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ABSTRACT

A new approach to the construction of Lyapunov functions as vector functions is developed based on a
geometrical interpretation of the second method of Lyapunov. The negative of the gradient is determined
from the components of the time derivative of the state vector (i.e., the right-hand side of the state
equation). The region of stability of a closed-loop linear, stationary system with uncertain parameters is
governed by inequalities in the matrix elements of the closed-loop system.
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1. INTRODUCTION

Currently, control problems are characterised by
increasingly ~ complex, high-order systems,
requirements for high efficiency and stability,
numerous uncertainties and incomplete information.
Robust stability can be viewed as one of the
outstanding issues in control theory, but it is also of a
great practical interest. Control system design is one
of the main tasks in automation in all branches of

industry  including = manufacturing, energy,
electronics, chemicals, medical devices, metals,
textiles, transportation, robotics, aviation, space
systems, and high-precision  military/defence

systems. In these systems, uncertainty can occur
because of the presence of uncontrolled disturbances
acting on the system [1] or because the true values of
the parameters of the system are unknown, either
initially or as the system changes over time [1, 2, 3,
4, 5].

The main goal in control system design is, in some
sense, to provide the best protection against
uncertainty in the knowledge of the system. The
ability of a control system to maintain stability in the
presence  of  parametric or  nonparametric
uncertainties is known as system robustness. In
general, robust stability analysis consists of

determining the ranges of values of uncertain
parameters for which the closed-loop system remains
stable [2, 17]. A considerable volume of work has
been devoted to the development of robust stability
theory.

In this study, we investigate a new approach to the
construction of vector Lyapunov functions [6, 13].
Vector Lyapunov functions are constructed using a
geometrical interpretation of the second method of
Lyapunov presented in [8, 10, 14]. The components
of the time derivative of the state vector (i.e., the
right-hand side of the state equation) are used to
form the negative of the gradient. The robust stability
of the system is ensured by choosing the controller
parameters so that the scalar product of the gradient
vector and the time derivative of the state vector are
a negative function [11, 12]. Stability conditions can
be obtained from the positivity of the Lyapunov
function in the form of a system of inequalities
involving the uncertain parameters of the system
(i.e., plant) and the parameters (i.e., gains) of the
controller.

We investigate the robust stability of single-input,
single-output (SISO) and multi-input, multi-output
(MIMO) linear.
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In the study of stability, the state equation is

defined in terms of perturbations Ax about a
nominal state; i.e., the state vector x(¢) is defined as
the difference between the perturbed state X(¢) and

unperturbed state X (¢)(x(r) = Ax(t) = X (¢) - X, (£)

This difference is called a perturbation. Therefore,
the origin corresponds to a predetermined condition

of the system, the unperturbed state X () . Hence,

the right-hand side of the state equation expresses the
rates of the perturbations (deviations) of x(¢), and

we can assume that the vector of perturbation rates
for a stable system is directed toward the origin.

Using a geometric interpretation of the second
method of Lyapunov, determining stability is
reduced [7, 8, 9, 10, 11, 13, 16] to the construction of
a family of closed surfaces surrounding the origin
with the property that the integral curves
corresponding to the solutions of the state equation
(with respect to perturbations), i.e., the trajectories of
the system, cross these surfaces from the exterior to
the interior, where the interior contains the origin.
The unperturbed condition is stable if it is possible to
construct such families of surfaces.

If the total time derivative of the Lyapunov
function is negative and the rate vector is directed
toward the origin, then each integral curve emanating
from a sufficiently small neighbourhood of the origin
will necessarily cross each of the surfaces from the
exterior to the interior because the Lyapunov
function monotonically decreases. In this case, the
integral curves approach the origin, so the
unperturbed condition is asymptotically stable.

2. MATHEMATICAL MODEL
FORMULATION

2.1. Single-input, single-output systems

We now consider a system with one input and one
output [11, 12]

Let the open-loop system be described by the
equation

d
—X:Ax+bu,xeR",ueRl (1
dt
where
0 1 0 0 0 X,
0 0 1 0 0 x
A= : : b: > = 22
0 0 0 1 1 X

The state feedback control law is given by the
scalar function

u(t) ==k x(f) (2)

where " =|k, ky, -, k| (dimensions Ixn).
Then, system (1) in explicit form can be represented
as

X =X,

.xz =X 3)

xnfl =X

xn :A(Gn +k1 )xl 7(anfl +k2)x2 7"'7(611 +kn )xn

We apply Lyapunov’s direct method [2, 16, 17] to
determine the stability of the system in (3): for the
system to be asymptotically stable, it is necessary
and sufficient that there exists a positive Lyapunov
function V(x) such that the derivative with respect to
time along the solution of the state equation (3) is
negative; i.e., The time derivative of the Lyapunov
function in (4) with regard to the state equation (3) is
given by the scalar product of the gradient vector

(¥ and the state rate vector @ To determine

Ox dt
the stability of a system [1, 10], the nominal, or
unperturbed, state must be chosen.

The equations of system (1) or (3) are always
formed in terms of deviations A from a steady state

Xg(x=Av=X-X;).

Applying a  geometric interpretation  of
Lyapunov’s theorem [11, 12], we define negative
gradients of the candidate Lyapunov function as

dx, 0OV (x)
4 =x,
dt 0x,
Cdny 0V ()
di ox, 3 4

_ dxn—l _ aVrr—l (x) = x

dt ox, !
o, oV, (%) . oV, (x) . ov, (x) - v, (x) _
dt ox, Ox, Ox; ox,

=—[(a, + k)x; +(a,., +ky)xy +..+ (a, + k,)x, 1

Then, we obtain the complete time derivative of
the candidate vector Lyapunov function as
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av,(x) a,+k >0
5 T T2

dt a,  +ky,—1>0
L/;(x) = —x? a, , +ky—1>0 ®)

t
)

de(x) ) al+kﬂ—1>0
R A 5.0

dt " . . .
av. (x) in control systems, a precise mathematical

;t = —[(a, +k)x; + formulation is often inaccessible. in reality, systems
Fa, 4 )ty ot () k), ] inevitably contain uncertainty. for a system to

From (5), it follows that the complete time
derivative of a candidate vector Lyapunov function
will always be a negative function.

The complete time derivative of the Lyapunov
function y(x) = ¥ (x) + ¥, (x) +...+ 7,(x) can be expressed

in scalar form as

dl;(zx) =—x3 =3 ——l(@, +hy)x +

+(a, | +ky)xy +..+(a; +k,)x, 1*

(6)

From (4), we can obtain a candidate vector
Lyapunov function [11]:

Vi(x) = (Or% x2.0,...,0)

V,(x) = (0,0,~ % x2,...,0)

1
Vﬂ—l (x) = (050,0,...,— E xrzl )

1 1 1
Vn (X) = (E(an +kl )Xlz,z(an,1 +k2 )xgﬁ"'ﬁz(al +kn )Xﬁ)

The entries of the candidate vector Lyapunov
function V,(i=1,...,n) are constructed from the

gradient vector. The Lyapunov function can be
expressed in scalar form as

1 1
V=2, + key)xt + > (@ + ke - x; + ™

+ %(an,2 +hy —Dx? +..+ %(a1 +k, —1)x2

Given that the function in (7) must be positive
and the quadratic forms in (5) are negative, we
obtain the following conditions for the stability of
the system in (3):

satisfy the constraints (8) in the presence of
uncertainties in the parameters, we can determine a
robust stability radius

0
G:((ggj)), 8ij = 8 +Aija

Alj|<ymij, i=1..,n

where the nominal system matrix g, - 2 is super-
stable, g, =a,—bk, are the entries of the closed-
loop system matrix, G,=((gj)) is the nominal

system matrix (1), A=((A), Al< m, is the matrix

of uncertainties, the matrix = ((m,)) scales

changes in the entries g, of matrix G, and y >0

is the uncertainty range.

We define the system using the negative of the
gradient of a candidate function, ie., xX=AJV,

which was obtained previously in the form of a
Lyapunov function:

X =—(a, +k)x
Xy =—(a, +ky; =Dx;

)

X3 =—(a, +hk3 —1)x;

).Cn = _(al +kn _l)xn

Super-stability of nominal system (9) is defined
using (4)

5(G, )= min(-g] - z gj)=min((a, + k), min(a,_, +k, —1))=0

j#l
(10)

Suppose that the condition of super-stability is
preserved for all matrices of the family

_(gg +Aii)—2‘g§ +A;20,i=1,..n

J#i

i=2,..,n

This inequality will be satisfied for all admissible
A if and only if

0,0
a, +k; —ym;; >0

al 4 k) —1—ymy >0

e ——
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a10+k2—1—}411nn >0

+ k) O +k) -
y<y" —mm( L min Ont T Hi ),

ie., nmy m;;

i=l.,n-1

Thus, we can explicitly find the radius of robust
stability for the family of systems.

2.2. Multi-input, multi-output systems

We will investigate a method for determining the
robust stability of linear systems with m inputs and
n outputs based on a vector Lyapunov function
[15], and we will obtain the conditions for robust
stability [11, 12].

Assume a linear system given by

x=Ax+Bu,xeR",ueR"

y=cx yeR' (11)
and a state feedback controller
u=-Kx (12)
where
a; Q.. by by by
I IO P I by,
Ay Qpp .o Ay, bnl bn2 bnm
i1 G2 o Oy X N
C= Cp € v Cyy o X2 . %)
cn S o Cnp Xn Vi
ky ok ky, U
K= ky ky ky, up
kml ka kmn U
u; =—kyx, —kpxy —..—kyx,,i=12,...n

Equation (11) can be expanded as

X =ayx + Xy + o+ ay,X, + by +byuy +. 4 byu,
Xy = Ay X) + AypXy + et Gy Xy, + byy + bty + ..+ by, (13)

X, =X + Xy + .t @, X, + by + by .+ by u

nm**m

Let the matrix G = A-BK represent the closed-
loop system. Expressing system (13) in matrix-

vector form, we can write X = Gx,x € R”

where
g1 12 - Em
821 E» Eon S
G: gij_alj_zbikkkj
k=1
gnl gn2 gnn

Hence, (13) can be written as

m m
X = (ay - Zblkkkl)‘cl‘*'(“lz Zblkkkz)x2+ -+ (ay, - Zblkk/m)xn

k=1 =l (14)

m

X, =(ay - szkkkl)xl +(ay - szkkkz)‘cz +ot(ay, - ZbZkkkn)xn
k=1 k=1 k=1

m m

X, =(a, — ankkkll‘cl‘*'(“nz ankkkzl‘cz‘*' (@, — ankkkn)xn

k=1 k=1 k=1

A Lyapunov function V' (x) is defined as a vector

V(N (x),V;(x),....V, (%) »
vector Lyapunov function can be written as

Zblkkkl}fla

H) ‘[12 Zblkkkz}‘z’- 8V(x) Zblkklm
e k=1

ﬁVz(x) ZbZk km]xh

0
VZ(X) { Zby(kkz]&w

W) _ N
o =%~ ankkm]xp
% (X) ankkkz}fz’" anAkknJ X

The time derivatives of the components of the
vector Lyapunov function can be obtained from the
state equation (13) or (14) using the scalar product
of the components of the gradient of the vector
Lyapunov function and the components of the state

and the gradient of the

aV(x)
]" (15)

8V2 (X) { szkkkn] n

v, (x)

dx; .
rate vector —, 1.e.,
dt

dV(x) {[ Zb,kkkljxl + [a zbrkkkz]xz oot [a Zb’kkk"j ":|
(16)

The time derivatives of the elements of the vector
Lyapunov function V,(x) are given in (16). From

i=12,..,n

the geometrical interpretation of Lyapunov’s
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theorem, these functions will be negative; i.e., the
conditions for asymptotic stability of system (14)
will always be satisfied.

Using the components of the gradient vector, we
construct the elements of the vector Lyapunov
function:

m
_ 2
Vi(xp, X350 ) = (“11 - z blkkkljxl -
k=1
m m
@y =Y bk (X @, = Y bk, |x2
a2 1eRk2 [X2 7o ™| g 1 kn |Xn
k=1 k=1
m
= byyky |xi -
s 26Kk | X1
k=1
m m
2
- azzfzbzkkkz R RO ZbZkkkn n
k=1 k=1

Vo, X0y X)) = —

(17)

Vn(xb X200 xn) =7

m
2
Ay — z bnkkkl X -
k=1
m m
2
| Qn2 _Z bnkka x2 seees Z bnkkkn Xn
k=1 k=1

The positiveness of the vector Lyapunov function

can be expressed as

k=
m m m

—|4n - szkkkl >0, ay - szkkkz > 0,7 @, — ZbEkkkn >0
k=1 k=1 k=1

7[(1,,1 ankkﬂ}of[a,ﬂ ib,lkk“]>0 ..... {am ankkk7]>0
k=1 k=1
We will consider the radius of robust stability of
the vector Lyapunov function components. For this
purpose, we can address parametric families of
coefficients of the vector Lyapunov function
components in the form [3, 14]

where the

dy=dj+ A A\ <7 my 0. j=12,..m

coefficients dl = _[a _ Z 50 OJ of nominal
k=1

matrix D, correspond to a strictly positive

Lyapunov function, i.e.,
o(Dy) = mm mln— [a Z bkkk/j >0
k=1

We will require that the coefficients be strictly
positive for all functions in the family

[a}} - Zb,%k,?,]+ Ay >0,i=12,m;j=12,n
k=1

This inequality holds for all admissible Ai/' if
and only if

m
7[513 - Zb,%kfj] tymy>0,i=12m; =120
k=1

ie.,

m
0 0,0
~| @ =Y birk
* . . k=1
y <y =minmin
i

J m;

In particular, if m; =1 (in which case the scales

of all of the coefficients of the components of the
Lyapunov function are identical), then 5" = 5(D,)

Thus, the stability radius of the family of positive
functions is equal to the smallest value among the
coefficients of the vector Lyapunov function.

3. CASE STUDY
3.1. Case of linearized spacecraft equation

We investigate the stability of the spacecraft (SC)
automatic traffic control systems with proportional
control law (for the linearized system):

&
dt

dx, 1
2o (M, +M
a1 (=M., +My)

b (19)
dt

LM M)

2

Xy

dt
dx;

dt
dxg
dt

6

1
=7 M. M)

where 1, I,,1

spacecraft inertia relative to relevant axis; M,

Myu, M, & fo, Myf, sz - respectively

projections of momentum control and disturbing
moment relative to relevant axis.

. - main central moments of

Control law is given as
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M, +M, =kx +kx, OVs (X155 X6) -0, Vs (xy, ) -0,
M, + M, =kx +kx, (20) ox,y oxs
—M_, + M =ksx; +kexg V5 (015 X6) =—xg
Oxg
System (19) can be expressed as
OV (Xy,5erXg) 0 OV (Xy50sXg)
dx =0,.., = —cksxs,
7; =x, ox, Oxs
dx, . OV (X|5er Xg) _ ckgx
e ak,x, + ak,x, dxg
dxy _ 21) The full derivatives from Lyapunov function V
a (x) in a scalar form is defined as:
d.
4~ bhyx, +bk,x, AV (X Xg) o
dt —_— = —x2 N
dx; V. dt )
dr ° LACGEELN =—a’klx} —a’k;x3,
dx dt
6
= ckyxs +ckyx,
dt AV (x) ey Xg) 2
3T T6) 2
where 1 b= 1 c= 1 dt
T L M:_[fk —b2k2x2,
dt
We investigate the stability of the system (21) av
developed by the Lyapunov function method [11, M = —xé,
12]. The gradient of the vector Lyapunov function dt
i : dVe (X ees
can be written as: ﬁ(x;h Xg) —c2k5 X2 - czké X2
oV (xees Xg) 0 OV (xees Xg) -
ox, o ox, BT The full derivatives from Lyapunov function V
x) is defined as:
OV (X 5ees Xg) 0 OV (X ,eees Xg) 0 (x)
R h dV(xy,...,xg)
Ox; Oxg #——(azk1 Xt +a*kyng +x* +bxd + (22)
W N~ W akyx,, DR xR PRI D)
X X
av,( : ) av,( : ) Full derivative from Lyapunov vector function in
Gl Xe) 0,..., WX Xe) _ 0 this construction is definitely negative function. We
x; X can find components of the gradient vector of
Lyapunov function:
V3 (X 5es Xg) 0 OV3(x,5es Xg) 0
— Y — Y 1
axl axz Vl(x] 7"'7x6):_5'x§7
V3 (X 5es Xg) oV (xy,eer Xg)
—0, ——X4, V __1 k 2_1 k 2
0x3 0x, 2 (Xp 5005 X6) = S TS A,
V3 (X 5es Xg) 0 OV3(X)5eees Xg) 0 |
Oxs ’ Oxg Vi (xp5ees Xg) =—Exf,
1 1
6V4(x1,...,x6) _0’ 8V4(x1,...,x6) _0’ V4(x1,...,x6):_—bk3x§ ——bk4x2,
ox, ox, 2 2
I CT oV, (%, X 1
M:—bkm, M:—MQM, Vs (X5 Xg) =—— X ,
0x5 Oxy 2
1 1
V4 (X505 X6) 0, V4 (X150 X6) -0 Ve (X 5ees Xg) =—Eck5x52 _ECksxé
Oxs Oxg
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Lyapunov function V (x) in a scalar form is
defined as

1 2 2
V(x{,X5,.. =—[-ak,x; —(ak, + x5 —
(X15X 505 X¢) 2[ akyxi —(ak, +1)x; (23)

bkyxi —(bky +1)x3 — cksx? — (ckg +1)x2]

Conditions of the system (21) robust stability, we
obtain, taking into account the negative definition
of the function (22) and the existence of a positive
definite quadratic form (23), i.e.

—ak, > 0, —(ak, +1)>0, —bk; >0,

x1,x2,x3, x4, x5, x6

Linear Control Law a1=0.2, b=0.5, c=0 4, k1=-0.5, k2=-5, k3=-0.01, k4=-2, k5=-0.25,k6=-2.5
0.025 T

x1
x2 H
x3

0.015 f Y
Il i
0.01 f ©
0.005 A
o FA WY P S S SO N
‘ lgirae e

-0.005

=i
H

oo} -
|

-0.02

-0.025
0 20 40 60 80 100 120 140 160 180 200

Figures - 2. The linear spacecraft control system

—(bky, +1)>0, —cks >0, —(ckg+1)>0 with proportional control law.

or
a>0,b>0,¢>0
1 1
ky <0, ky <——, ky <0, ky <——, ks <0,
a b
1

ky =—2ks =—025ks =-2.5

3.2. Case of nonlinear spacecraft equation

We investigate the stability of the spacecraft (SC)

kg <——; (24) automatic traffic control systems with proportional
¢ control law (for the nonlinear system) [18, 19, 20,

System (21) with the proportional control law 21, 22]:

(20) will be stable when the system parameters
changing in area (24), and loses stability beyond the
borders of the area (24). The system can behave
chaotically and amplitude of chaotic oscillations
can reach infinity.

Figures 1-2 show the results of numerical
simulations of the linear spacecraft control system
with proportional control law.

Linear Control Law a1=0.25, b=0.15, c=0.65, k1=-0.45, k2=-4 5, k3=-0.4, k4=-6.8, k5=-0.35, k6=-1.6
0025 T

x1
%2 |4

002

x3
0015 s
x5
001 f %64
b
g 0005 AL R
= i i H
E' 0 ! memw R R
2 Uk
= | AL
= 0005
= W

-0.01 ‘H

-0.015 \

002

0025
0 20 40 60 80 100 120 140 160 180 200

o

da

% = IL(I'V _Iz)x4x6 +IL(_M~W +M~‘-f)
. X

£

%:IL(IZ _Ix)x2x6 +IL(_M.W +Mk'f) (25)
dx _XVV '

f__f !

LAV PRV

Control law is given as

-M,, +M =kx +k,x, (26)
-M,, +M , =kx; +k,x,

-M._, +sz. = kyxs +k xg

Figures - 1. The linear spacecraft control system System (25) can be expressed as

with proportional control law.

ks =—0.35;k =—1.6
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o v _, ), v,
dt > 2 37739
ox, Oox, ox
&y _ ko x,+ak,x, + L : ) 3
I ak,x,+ak,x, +a P X4 X¢ GVA(X) .
dx3 a - 4K
o 5
de, (1 1 @7)
= b(; —;)x2x6 +bkyx, +bk,x, v, (x) _ ’ ov,(x) _ ab—bc ox.
dxs _ X Ox, 0x, ac
T T e
t
ov. ov. V.
ﬁ:c{l—l)xzh + cksxg + ckyx, S(x)z yees 5()C)Z(), 0 5( )=—x
i \a b ox, ox, ox, ‘
Where a=1/1x, bzl/lyy CZI/IZ aV(y(x):() aV(v(x):_bc_acxx aVé(x):O
, ox, T o, ab T ox, ’
Stationary states of the system can be found by
equati . ov, (x)
quation system: )
ox,
x2s = 0
1 1
ak, +akyxy, + a[z - ij‘“x‘” =0 ag“(x) =—ck.x,, 81‘;6 (x) =—ck x,
x4s = 0 xs xb
1 1 L.
bk,x,, +bk,x,, + b[—)xhxm =0 (28) Projection of system (27) speed vector on
X =0 ¢ d coordinate axis is presented as follows:

ckxg +ckgxg + c(l - 1)x2x4 =0
a b
By equation (28) we identify stationary state of
the system (27) which is:
x. =0, x, =0, x_ =0,
) (29)

x,=0,x, =0,x =0

Lets research robust stability of the system (27)

using Lyapunov’s method. Gradient vector
components shall be marked as:
v(x)_, ) oV, (x)
——=0, ——==—x,,..,, =0
OX, ox, ox,
D40 N A0 I
axl axz axz
v,(x)  ac—ab
- XXy
Ox bc
6Vz(x):0,aVz(x):0
Ox, Ox,
re) o))
Ox Ox ox

d.
LS
dt
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Full derivative of time from Lyapunov’s vector
function may be presented as follows:

dV(x) oV(x) ﬂ_
dt ox dt

, ac—ab) , ,
-x! - x!x! —
bc

-b’k!x; —bk}x; —x; -
_[ab—bc
ac

—a’k’x! —a’klx!

(30)

2
J xlx!—x! —c'klx! -

bc —ac ,
- x:x, —c'k

2

2
6

X2,
ab ‘

Full derivative of time from vector function of
Lyapunov in this construction is definitely negative
function

By component of gradient vector, Lyapunov’s
function shall be displayed as

1
V(x)=-—=x]
() ==7x
V. (x)= —lak]x]2 —lakqxz2 _ac;abxﬁx:
2 2 2bc
V(x)——lx2
3 2 4
V() =~k — Lk — 20 T0C
2 2 2ac
1
V. (x)=—=x;
() =5
V(x)= _be—ac xlx, —lckixj —lck5x§
2ab 2 2

in scalar form is:

1 1
V(x)=——ak x’ —— (ak +1)x. —
(x) 5 akx = (ak +1)x;

ac—ab XX, —lbiji—
2bc 2

Lok, e 22T
2 2ab

(€1))

3 ab—bc
2ac

1
x;x, —Ecksx: —(ck, +Dx;

Function (31) satisfied all conditions of Morse
theorem from catastrophe theory, therefore function
(31) may be presented by quadratic form [13].

1 1
V(x)~ ——akx’ ——(ak, +1)x’ —
(x) 5 k%, 2(2 )X,

1 1
——bkx, ——(bk, +1)x] — 32
2 X 2( 4+ )x4 ( )

~ 3k (o +

Conditions of robust stability of stationary state
of the system (27) will be gained with consideration
of negative certainty of full derivative (31) from the
above quadratic form as follows:

—ak, >0, —ak, —1>0, —bk, >0,
-bk,-1>0, —ck, >0, —ck —-1>0

or

k| <0, k2 <_l,
1" (33)
k, <0, k,<——, k <0, k, <——
’ b c

System (27) with the proportional control law

(26) will be stable when the system parameters
changing in area (33).

4. CONCLUSION

Research in recent years has shown that the
method of Lyapunov functions can be successfully
used to analyse the robust stability of linear and
nonlinear control systems. Widespread application
of this method is constrained by the lack of a
general method for selecting or constructing
Lyapunov functions and difficulties with their
algorithmic representation. An inappropriate choice
of a Lyapunov function or the inability to construct
one does not indicate instability of the system, only
that a proper Lyapunov function has not been
found.
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An analysis of the robust stability of systems is
provided by the new approach, which is derived
from a geometric interpretation of the asymptotic
stability theorem of Lyapunov. A Lyapunov
function is constructed in the form of a vector, and
the negative of the gradient is found using the
components of the time derivative of the state
vector (the right-hand side of the state equation). In
this case, the time derivative of the Lyapunov
function, which is given by the scalar product of the
gradient vector and the time derivative of the state
vector, is always a negative function. The region of
robust stability of the closed-loop system is defined
by the conditions for which the constructed
Lyapunov function is positive.

The proposed approach to the construction of
Lyapunov functions allows for an evaluation of the
region of robust stability in the form of simple
inequalities in the uncertain parameters of the
controlled system. This study developed a method
for analysing the robust stability of SISO and
MIMO dynamical systems in canonical forms. The
method ensures the stability of the system; i.e., the
real parts of the eigenvalues of the closed-loop
system are all negative. The efficiency and
applicability of the proposed approach are evident.

REFERENCES:

[1] Kurzhansky A.B. Control and observation in
the conditions of uncertainty. Moscow.: Nauka,
1978., pp. 145-152.

B.T. Polyak, P.S. Shcherbakov. Robust stability
and control— Moscow.: Nauka, 2002., pp. 125-
137.

Neumark Y.N. Robust stability and D - partition
/ | Automation and Remote Control, 1992, Ne 7.
Zhou, K., Doyle, J.C. & Clover K. Robust and
optimal control. Upper Saddle River. NIJ:
Prentice Hall, 1995., pp. 96-101

Besekersky V.A., Nebylov A.V. Robust
automatic control system. Moscow.: Nauka,
1983., pp. 118-123.

Dorato P. & Rama K. Yedavalli. Recent
Advances in the Robust Control. New York,
IEEEpress 3, 1990., pp. 95- 109.

Voronov A.A., V.M. Matrosov. Method of
Lyapunov's vector functions in the stability
theory. — Moscow.: Nauka, 1987., pp. 96-112.
Barbashin E.A. Introduction to the theory of
stability of motion — Moscow: Nauka, 1967.

(2]

(3]
(4]

(3]

(6]

(7]

(8]

261

[9] Poston T. & Stewart E. Theory of catastrophe
and its applications. Dover Publications Inc.;
New edition, 2001., pp. 201-224.

[10]Malkin 1.G. The theory of the motion stability —
Moscow: Nauka, 1966.

[11]Beisenbi M.A., Kulniyazova K.S. Research of
robust stability in the control systems with
Lyapunov A.M. direct method. Proceedings of
11-th  Inter-University ~ Conference  on
Mathematics and  Mechanics. Astana,
Kazakhstan, 2007., pp. 18-28.

[12]Beisenbi M., Uskenbayeva G. The New
Approach of Design Robust Stability for Linear
Control System. Proceeding of the International
Conference on Advances in Electronics and
Electrical Technology. AEET, 04-05 January,
2014., pp. 11-18.

[13]Gilmor R. Applied catastrophe theory. Moscow:
Mir, 1984., 112-125.

[14] Andrievsky B. R. & Fradkov A.L. The elected
heads of the theory of automatic control with
application in the Mathlab. St. Petersburg,
Nauka, 1999., pp. 110-118.

[15] Antsaklis, A.J. & Michel, A.N. Linear Systems.
New York: McGraw-Hill, 1997., pp. 98-114.

[16]Bacciotti, A. & Rosier, L. Lyapunov functions
and stability in control theory Lecture Notes in
Control and Information Sciences, London:
Springer-Verlag, 2005., pp. 65-75.

[17]Barbashin E.A. Introduction in the theory of
stability. Moscow, Nauka, 1967., pp. 85-97

[18]Krasovsky N. N. Some tasks of the motion
stability. Moscow, Fizmatgiz, 1959., pp. 102-
119.

[19]Kuntsevich V. M. Stability analysis and
synthesis of stable control systems for a class of
nonlinear time-varying systems. Scientific
Jjournal of the Steklov Institute of Mathematics.
255(2): 93-102.,2006., pp. 110-115.

[20]Liao X. & Y. P. Absolute stability of nonlinear
control systems. New York, Springer Science.
Business Media B.V., 2008., pp. 97-103.

[21]Loskutov A. & Yu. Mikhaylov A.S.
Foundation of the theory of difficult systems.
Izhevsk, Institute of computer researches, 2007.,
pp- 145-158.

[22]Narendra, K.S., Wang, Y. & Chen, W. (6 June
2014). Stability, robustness, and performance
issues in second level adaptation. Proceedings
of the American Control Conference. (pp. 2377-
2382). Portland, OR; United States. Article
number 6859503.




