
Journal of Theoretical and Applied Information Technology
 30

th
 June 2016. Vol.88. No.3

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

449

 IMPLEMENTATION OF IMPROVED LEVENSHTEIN

ALGORITHM FOR SPELLING CORRECTION WORD

CANDIDATE LIST GENERATION

1
HANAN NAJM ABDULKHUDHUR,

 2
IMAD QASIM HABEEB,

 3
YUHANIS YUSOF,

 4
SHAHRUL

AZMI MOHD YUSOF
1
Master student, School of Computing, Universiti Utara Malaysia, Malaysia

2
PhD student, University of Information Technology & Communications, Iraq

3
Prof. DR, School of Computing, Universiti Utara Malaysia, Malaysia

3
 DR, School of Computing, Universiti Utara Malaysia, Malaysia

E-mail:
1
hanan_nagem@yahoo.com,

2
emadkassam@yahoo.com,

3
yuhanis@uum.edu.my,

4
shahrulazmi@uum.edu.my

ABSTRACT

Candidates’ list generation in spelling correction is a process of finding words from a lexicon that are close

to the incorrect word. The most widely used algorithm to generate the candidate list is the Levenshtein

algorithm. However, the algorithm consumes high computational cost, especially when there is a large

number of spelling errors. The reason is that calculating Levenshtein algorithm includes operations that

create an array and fill the cells of this array by comparing the characters of an incorrect word with the

characters of a word from a lexicon. Since most lexicons contain millions of words, such operations will be

repeated millions of times for each incorrect word in order to generate its candidates’ list. This study

proposes an improved Levenshtein algorithm that reduces the operation steps in comparing characters

between the query and lexicon words. Experimental results show that the proposed algorithm outperformed

the Levenshtein algorithm in terms of processing time by having 32.43% percentage decrease.

Keywords: Levenshtein Algorithm, Processing Time, Word Candidate List Generation, Spelling

Correction, Edit Distance

1. INTRODUCTION

Candidates’ list generation requires too much

time when there is a large number of spelling errors

[1, 2]. Some researchers speed up the process of

generating candidates’ list by using fast

approximate distances, such as N-gram distance

[3]. However, approximate distances can produce

in some cases incorrect candidates list.

Approximate distances are used when a correction

process allows a tolerance of some errors to correct

a large number of errors quickly. Also, in some

systems, they are used to generate candidates’ list

while a human will select the best candidate

manually [1]. Levenshtein algorithm (LA) [4, 5] is

one of the exact algorithms, and it is widely used to

generate a list of candidates for incorrect words

from a lexicon [2, 6-9]. However, it requires high

computational time, especially when there is a large

number of spelling errors [1, 2, 10].

In general, Levenshtein algorithm is designed for

measuring edit distance [4]. The term “edit

distance” is used for calculating the difference

between two strings. In other words, it counts the

minimum number of operations required to

transform one string to another [4, 11]. The

operations of Levenshtein algorithm are performed

on a single symbol or a single character, and they

consist of insertion, deletion, and substitution. Each

operation of a single symbol is considered as a

single edit [12]. For example, given a query of

"csp" that is a non-English word, the Levenshtein

algorithm needs to perform one substitution to

transform the word into "cup" which is an accepted

English word [9]. Hence, processing time of LA

will increase as its requires the creation of array

and filling up each cell in the array by comparing

characters of an incorrect word with characters of a

word from a lexicon [1, 10]. With this, the

Levenshtein algorithm when used in generating

candidates for spelling correction requires a million

Journal of Theoretical and Applied Information Technology
 30

th
 June 2016. Vol.88. No.3

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

450

calculations for each incorrect word because most

lexicons contain millions of words [13, 14]. Each

cell value in Levenshtein array needs eight

operations: compare (3), add (3) and assign (2)

[1]. Such inefficiency motivates for Levenshtein

algorithm improvement that reduces the operational

process without affecting its accuracy.

The study was organized into five main sections:

section 1 presented the introduction. Section 2

discusses related work on Levenshtein algorithm.

Section 3 explains the proposed algorithm and its

implementation. In section 4, experimental results

and discussion are presented. The last section

includes conclusions and future work of our

research.

2. RELATED WORK

Several solutions have been proposed to solve

the problem of generating candidates list for a large

number of errors, but most of them are based on

using approximate distances such as n-gram

distance [3]. The approximate distance may

sometimes produce incorrect candidates list [1].

They are used when a correction process allows a

tolerance of some error to correct a large number of

errors quickly [14]. Other solutions are based on

using other exact algorithms such as hamming

distance algorithm [11]. However, each algorithm

suffers different limitation, and selecting the

appropriate algorithm depends on where it will be

used.

Several works improve Levenshtein algorithm to

be reliable for specific purposes. For example, Pal

and Rajasekaran [15] improved Levenshtein

algorithm to find motif in a set of biological strings.

The motif is a substring that appears in a set of

input biological strings. The characters in motif can

be not neighbored. For example, the string

“GT***G” is a motif. The symbol “*” can be

referred to any character in sequence. However,

other characters should appear in all input strings

with the same context. This improvement makes

Levenshtein algorithm suitable for finding motif in

biological strings. However, it becomes slower than

the original. Navarro, et al. [16] improved

Levenshtein algorithm to be faster for music

information retrieval by ignoring deleting and

inserting operations from the calculation. The

author only considers substitution operation

because of characteristics of music pieces. These

characteristics do not allow deleting and inserting

operations in music pieces. Therefore, the author

ignores them from the calculation. The improved

Levenshtein algorithm is faster and reliable only for

measuring the difference between two pieces of

music. Other improvements in Levenshtein

algorithm include making it approximate in order to

be executed quickly [17-21]. On the other hand, the

original Levenshtein algorithm [5] is still in use to

generate candidates’ list even if it takes too much

time for a large number of errors. This indicates

that improvement in Levenshtein algorithm in

terms of processing time is still an open problem [2,

7, 10, 22].

3. PROPOSED TECHNIQUE

This study will refer to the improved Levenshtein

algorithm as ILA-OT. The term ILA-OT represents

improved Levenshtein algorithm using a proposed

operational technique. This proposed technique

reduces the operations required to measure cells’

values in Levenshtein array. The ILA-OT aim is to

remove the first row and the first column of LA

array. In addition, it can predict the cell values in

the second row, second column, third row, and third

column in LA array. This is because there is a

context to measure values in these cells until a

shared character in them is identified. Once the

context is changed, it will measure cells values in

these rows and columns based on the new context.

The context will only be changed once, and it will

not change if there is an additional shared character

in them.

Since an average word length for the English

language is 5 characters [23], and by assuming the

symbols c1, c2, c3, c4, and c5 refer to the

characters in the English word, then Levenshtein

array will be in the size of 36 cells (6 rows * 6

columns). Therefore, 27 cells from 36 will be

affected by the proposed technique of this study as

shown in Figure 1. This will reduce the processing

time of Levenshtein algorithm execution. Details of

the rules based on the proposed ILA-OT are

presented in the following subsections.

 c1 c2 c3 c4 c5

c1

c2

c3

c4

c5

Figure 1: Cells Affected By Three Rules Proposed Of

This Study

Journal of Theoretical and Applied Information Technology
 30

th
 June 2016. Vol.88. No.3

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

451

3.1 ILA-OT Rules

The first rule removes the first row and first

column of Levenshtein array. This is because

values of these cells will not be used to measure

values of second row and second column in

Levenshtein array. Figure 2 shows the Levenshtein

array before and after applying the first rule.

 b a c k

0 1 2 3 4

b 1 0 1 2 3

o 2 1 1 2 3

o 3 2 2 2 3

k 4 3 3 3 2

 b a c k

b

0 1 2 3

o 1 1 2 3

o 2 2 2 3

k 3 3 3 2

Figure 2: Levenshtein Array Before (Up) And After

(Bottom) Applying The First Rule

This study will use the term d(i, j) to refer to any

cell in ILA-OT array, where the character “i”

represents the position of a row in ILA-OT array

and the position of each character in second token

“t”, while character “j” represents the position of a

column in ILA-OT array and the position of each

character in first token “s”. Furthermore, starting

from this section, this study will refer to the second

row and second column as the first row and first

column in the ILA-OT array. This is due to the

employment of the first rule. The second rule is

applied to measure cells values of the first row in

the ILA-OT array (second row in LA array) and

first column in the ILA-OT array (second column in

LA array). This rule requires fewer operations than

the ones in original LA.

Figure 3 shows two examples that explain the

implementation of the second rule by comparing

values of the second row in LA array with values of

the first row in ILA-OT array. The first example in

Figure 3 shows that if there is no shared character

between characters of first token “s(j)” and the first

character in second token t(0), then all cells of the

first row will take the values of the context (1+j) in

the ILA-OT array. Note that the order of characters

in any string is 0 for the first character, 1 for the

second character, 2 for the third character, and so

on. The second example shows that if there is a

shared character, then all cells value of the first row

in the ILA-OT array, starting from the cell that has

shared a character, will take the value of j until the

last cell in the first row without additional

comparison. This is because the first shared

character will assign shared cell value to the j

instead of (j+1). Furthermore, the context will be

constant and it will not change if there is an

additional shared character in the same row.

 b c a k s

0 1 2 3 4 5

x 1 1 2 3 4 5

First example (LA)

 b c a k s

a 1 2 2 3 4

First example (ILA-OT)

 a c a k a

0 1 2 3 4 5

a 1 0 1 2 3 4

Second example (LA)

 a c a k a

a 0 1 2 3 4

Second example (ILA-OT)

Figure 3: Second Rule Examples For The First Row

Figure 3 also shows that if the proposed second

rule is performed, the values of the second row in

LA array match with the values of the first row in

ILA-OT array. However, the operations required to

measure cells values in the first row of ILA-OT is

less than operations required to measure cells

values in the second row in LA. The second rule

can also be applied to measure cells value of the

first column in the ILA-OT array (second column in

LA array) with a simple modification. The

modification is to replace j by i.

Lastly, the third rule can be applied to measure

cells values of the second row in ILA-OT array

(third row in LA array) and second column in the

Journal of Theoretical and Applied Information Technology
 30

th
 June 2016. Vol.88. No.3

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

452

ILA-OT array (third column in LA array) as shown

in the three examples of Figure 4. Note, only gray

cells in Figure 4 represent the third row in LA array

and second row in ILA-OT array. The third rule

also finds a context in measuring values of second

row and second column in ILA-OT array. However,

the context of the third rule is different from the

context of the second rule. The context of the third

rule needs values of first row and first column to

measure values of second row and second column

while the context of the second rule does not need

values from any row or column.

 b c a k s

 0 1 2 3 4 5

a 1 1 2 2 3 4

z 2 2 2 3 3 4

First example (LA)

 b c a k s

a 1 2 2 3 4

z 2 2 3 3 4

First example (ILA-OT)

 a a a k a

 0 1 2 3 4 5

a 1 0 1 2 3 4

a 2 1 0 1 2 3

Second example (LA)

 a a a k a

a 0 1 2 3 4

a 1 0 1 2 3

Second example (ILA-OT)

Figure 4: Third Rule Examples For The First Row

Example one in Figure 4 shows that if there is no

shared character between the characters of first

token “s(i)” and second character in second token

t(1), then all values of cells in the second row will

take the values of the context: (1+d(0, j-1)). The

second example shows that if there is a shared

character, then the shared cell will take the value of

d(0, j-1), while all cells values of the second row,

starting from the cell that follows the shared cell,

will take the value of (1+d(1, j-1)) until the last cell

in the second row without additional comparison.

Note that the context of (1+d(1, j-1)) will be

constant and it will not be changed if there is an

additional shared character in the same row.Figure

4 also shows that if the proposed third rule is

performed, the values of the third row in LA array

are matched with the values of the second row in

ILA-OT array. However, the operations required to

measure cells values in the second row of ILA-OT

is less than operations required to measure cells

values in the third row in LA for the reasons

mentioned in the next section. The third rule can

also be applied to measure cells values of the

second column in the ILA-OT array (third column

in LA array) with a simple modification. The

modification is to replace j by i.

3.2 Comparison between Operations of LA and

ILA-OT

In this section, a comparison between LA and

ILA-OT regarding the operations required to

measure each cell value in their arrays is presented.

The comparison is based on mathematical

expression of both LA and ILA-OT. The equations

1 and 2 show how can measure each cell value in

the first row and first column respectively for LA

array, while both equations 3 and 4 show how can

measure each cell value for other rows and columns

in LA array. The equations 5, 6, 7 and 8 show how

can measure each cell value in the first row, first

column, second row, and second column

respectively for the ILA-OT array.

LAfor j j) d(0, =

LAfor i 0) d(i, =





≠

=
=

s(j) t(i)if , 1

 s(j) t(i)if , 0
tcos








+

+

+

=

 1)-j 1,-d(i cost

 j) 1,-d(i1

 1)-j d(i, 1

minLAfor j) d(i,





=

=+
=

 it after or s(j) t(0)if , j

 s(j) t(0)before , 1j
 j) d(0,





=

=+
=

 it after or s(0) t(i)if , i

 s(0) t(i)before , 1i
0) d(i,

(1)

(2)

(3)

(4)

(5)

(6)

Journal of Theoretical and Applied Information Technology
 30

th
 June 2016. Vol.88. No.3

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

453








=+

=

=+

=

 s(j) after t(1), 1) - j d(1, 1

 s(j) t(1)if , 1) - j d(0,

 s(j) t(1)before , 1) - j d(0, 1

j) d(1,








=+

=

=+

=

 s(1) after t(i), 1) 1,-d(i 1

 s(1) t(i)if , 0) 1,-d(i

 s(1) t(i)before , 0) 1,-d(i 1

1) d(i,

As mentioned previously “d” represents the array

required to measure edit distance, while the symbol

“i” refers to the position of a row in d array and

symbol “j” refers to the position of the column in

“d” array. Also, as mentioned previously, second

row and second column in LA array mean first row

and first column in ILA-OT array, while third row

and third column in LA array mean second row and

second column in ILA-OT array. This is due to the

removing first row and first column from the ILA-

OT array as described in the previous section. Note

this study ignores increasing operations required to

increase i and j from the calculation because they

are almost same for ILA-OT array and LA array.

Furthermore, it ignores any single operation does

not require a loop to measure it in order to make the

comparison of operations easier.

Equations 1 and 2 show that it need one

assigning operation to fill each cell value in the first

row and first column of LA array. To fill other rows

and columns in LA array, it requires measuring

equation 3 and equation 4. To identify the value of

cost in equation 3, it needs two operations: one

comparing operation and one assigning operation,

while to identify the value of d(i, j) in equation 4, it

needs six operations: three summing operations,

two comparing operations and one assigning

operation. The total number of operations is 8 for

each cell in LA array excluding first row and first

column. On the other hand, equations 5 and 6 show

that each cell value in the first row and first column

in the ILA-OT array (second row and second

column in LA array) requires three operations: one

summing operation, one comparing operation and

one assigning operation. Furthermore, it requires

fewer operations if there is a shared character

between characters of first token “s(j)” and the first

character in second token t(0). This means the

proposed technique will decrease 5 or more from 8

operations needed in a normal way to measure each

cell value in the first row and first column.

On the other hand, equations 7 and 8 show that

each cell in the second row and second column in

the ILA-OT array (third row and third column in

LA array), also requires three operations: one

summing operation, one comparing operation and

one assigning operation. Furthermore, it also

requires fewer operations if there is a shared

character between characters of first token “s(j)”

and second character in second token t(1). This

means the proposed technique will also decrease 5

or more from 8 operations needed in a normal way

to measure each cell value in the second row and

second column.

To summarize above, ILA-OT decreases the

operations of cells in LA array in six positions. The

first position is to remove all cells of the first row in

LA array with their operations while the second

position is to remove all cells of the first column in

LA array with their operations. The third position is

to decrease operations of the second row in LA

array by almost (5 * number of cells in the second

row) while the fourth position is to decrease

operations of the second column in LA array by

almost (5 * number of cells in the second column).

The fifth position is to decrease operations of the

third row in LA array by almost (5 * number of

cells in the third row) while the sixth position is to

decrease operations of the third column in LA array

by almost (5 * number of cells in the third column).

4. EXPERIMENTS RESULTS

 Experiments have been conducted to compare

the accuracy and processing time (PT) of the ILA-

OT algorithm against the LA employed in [2, 7,

22]. The testing dataset contains different word

lengths, ranging from 3 to 12 [24]. The dataset has

different words length in order to measure the

impact of improved Levenshtein algorithm for a

different length of characters. Each length of

characters contains 1000 words. Equation 9 is used

to measure the percentage decrease (PD) in

processing time [23] while Equation 10 is used to

measure the accuracy between LA and ILA-OT

[14].

100*
(LA) PT

OT)-PT(ILA-(LA) PT
 PD=

100*
scomparison ofnumber Total

 distancesedit equal ofNumber
Acc.=

Note the accuracy was not measured individually

for each algorithm, but it measured depending on

edit distances of both algorithms. This means two

words will be sent in each comparison for LA and

(7)

(8)

(9)

(10)

Journal of Theoretical and Applied Information Technology
 30

th
 June 2016. Vol.88. No.3

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

454

for ILA-OT to calculate edit distance for each

algorithm, then the variable “number of equal edit

distances” in equation 10 will increase by one for

each comparison if the edit distances of both LA

and ILA-OT are equal. The experimental results are

shown in Figure 5 and Figure 6.

From Figure 5, it can be seen that the proposed

ILA-OT algorithm outperforms LA in terms of the

processing time. The percentage decrease in

processing time by ILA-OT is 32.43%. In addition

to that, the number of comparisons having equal

edit distances between both algorithms is identical

to the total number of the comparisons as shown in

Figure 6. This means that the accuracy between

both algorithms is 100%. This indicates that the

proposed algorithm ILA-OT had a significant

reduction in the processing time of LA without

affecting its accuracy.

Figure 5: Processing Time of Both LA and ILA-OT

Figure 6: Accuracy between LA and ILA-OT

4. CONCLUSION AND FUTURE WORK

The goal of this study is to improve

Levenshtein algorithm by reducing its processing

time in generating candidates list for spelling

correction. Therefore, this study has designed an

ILA-OT algorithm, which is based on the concept

of finding patterns to use in predicting the cells’

values in LA array instead of measuring values of

them by using the traditional way of LA.

Experimental results proved that the patterns

proposed by this study are able to decrease

processing time of LA operations by 32.43%

without affecting its accuracy. The proposed ILA-

OT is hoped to contribute various applications that

initially employed Levenshetin algorithm and this

includes DNA searching, sequences' alignment,

word-processing programs, speech processing

systems, and optical character recognition systems.

Future research of this study is to design a

technique that can help ILA-OT in filtering lexicon

words quickly.

REFERENCES:

[1] D. Jurafsky and J. H. Martin, Speech and

language processing: An introduction to

natural language processing, computational

linguistics, and speech recognition, 2nd ed.:

Pearson Education India, 2009.

[2] A. F. R. Al-Masoudi and H. S. R. Al-Obeidi,

"Smoothing Techniques Evaluation of N-gram

Language Model for Arabic OCR Post-

processing," Journal of Theoretical and

Applied Information Technology, vol. 82, pp.

432-439, 2015.

[3] Y. Bassil and M. Alwani, "Context-sensitive

Spelling Correction Using Google Web 1T 5-

Gram Information," Computer and

Information Science, vol. 5, pp. 37-48, 2012.

[4] V. I. Levenshtein, "Binary codes capable of

correcting deletions, insertions and reversals,"

in Soviet physics doklady, 1966, p. 707.

[5] R. A. Wagner and M. J. Fischer, "The string-

to-string correction problem," Journal of the

ACM (JACM), vol. 21, pp. 168-173, 1974.

[6] W. Magdy and K. Darwish, "Effect of OCR

error correction on Arabic retrieval,"

Information Retrieval, vol. 11, pp. 405-425,

2008.

[7] M. Al Azawi, "Statistical Language Modeling

for Historical Documents using Weighted

Finite-State Transducers and Long Short-

Term Memory," PhD dissertation, Technical

Journal of Theoretical and Applied Information Technology
 30

th
 June 2016. Vol.88. No.3

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

455

University of Kaiserslautern, Kaiserslautern,

Germany, 2015.

[8] T. Naseem, "A Hybrid Approach for Urdu

Spell Checking," National University, 2004.

[9] J. F. Daðason, "Post-Correction of Icelandic

OCR Text," (Master's thesis, University of

Iceland, Reykjavik, Iceland), 2012.

[10] I. Q. Habeeb, S. A. Yusof, and F. B. Ahmad,

"Two Bigrams Based Language Model for

Auto Correction of Arabic OCR Errors,"

International Journal of Digital Content

Technology and its Applications, vol. 8, pp. 72

- 80, February 28 2014.

[11] S. G. J. Vargas, "A Knowledge-Based

information Extraction Prototype for Data-

Rich Documents in the Information

Technology Domain," National University,

2008.

[12] G. Navarro, "A guided tour to approximate

string matching," ACM Computing Surveys

(CSUR), vol. 33, pp. 31-88, 2001.

[13] I. Q. Habeeb and S. A. Yusof, "Design of

Automatic Bilingual Lexicon for Arabic OCR

Post-Processing Errors Correction," in

International Conference on Rural ICT

Development, Malacca, MALAYSIA, 2013.

[14] Y. Bassil and M. Alwani, "Ocr post-

processing error correction algorithm using

google online spelling suggestion," Journal of

Emerging Trends in Computing and

Information Sciences, vol. 3, pp. 90-99, 2012.

[15] S. Pal and S. Rajasekaran, "Improved

algorithms for finding edit distance based

motifs," in Bioinformatics and Biomedicine

(BIBM), 2015 IEEE International Conference

on, 2015, pp. 537-542.

[16] G. Navarro, S. Grabowski, V. Mäkinen, and S.

Deorowicz, "Improved time and space

complexities for transposition invariant string

matching," in Technical Report TR/DCC-

2005-4, Department of Computer Science, ed:

University of Chile, 2005.

[17] A. Andoni and R. Krauthgamer, "The

smoothed complexity of edit distance," ACM

Transactions on Algorithms (TALG), vol. 8, p.

44, 2012.

[18] A. Andoni and K. Onak, "Approximating edit

distance in near-linear time," SIAM Journal on

Computing, vol. 41, pp. 1635-1648, 2012.

[19] S. Burkhardt and J. Kärkkäinen, "One-gapped

q-gram filters for Levenshtein distance," in

Combinatorial pattern matching, 2002, pp.

225-234.

[20] M. Huldén, "Fast approximate string matching

with finite automata," Procesamiento del

lenguaje natural, vol. 43, pp. 57-64, 2009.

[21] S. Mihov and K. U. Schulz, "Fast approximate

search in large dictionaries," Computational

Linguistics, vol. 30, pp. 451-477, 2004.

[22] Z. Q. Al-Zaydi and H. Salam, "Multiple

Outputs Techniques Evaluation for Arabic

Character Recognition," International Journal

of Computer Techniques (IJCT), vol. 2, pp. 1-

7, 2015.

[23] W. B. Lund, "Ensemble Methods for

Historical Machine-Printed Document

Recognition," PhD dissertation, Brigham

Young University, Utah, United States, 2014.

[24] Y. Batawi and O. Abulnaja, "Accuracy

Evaluation of Arabic Optical Character

Recognition Voting Technique: Experimental

Study," IJECS: International Journal of

Electrical & Computer Sciences, vol. 12, pp.

29-33, 2012.

