all existing

orthogonal packing problems of arbitrary

dimension.

3. PACKING METHODS

3.1 Packing Representation Model

To describe placement schemes of orthogonal

objects in containers was chosen previously

developed packing representation model – model of

potential containers. The efficiency of application

of this model for orthogonal packing problems is

shown in paper [21]. Below is given a general

description of the model of potential containers.

Any placement scheme of objects in a container

is represented by a set of objects attached to points

(nodes) of a container [7,8]. We understand by a

potential container placed in a container at some its

point is an imaginary orthogonal object with the

largest possible dimensions that can be placed at

this point without overlapping with any packed into

the container object and edges of the container.

Each potential container with number k is described

with a vector { }D

kkk ppp ;;; 21
K , containing

dimensions of this potential container and a vector

{ }D

kkk xxx ;;; 21
K , containing coordinates of a point of

the potential container which is closest to the origin

of coordinates of the containing its container.

All existing free orthogonal spaces located in a

container are described by a set of potential

containers. When a object is put into a free space of

a container is necessary to verify the correctness of

this placement. This model guarantees the correct

placement of an object if this object overlap no

borders of the potential container in which it is

located. In this case when an object is put at some

point of a container instead of checking on the

intersection with all placed into the container

objects is required to check only one condition of

placement of this object entirely within the

potential container, located at this point. This

ensures a higher speed of placement objects on

decoding a placement string. The condition of

correct placement of a D-dimensional object i in a

potential container k is expressed with inequality:

() { }Ddpw d

k

d

i ,,1 K∈∀≤ .

3.2 Placing Objects

When an object is put into a potential container it

divides this potential container on a set of smaller

potential containers. Any D-dimensional orthogonal

potential container is divided at 2D potential

containers in the worst case. Any new formed

potential container has a common face with the

packed object. Because the total number of faces in

a D-dimensional orthogonal object is equal 2D,

hence the maximal number of new formed potential

containers is also equal 2D.

In common case when a D-dimensional

orthogonal object i is packed into a potential

container k all new potential containers formed in it

can be separated into two sets [22]:

1. Set of D potential containers

{ }D

k

d

k

d

k

d

i

d

kkk ppxxppp ,;;;;;; 1121
KK

+− − located at

an origin of coordinates of the original potential

container k: { }D

k

d

kkk xxxx ;;;;; 21
KK produced

under the conditions of overlap:

() ()d

k

d

k

d

i

d

k

d

i pxxxx +<∧> { }Dd ,,1 K∈∀ ;

2. Set of D potential containers
D

k

d

k

d

i

d

i

d

k

d

k

d

kkk ppwxpxppp ;;;;;;; 1121
KK

+− −−+

located at D points with coordinates

{ }D

k

d

k

d

i

d

i

d

kkk xxwxxxx ;;;;;;; 1121
KK

+− + which are

produced under the following conditions of

overlap: () ()d

k

d

k

d

i

d

i

d

k

d

i

d

i pxwxxwx +<+∧>+

{ }Dd ,,1 K∈∀ .

As an example on figure 3 are shown all

potential containers which are formed in a three-

dimensional orthogonal container (by dots are

marked origins of the coordinates of corresponding

new potential containers).

Journal of Theoretical and Applied Information Technology
 30

th
 June 2016. Vol.88. No.3

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

424

Figure 3: New Potential Containers Formed In A Three-

Dimensional Container.

The algorithm which decodes a placement string

provides placement of all objects into containers

according to a given priority selection list. Below

are given all steps of the decoding algorithm for the

considered packing representation model [23].

1. Select the next object i from a placement string.

If all the objects are selected, jump to step 4.

Select a first not fully filled container j

containing at least one potential container.

2. In the current container j produce a serial

procedure of finding a potential container k

nearest to origin of coordinates of the container j

that is possible to correctly put into it the current

object i. If the target potential container is not

found then select the next container 1: += jj

and retry this step. If the target potential

container was not found among all the

containers, jump to step 1.

3. Place the object i into the found potential

container k in the container j. Create a set of new

potential containers and perform a method of

searching and removing of embedded potential

containers. Sort all potential containers by

decreasing the priority of pack of new objects to

them, i.e. for any potential container k of the

container j the following inequality must be

satisfied:

∑ ∏∑ ∏
= =

+
= =











≤











++

D

h

D

Pd

d

j

P

k

D

h

D

Pd

d

j

P

k

h

h

h

h WxWx
1

1

1 11

. (1)

Jump to step 1.

4. End of the algorithm.

This adapted to the model of potential containers

algorithm provides forming of a packing by a given

placement string.

One of the major part of the algorithm of placing

objects is a method of searching and removing of

embedded potential containers that is performed

after placing of each object into an orthogonal

container. This algorithm allows to escape from all

potential containers which are embedded each to

other. The potential container 1k is embedded into

the potential container 2k (i.e. it is contained

wholly entirely within the potential container 2k) if

{ }Dd ,,1K∈∀ the conditions are:

() ()d

k

d

k

d

k

d

k

d

k

d

k pxpxxx
221121

+≤+∧≥ . (2)

The method of searching and removing of

embedded potential containers includes the

following steps.

1. Generate in a current container j after placing

into it an object i a list { }0L containing a set of

potential containers k if the condition is:

[] d

i

d

i

d

k wxxDd +≤∈∃ :;1 .

Generate an empty list of embedded potential

containers { }1L .

2. Check Eq. (2) to determine the embedding of a

potential container 1k into 2k for each

pair { } 21021 ,, kkLkk ≠∈ { }Dd ,,1K∈∀ . Copy

all found embedded potential container 1k to the

list { }1L .

3. Remove all potential containers stored in the list

{ }1L from the contained them container j.

3.3 Storing The Potential Containers

The most time consuming step of the algorithm

of placing objects is sorting of coordinates of all

potential containers which runs after placing of

each new object into a container to provide

performing the Eq. (1).

To increase the time effectiveness of the

algorithm of placing objects we offer for usage a

proposed by us new data structure for packing

problems – multilevel linked data structure that was

firstly described in [23]. The basis of this data

structure is the idea of presenting a set of

coordinates of potential containers as a set of

recursively embedded each to other linear queues

that allows to increase the speed of access to

potential containers during packing process.

Using the multilevel linked data structure a set K

of potential containers located in points

{ } Kkxxx D

kkk ∈,;;; 21
K is represented as a D-levels

recursively embedded each to other linear queues

which are ordered by increase of their items (see

figure 4). Each item j of a queue i on a level dP

contains a coordinate dd P

k

P

ji xs =, of a potential

container k that within each queue the inequality is

satisfied [24]: Pd

P

ji

P

ji LPss dd ∈∀< +1,, .

Journal of Theoretical and Applied Information Technology
 30

th
 June 2016. Vol.88. No.3

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

425

KK

KK

KK

→→→

↓

→→→

↓

→→→

++

++

+

+

22

11

,1,2

,1,1

,11,1

:

:

:

dd

dd

dd

P
kj

P
jd

P
ji

P
id

P
i

P
d

ssP

ssP

ssP

Figure 4: Multilevel Linked Data Structure.

As an example we consider a set of points of a

three-dimensional orthogonal container

(parallelepiped) j given in Table 1. For a load

direction { }3;1;2=PL this set of points must firstly

be ordered by non-decreasing along the coordinate

axis 2, then – along the axis 1, and finally – the

axis 3 (see Table 2).

Table 1: Original Coordinates Of Points.

Number 1 2 3 4 5 6 7 8 9 10

Coordinate 1 0 2 2 2 4 0 4 0 4 2

Coordinate 2 1 3 7 9 1 2 1 2 1 7

Coordinate 3 0 1 5 6 2 1 3 3 1 2

Table 2: Coordinates Of Points After Sorting For The

Load Direction {2;1;3}.

Number 1 2 3 4 5 6 7 8 9 10

Coordinate 2 1 1 1 1 2 2 3 7 7 9

Coordinate 1 0 4 4 4 0 0 2 2 2 2

Coordinate 3 0 1 2 3 1 3 1 2 5 6

The multilevel linked data structures for all

possible load directions of the considered container

are shown on figures 5–10.

0

1

0

2

1 3

2

3

1

7

2 5

9

6

4

1

1 2 3

Figure 5: Multilevel linked data structure of the three-

dimensional container for a load direction {1;2;3}.

0

0

1

1

2 2

2

3

1

7

2 5

9

6

4

1

1

2 33

7 1 1

Figure 6: Multilevel linked data structure of the three-

dimensional container for a load direction {1;3;2}.

1

0

0

4

1 2

2

0

1 3 1

2

2

9

2

63

2

3 7

5

Figure 7: Multilevel linked data structure of the three-

dimensional container for a load direction {2;1;3}.

1

0

0 4 4

2

1

0 0 2

2

2

9

6

24

1

3 7

2

1 2 3 3 5

Figure 8: Multilevel linked data structure of the three-

dimensional container for a load direction {2;3;1}.

0

0

1

0

2 3

4

1

2

7 1

0

2

4

1 1 9

1

2 4

2 3

2

5 6

2

Figure 9: Multilevel linked data structure of the three-

dimensional container for a load direction {3;1;2}.

0

1

0

1

4 0

3

2

1

4 2

1

4

2

0 2 2

1

2 7

2 3

7

5 6

9

Figure 10: Multilevel linked data structure of the three-

dimensional container for a load direction {3;2;1}.

When using this data structure to provide the

performing of the Eq. (1) after packing a new

object into a container is necessary only put

coordinates of new formed potential containers in

the corresponding positions of the data structure

without sorting of coordinates of all existing

potential containers.

3.4 Deleting Objects

One of the effective methods applied for

increasing the quality of a resulting packing is its

local improvement, which can be realized by

deleting of one or more packed objects from a

container with a subsequent more rational filling of

the freed space by other objects. After deleting of

an object it is necessary to reorganize all potential

containers around this object.

The developed method of deleting a D-

dimensional orthogonal object i from a container j

includes the following steps.

Journal of Theoretical and Applied Information Technology
 30

th
 June 2016. Vol.88. No.3

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

426

1. Create a new free D-dimensional orthogonal

container j′ with the dimensions equal to the

dimensions of the original containers j.

2. Put into the container j′ an object i′ with the

dimensions d

i

d

i ww =′ { }Dd ,,1K∈∀ at a point

with the coordinates equal to coordinates of the

object i placed into the container j: d

i

d

i xx =′

{ }Dd ,,1K∈∀ .

3. Create a list { }L′ containing potential containers

the position and dimensions of which can be

modified in container j after deleting the object i.

This list includes all potential containers k ′
under the condition

d

i

d

i

d

k wxx +≤′ { }Dd ,,1K∈∀ . (3)

4. Put into the container j′ at points d

kx ′ a set of

objects with the dimensions
d

k

d

k pw ′′ = { }Dd ,,1 K∈∀ , { }Lk ′∈′ . (4)

When placing objects into the container j′ allow

them to overlap each other. Free orthogonal

spaces remained in the container j′ are

described by a set of potential containers placed

in a list { }L ′′ .

5. Create a new free D-dimensional orthogonal

container j ′′ with the dimensions equal to the

dimensions of the original containers j.

6. Put into the container j ′′ at points d

kx ′′ , { }Lk ′′∈′′

a set of objects with the dimensions:
d

k

d

k pw ′′′′ = { }Dd ,,1K∈∀ . (5)

When placing objects into the container j ′′

allow them to overlap each other. Free

orthogonal spaces remained in the container j ′′

are described by a set of potential containers

placed in a list { }L ′′′ . This list also describes a

freed space of the original container j formed in

the area of the object i which is to be deleted.

7. Delete the object i from the container j.

8. Replace in the container j the list of its potential

containers { }L′ to { }L ′′′ .

In result is obtained a set of potential containers

fully describes all freely orthogonal spaces of a

container after deleting an object from it in a

process of solving of any orthogonal packing

problem of arbitrary dimension.

4. COMPUTATIONAL EXPERIMENTS

This paper contains full description of methods

applied for management objects and the most of

which have been presented at several International

conferences with publication of results of passed

computation experiments in the corresponding

papers. Below are given the major results of the

performed computational experiments with the

links on papers contained all details of the carried

out computational experiments.

Consider results of solving standard three-

dimensional orthogonal bin packing problems [9].

The test instances of orthogonal packing problems

are grouped into 8 classes differing from each other

by sets of objects to be packed. Containers are

cubic in all considered test instances and have the

dimensions 100 × 100 × 100. The aim is to pack all

given objects into minimum count of the

containers. For each test class were solved

instances with a number of objects equal to 50, 100,

150 and 200. Given a test class and an instance size

we generated 10 different problem instances based

on different random sets of packed objects.

Following the results published in scientific

literature [9,25] we did not consider the test

classes II–III because they have the same properties

with the class I.

Results of solving of all test instances are

summarized in Table 3. The best solutions in the

table are bold. Were considered the following

algorithms:

• LB – an exact lower bound of the problem [3];

• HA – the heuristic algorithm proposed by

Lodi et al. for the node model [18];

• C-EPBFD – the heuristic algorithm for the

placement with the Extreme Points rule [8];

• MPC – the model of potential containers using

the described packing methods.

Table 3: The Tests Results For The Standard Three-

Dimensional Orthogonal Packing Problems.

Test class LB HA C-EPBFD MPC

Class I 124.0 132.3 130.5 129.4

Class IV 292.2 294.3 294.0 300.3

Class V 66.4 73.6 72.6 70.6

Class VI 93.0 100.2 98.1 96.9

Class VII 55.4 63.7 62.8 62.7

Class VIII 77.8 87.1 85.4 88.2

The model of potential containers provides for

four of six classes of three-dimensional orthogonal

test problems a higher density of packing compared

with the solutions obtained by packing algorithms

realized by other researchers.

The described multilevel linked data structure in

practice more than twice increases access to the

Journal of Theoretical and Applied Information Technology
 30

th
 June 2016. Vol.88. No.3

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

427

potential containers compared with the simple

linear linked list [26] which needs in sorting [24].

This data structure is the most effective when it is

using in packing of a large number of objects of

several slightly different in size object types.

Efficiency of application of the multilevel linked

data structure increases with the number of packed

objects as it shown in paper [23] on a two-

dimensional orthogonal packing problems as well

in paper [27] where were considered standard three-

dimensional orthogonal packing problems.

5. SOFTWARE FOR ORTHOGONAL

PACKING PROBLEMS

All the described methods were used at

developing a class library for solving the cutting

and packing problems. The class library is designed

using object-oriented programming techniques and

is created with the programming language C++.

The UML diagram of the class library for

orthogonal packing and problems is given on

figure 11.

Using the designed class library was developed

an applied software intended for the optimization

orthogonal packing and rectangular cutting

problems [28]. The software allows to solve the

following orthogonal cutting and packing problems:

• one-dimensional bin packing problem

(1DBPP) [29];

• rectangular non-guillotine cutting problem [30];

• strip packing problem (SPP) [30];

• two-dimensional bin packing problem (2DBPP);

• three-dimensional bin packing problem

(3DBPP).

The developed software contains a library of

standard test instances for a variety of orthogonal

packing and cutting problems. This library includes

the following standard problem instances:

• SPP instances including classes C1–C6 [31] and

classes C7–C10 [32];

• 2DBPP instances [33];

• 3DBPP instances [9].

As an example we consider a three-dimensional

orthogonal packing problem. On figure 12 is shown

a window of the developed software containing

geometrical parameters of containers and objects in

the considered packing problem.

+Cheking a possibility of placement()

+Place the object()

-dimension of a problem

-geometrical parameters

-physical parameters

-other parameters

Orthogonal object

+Evaluation of free spaces()

+Delete a packed object()

-geometrical parameters

-physical parameters

-array of potential containers

-array of packed objects

Container

+Place objects()

+Calculating the fitness function()

+Generate new placement string()

-placement string (chromosome)

-length

-fitness function

Placement string

+Solve()

-type of a problem

-dimension of a problem

-load direction

-array of objects

-array of containers

-set of algorithms

Problem

1..*
1

1..*
1

1..*

1

+Generate an initial population()

+Solve()

-population

-size of population

-best solution

Algorithm

1..*
1

1
1..*

1..*
1

-position

-dimensions

Potential container

+Add a potential container()

+Delete a potential contaier()

+Update potential containers()

+Remove embedded potential containers()

-dimension of a problem

-link on a container

-potential containers

-multilevel linked data structure

Set of potential containers

-type

-position

-link on a container

-orientation

Packed object

1

1..*

1

0..*

+Insert a new coordinate()

+Delete a coordinate()

-linear linked list of coordinates

-axial number

Multilevel linked data structure

1

1..*

1

1

Figure 11: UML Diagram Of The Developed Class

Library For Orthogonal Packing Problems.

Journal of Theoretical and Applied Information Technology
 30

th
 June 2016. Vol.88. No.3

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

428

Figure 12: Parameters Of Considered Three-

Dimensional Orthogonal Packing Problem.

Solution of a packing problem is represented in

the form of schemes of filling containers which are

visualized on a tab “Result” of the software. For an

example on figure 13 is given a packing scheme

obtained for the forth container.

The developed software allows to show all

existing potential containers that are contained in

any selected container. On figure 14 are presented

all the potential containers which are inside the

container shown on figure 13.

Today the software we use during the

computational experiments carried out over various

algorithms and methods intended to solve various

orthogonal packing and rectangular cutting

problems.

Figure 13: Visualization Of The Obtained Solution.

Figure 14: Visualization Of All Potential Containers.

6. CONCLUSION

In this first part of the paper we have presented

methods of placing and deleting of orthogonal

objects which are used in formation of orthogonal

packing schemes. They have the following obvious

advantages:

• possibility of solving orthogonal packing or

rectangular cutting problems of any types;

• possibility of packing objects in any load

directions;

• possibility of solving orthogonal packing

problems of arbitrary dimensions;

• full description of all free spaces in containers

allows accurately estimate its real possibilities

for packing;

• possibility of any manipulations with objects

during local improvement of a result packing;

• fast packing due to usage the multilevel linked

data structure.

All presented methods and algorithms are

realized in a form of applied software for solving

the orthogonal packing and rectangular cutting

problems. In our future work we are planning to

expand the possibilities of the developing software

in the following ways:

Journal of Theoretical and Applied Information Technology
 30

th
 June 2016. Vol.88. No.3

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

429

• programming of known and new developed

heuristic and metaheuristic algorithms for

optimization of the orthogonal packing problems;

• including into the library of instances a new set

of standard orthogonal packing and rectangular

cutting problems;

• generation of detailed reports with the

instructions of procedures of loading containers

for consumers of the software in real industries

which allows to use it not only for testing

algorithms and methods in our scientific

researches as now.

The presented method of deleting orthogonal

objects of arbitrary dimension will be applied in

algorithms of local improvement of resulting

packing which are the subject of our subsequent

research.

ACKNOWLEDGMENTS

This work was carried out with the financial

support of the Ministry of Education and Science of

Russian Federation in the framework of the state

task in the field of scientific activity of MSTU

«STANKIN» (No. 2014/105, Project No. 1441).

REFERENCES

[1] G. Wascher, H. Haubner, and H. Schumann,

“An improved typology of cutting and

packing problems”, European Journal of

Operational Research, Vol. 183, No. 3, 2007,

pp. 1109-1130.

[2] A. Bortfeldt, and G. Wascher, “Constraints in

container loading – a state-of-the-art review”,

European Journal of Operational Research,

Vol. 229, No. 1, 2013, pp. 1-20.

[3] M. A. Boschetti, “New lower bounds for the

finite three-dimensional bin packing

problem”, Discrete Applied Mathematics,

Vol. 140, 2004, pp. 241-258.

[4] Y. Q. Gao, H. B. Guan, Z. W. Qi, Y. Hou, and

L. Liu, “A multi-objective ant colony system

algorithm for virtual machine placement in

cloud computing”, Journal of Computer and

System Sciences, Vol. 79, No. 8, 2013,

pp. 1230-1242.

[5] S. C. H. Leung, D. F. Zhang, C. L. Zhou, and

T. Wu, “A hybrid simulated annealing

metaheuristic algorithm for the two-

dimensional knapsack packing problem”,

Computers & Operations Research, Vol. 39,

No. 1, 2012, pp. 64-73.

[6] A. Lodi, S. Martello, and M. Monaci, “Two-

dimensional packing problems: A survey”,

European Journal of Operational Research,

Vol. 141, No. 2, 2002, pp. 241-252.

[7] V. A. Chekanin, and A. V. Chekanin,

“Efficient Algorithms for Orthogonal Packing

Problems”, Computational Mathematics and

Mathematical Physics, Vol. 53, No. 10, 2013,

pp. 1457-1465.

[8] T. G. Crainic, G. Perboli, and R. Tadei,

“Extreme point-based heuristics for three-

dimensional bin packing”, Informs Journal on

Computing, Vol. 20, No. 3, 2008, pp. 368-384.

[9] S. Martello, D. Pisinger, and D. Vigo, “The

three-dimensional bin packing problem”,

Operations Research, Vol. 48, No. 2, 2000,

pp. 256-267.

[10] S. P. Fekete, J. Schepers, and

J. C. van der Veen, “An exact algorithm for

higher-dimensional orthogonal packing”,

Operations Research, Vol. 55, No. 3, 2007,

pp. 569-587.

[11] L. Lins, S. Lins, and R. Morabito, “An n-tet

graph approach for non-guillotine packings of

n-dimensional boxes into an n-container”,

European Journal of Operational Research,

Vol. 141, No. 2, 2002, pp. 421-439.

[12] J. Westerlund, L. G. Papageorgiou, and

T. Westerlund, “A MILP model for N-

dimensional allocation”, Computers &

Chemical Engineering, Vol. 31, No. 12, 2007,

pp. 1702–1714.

[13] M. A. A. Martinez, F. Clautiaux,

M. Dell'Amico, and M. Iori, “Exact

algorithms for the bin packing problem with

fragile objects”, Discrete Optimization,

Vol. 10, No. 3, 2013, pp. 210-223.

[14] V. A. Chekanin, and A. V. Chekanin,

“Development of the multimethod genetic

algorithm for the strip packing problem”,

Applied Mechanics and Materials, Vol. 598,

2014, pp. 377-381.

[15] D. Chen, J. Liu, Y. Fu, and M. Shang, “An

efficient heuristic algorithm for arbitrary

shaped rectilinear block packing problem”,

Computers & Operations Research, Vol. 37,

No. 6, 2010, pp. 1068-1074.

[16] J. F. Goncalves, and M. G. C. Resende,

“A biased random key genetic algorithm for

2d and 3d bin packing problems”,

International Journal of Production

Economics, Vol. 145, No. 2, 2013, pp. 500-

510.

[17] I. Kierkosz, and M. Luczak, “A hybrid

evolutionary algorithm for the two-

Journal of Theoretical and Applied Information Technology
 30

th
 June 2016. Vol.88. No.3

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

430

dimensional packing problem”, Central

European Journal of Operations Research,

Vol. 22, No. 4, 2014, pp. 729-753.

[18] A. Lodi, S. Martello, and D. Vigo, “Heuristic

algorithms for the three-dimensional bin

packing problem”, European Journal of

Operational Research, Vol. 141, No. 2, 2002,

pp. 410-420.

[19] M. C. Riff, X. Bonnaire, and B. Neveu, “A

revision of recent approaches for two-

dimensional strip-packing problems”,

Engineering Applications of Artificial

Intelligence, Vol. 22, No. 4-5, 2009, pp. 823-

827.

[20] M. Garey, and D. Johnson, “Computers

Intractability: a Guide to the Theory of NP-

completeness”, W.H.Freeman, San Francisco,

1979.

[21] V. A. Chekanin, and A. V. Chekanin, “An

efficient model for the orthogonal packing

problem”, Advances in Mechanical

Engineering, Vol. 22, 2015, pp. 33-38.

[22] A. V. Chekanin, and V. A. Chekanin,

“Improved packing representation model for

the orthogonal packing problem”, Applied

Mechanics and Materials, Vol. 390, 2013,

pp. 591-595.

[23] V. A. Chekanin, and A. V. Chekanin,

“Multilevel linked data structure for the

multidimensional orthogonal packing

problem”, Applied Mechanics and Materials,

Vol. 598, 2014, pp. 387-391.

[24] A. V. Chekanin, and V. A. Chekanin,

“Effective data structure for the

multidimensional orthogonal bin packing

problems”, Advanced Materials Research,

Vol. 962-965, 2014, pp. 2868-2871.

[25] O. Faroe, D. Pisinger, and M. Zachariasen,

“Guided local search for the three-dimensional

bin packing problem”, INFORMS Journal on

Computing, Vol. 15, No. 3, 2003, pp. 267-283.

[26] M. A. Weiss, “Data Structures and Algorithm

Analysis in C++”, Pearson Education, Boston,

2014.

[27] V. A. Chekanin, and A. V. Chekanin,

“Improved data structure for the orthogonal

packing problem”, Advanced Materials

Research, Vol. 945-949, 2014, pp. 3143-3146.

[28] V. A. Chekanin, and A. V. Chekanin,

“Development of optimization software to

solve practical packing and cutting problems”,

Advances in Intelligent Systems Research,

Vol. 123, 2015, pp. 379-382.

[29] D. Pisinger, and M. Sigurd, “Using

decomposition techniques and constraint

programming for solving the two-dimensional

bin-packing problem”, INFORMS Journal on

Computing, Vol. 19, No. 1, 2007, pp. 36-51.

[30] F. G. Ortmann, N. Ntene, and

J. H van Vuuren, “New and improved level

heuristics for the rectangular strip packing and

variable-sized bin packing problems”,

European Journal of Operational Research,

Vol. 203, No. 2, 2010, pp. 306-315.

[31] J. O. Berkey, and P. Y. Wang, “Two-

dimensional finite bin-packing algorithms”,

Journal of the Operational Research Society,

Vol. 38, No. 5, 1987, pp. 423-429.

[32] S. Martello, and D. Vigo, “Exact solution of

the two-dimensional finite bin packing

problem”, Management Science, Vol. 44,

No. 3, 1998, pp. 388-399.

[33] S. P. Fekete, and J. Schepers, “New classes of

lower bounds for bin packing problems”,

Lecture Notes in Computer Science,

Vol. 1412, 1998, pp. 257-270.

