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ABSTRACT 

 

A new approach to the construction of Lyapunov functions as vector functions is developed based on a 

geometrical interpretation of the second method of Lyapunov. The negative of the gradient is determined 

from the components of the time derivative of the state vector (i.e., the right-hand side of the state 

equation). The region of stability of a closed-loop linear, stationary system with uncertain parameters is 

governed by inequalities in the matrix elements of the closed-loop system. 
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1. INTRODUCTION  

 

Currently, control problems are characterised by 

increasingly complex, high-order systems, 

requirements for high efficiency and stability, 

numerous uncertainties and incomplete information. 

Robust stability can be viewed as one of the 

outstanding issues in control theory, but it is also of a 

great practical interest.  Control system design is one 

of the main tasks in automation in all branches of 

industry including manufacturing, energy, 

electronics, chemicals, medical devices, metals, 

textiles, transportation, robotics, aviation, space 

systems, and high-precision military/defence 

systems. In these systems, uncertainty can occur 

because of the presence of uncontrolled disturbances 

acting on the system [1] or because the true values of 

the parameters of the system are unknown, either 

initially or as the system changes over time [1, 2, 3, 

4, 5].  

The main goal in control system design is, in some 

sense, to provide the best protection against 

uncertainty in the knowledge of the system. The 

ability of a control system to maintain stability in the 

presence of parametric or nonparametric 

uncertainties is known as system robustness. In 

general, robust stability analysis consists of 

determining the ranges of values of uncertain 

parameters for which the closed-loop system remains 

stable [2, 17]. A considerable volume of work has 

been devoted to the development of robust stability 

theory.  

In this study, we investigate a new approach to the 

construction of vector Lyapunov functions [6, 13]. 

Vector Lyapunov functions are constructed using a 

geometrical interpretation of the second method of 

Lyapunov presented in [8, 10, 14]. The components 

of the time derivative of the state vector (i.e., the 

right-hand side of the state equation) are used to 

form the negative of the gradient. The robust stability 

of the system is ensured by choosing the controller 

parameters so that the scalar product of the gradient 

vector and the time derivative of the state vector are 

a negative function [11, 12]. Stability conditions can 

be obtained from the positivity of the Lyapunov 

function in the form of a system of inequalities 

involving the uncertain parameters of the system 

(i.e., plant) and the parameters (i.e., gains) of the 

controller. 

We investigate the robust stability of single-input, 

single-output (SISO) and multi-input, multi-output 

(MIMO) linear. 
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In the study of stability, the state equation is 

defined in terms of perturbations x∆  about a 

nominal state; i.e., the state vector x(t) is defined as 

the difference between the perturbed state )(tX  and 

unperturbed state )()()()()(( tXtXtxtxtX ss −=∆=  

This difference is called a perturbation. Therefore, 

the origin corresponds to a predetermined condition 

of the system, the unperturbed state )(tX s . Hence, 

the right-hand side of the state equation expresses the 

rates of the perturbations (deviations) of )(tx , and 

we can assume that the vector of perturbation rates 

for a stable system is directed toward the origin. 

Using a geometric interpretation of the second 

method of Lyapunov, determining stability is 

reduced [7, 8, 9, 10, 11, 13, 16] to the construction of 

a family of closed surfaces surrounding the origin 

with the property that the integral curves 

corresponding to the solutions of the state equation 

(with respect to perturbations), i.e., the trajectories of 

the system, cross these surfaces from the exterior to 

the interior, where the interior contains the origin. 

The unperturbed condition is stable if it is possible to 

construct such families of surfaces. 

If the total time derivative of the Lyapunov 

function is negative and the rate vector is directed 

toward the origin, then each integral curve emanating 

from a sufficiently small neighbourhood of the origin 

will necessarily cross each of the surfaces from the 

exterior to the interior because the Lyapunov 

function monotonically decreases. In this case, the 

integral curves approach the origin, so the 

unperturbed condition is asymptotically stable. 

 

2. MATHEMATICAL MODEL 

FORMULATION 

 

2.1. Single-input, single-output systems  

 

We now consider a system with one input and one 

output [11, 12] 

Let the open-loop system be described by the 

equation 

1,, RuRxbuAx
dt

dx n ∈∈+=
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The state feedback control law is given by the 

scalar function 
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where 
n
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kkkk ,,21 L=  (dimensions 1×n). 

Then, system (1) in explicit form can be represented 

as 
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We apply Lyapunov’s direct method [2, 16, 17] to 

determine the stability of the system in (3): for the 

system to be asymptotically stable, it is necessary 

and sufficient that there exists a positive Lyapunov 

function V(x) such that the derivative with respect to 

time along the solution of the state equation (3) is 

negative; i.e., The time derivative of the Lyapunov 

function in (4) with regard to the state equation (3) is 

given by the scalar product of the gradient vector 

x

xV

∂

∂ )(  and the state rate vector 
dt

dx
.  To determine 

the stability of a system [1, 10], the nominal, or 

unperturbed, state must be chosen. 

The equations of system (1) or (3) are always 

formed in terms of deviations ∆ from a steady state 

)( SS XXxxX −=∆= .  

Applying a geometric interpretation of 

Lyapunov’s theorem [11, 12], we define negative 

gradients of the candidate Lyapunov function as 
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Then, we obtain the complete time derivative of 

the candidate vector Lyapunov function as 
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From (5), it follows that the complete time 

derivative of a candidate vector Lyapunov function 

will always be a negative function. 

The complete time derivative of the Lyapunov 

function )(...)()()( 21 xVxVxVxV n+++=  can be expressed 

in scalar form as 

2
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From (4), we can obtain a candidate vector 

Lyapunov function [11]: 
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The entries of the candidate vector Lyapunov 

function ),...,1( niVi =  are constructed from the 

gradient vector. The Lyapunov function can be 

expressed in scalar form as  
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Given that the function in (7) must be positive 

and the quadratic forms in (5) are negative, we 

obtain the following conditions for the stability of 

the system in (3): 
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in control systems, a precise mathematical 

formulation is often inaccessible. in reality, systems 

inevitably contain uncertainty. for a system to 

satisfy the constraints (8) in the presence of 

uncertainties in the parameters, we can determine a 

robust stability radius 

)),(( ijgG = ,0
ijijij gg ∆+= ,ijij mγ<∆ ni ,...,1=  

where the nominal system matrix 0
0 ijgG =  is super-

stable, 
jjijij kbag −=  are the entries of the closed-

loop system matrix, ))((
0

0 ijgG =  is the nominal 

system matrix (1), 
ijij m<∆∆=∆ )),((  is the matrix 

of uncertainties, the matrix ))(( ijmm =  scales 

changes in the entries ijg  of matrix G, and 0>γ  

is the uncertainty range.  

We define the system using the negative of the 

gradient of a candidate function, i.e., Vx x∆=& , 

which was obtained previously in the form of a 

Lyapunov function:  
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Super-stability of nominal system (9) is defined 

using (4) 

( ) ∑
≠
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1
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j
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Suppose that the condition of super-stability is 

preserved for all matrices of the family 
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Thus, we can explicitly find the radius of robust 

stability for the family of systems. 

 

2.2. Multi-input, multi-output systems 

 
We will investigate a method for determining the 

robust stability of linear systems with m inputs and 

n outputs based on a vector Lyapunov function 

[15], and we will obtain the conditions for robust 

stability [11, 12]. 

Assume a linear system given by 

mn
RuRxBuAxx ∈∈+= ,,

.

  

cxy = lRy ∈    (11) 

and a state feedback controller  

Kxu −=     (12) 
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Equation (11) can be expanded as 
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Let the matrix G = A-BK represent the closed-

loop system. Expressing system (13) in matrix-

vector form, we can write 
nRxGxx ∈= ,&  

where 
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Hence, (13) can be written as 
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A Lyapunov function )(xV  is defined as a vector 

))(),...,(),(( 21 xVxVxVV n , and the gradient of the 

vector Lyapunov function can be written as 
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The time derivatives of the components of the 

vector Lyapunov function can be obtained from the 

state equation (13) or (14) using the scalar product 

of the components of the gradient of the vector 
Lyapunov function and the components of the state 

rate vector 
dt

dxi , i.e., 
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The time derivatives of the elements of the vector 

Lyapunov function )(xVi  are given in (16). From 

the geometrical interpretation of Lyapunov’s 
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theorem, these functions will be negative; i.e., the 

conditions for asymptotic stability of system (14) 

will always be satisfied. 

Using the components of the gradient vector, we 

construct the elements of the vector Lyapunov 

function: 
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The positiveness of the vector Lyapunov function 

can be expressed as 
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We will consider the radius of robust stability of 

the vector Lyapunov function components. For this 
purpose, we can address parametric families of 

coefficients of the vector Lyapunov function 

components in the form [3, 14]  
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matrix 0D  correspond to a strictly positive 

Lyapunov function, i.e., 
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We will require that the coefficients be strictly 

positive for all functions in the family 
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In particular, if 1=ijm  (in which case the scales 

of all of the coefficients of the components of the 

Lyapunov function are identical), then )( 0
* Dσγ =  

Thus, the stability radius of the family of positive 

functions is equal to the smallest value among the 

coefficients of the vector Lyapunov function. 

 

3. CASE STUDY 

 

3.1. Case of linearized spacecraft equation 

 

We investigate the stability of the spacecraft (SC) 

automatic traffic control systems with proportional 
control law (for the linearized system): 
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    (19) 

where xI , yI , zI  - main central moments of 

spacecraft inertia relative to relevant axis; xuM , 

yuM , zuM  & xfM , yfM , zfM  - respectively 

projections of momentum control and disturbing 

moment relative to relevant axis.  

Control law is given as 
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System (19) can be expressed as 
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where ,
1

xI
a = ,

1

yI
b =

zI
c

1
=  

We investigate the stability of the system (21) 

developed by the Lyapunov function method [11, 

12]. The gradient of the vector Lyapunov function 

can be written as: 
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The full derivatives from Lyapunov function V 

(x) in a scalar form is defined as: 
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The full derivatives from Lyapunov function V 

(x) is defined as: 
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Full derivative from Lyapunov vector function in 

this construction is definitely negative function. We 

can find components of the gradient vector of 

Lyapunov function: 
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Lyapunov function V (x) in a scalar form is 

defined as  

])1()1(

)1([
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Conditions of the system (21) robust stability, we 
obtain, taking into account the negative definition 

of the function (22) and the existence of a positive 

definite quadratic form (23), i.e.   
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4
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;
1

6
c

k −<     (24) 

System (21) with the proportional control law 

(20) will be stable when the system parameters 

changing in area (24), and loses stability beyond the 
borders of the area (24). The system can behave 

chaotically and amplitude of chaotic oscillations 

can reach infinity. 

Figures 1-2 show the results of numerical 

simulations of the linear spacecraft control system 
with proportional control law. 

 

Figures - 1. The linear spacecraft control system 

with proportional control law. 
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Figures - 2. The linear spacecraft control system 

with proportional control law. 
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3.2. Case of nonlinear spacecraft equation 

 

We investigate the stability of the spacecraft (SC) 

automatic traffic control systems with proportional 

control law (for the nonlinear system) [18, 19, 20, 

21, 22]: 
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(25) 

Control law is given as 

2211 xkxkxfxu +=Μ+Μ−  

4433 xkxkyfyu +=Μ+Μ−  

6655 xkxkzfzu +=Μ+Μ−  

(26) 

System (25) can be expressed as 
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(27) 

where 
xa Ι= /1 , 

yIb /1= , 
zIc /1=  

Stationary states of the system can be found by 

equation system: 
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(28) 

By equation (28) we identify stationary state of 
the system (27) which is:  
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Lets research robust stability of the system (27) 

using Lyapunov’s method. Gradient vector 

components shall be marked as: 
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Projection of system (27) speed vector on 

coordinate axis is presented as follows: 
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Full derivative of time from Lyapunov’s vector 

function may be presented as follows: 
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Full derivative of time from vector function of 

Lyapunov in this construction is definitely negative 

function 

By component of gradient vector, Lyapunov’s 

function shall be displayed as 
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in scalar form is: 
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2

1
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−

−

−
−

−+−

−−
−

−

−+−−=

 (31) 

Function (31) satisfied all conditions of Morse 
theorem from catastrophe theory, therefore function 

(31) may be presented by quadratic form [13].  

2

66

2

55

2

44

2

33

2

22

2
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)1(
2

1

)1(
2

1

2

1

)1(
2

1

2

1
)(

xckxck

xbkxbk

xakxakxV

+−−

−+−−

−+−−≈

 (32) 

Conditions of robust stability of stationary state 
of the system (27) will be gained with consideration 

of negative certainty of full derivative (31) from the 

above quadratic form as follows: 

,0
1
>−ak  ,01

2
>−−ak  ,0

3
>−bk  

,01
4

>−−bk ,0
5
>−ck  01

6
>−−ck  

or 

,0
1
<k  ,

1
2

a
k −<  

,0
3
<k ,

1
4

b
k −< ,0

5
<k  

c
k

1
6

−<  
(33) 

System (27) with the proportional control law 

(26) will be stable when the system parameters 

changing in area (33). 

 

4. CONCLUSION 

Research in recent years has shown that the 

method of Lyapunov functions can be successfully 

used to analyse the robust stability of linear and 

nonlinear control systems. Widespread application 

of this method is constrained by the lack of a 
general method for selecting or constructing 

Lyapunov functions and difficulties with their 

algorithmic representation. An inappropriate choice 

of a Lyapunov function or the inability to construct 

one does not indicate instability of the system, only 

that a proper Lyapunov function has not been 
found. 
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An analysis of the robust stability of systems is 

provided by the new approach, which is derived 

from a geometric interpretation of the asymptotic 
stability theorem of Lyapunov. A Lyapunov 

function is constructed in the form of a vector, and 

the negative of the gradient is found using the 

components of the time derivative of the state 

vector (the right-hand side of the state equation). In 

this case, the time derivative of the Lyapunov 
function, which is given by the scalar product of the 

gradient vector and the time derivative of the state 

vector, is always a negative function. The region of 

robust stability of the closed-loop system is defined 

by the conditions for which the constructed 

Lyapunov function is positive. 

The proposed approach to the construction of 

Lyapunov functions allows for an evaluation of the 

region of robust stability in the form of simple 

inequalities in the uncertain parameters of the 

controlled system. This study developed a method 

for analysing the robust stability of SISO and 
MIMO dynamical systems in canonical forms. The 

method ensures the stability of the system; i.e., the 

real parts of the eigenvalues of the closed-loop 

system are all negative. The efficiency and 

applicability of the proposed approach are evident. 
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