
Journal of Theoretical and Applied Information Technology 
 20

th
 June 2016. Vol.88. No.2 

 © 2005 - 2016 JATIT & LLS. All rights reserved.   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
238 

 

PARTIAL GRAPH HEURISTIC WITH HILL CLIMBING FOR 
EXAMINATION TIMETABLING PROBLEM 

 

1
ASHIS KUMAR MANDAL, 

2
M N M KAHAR 

1,2Faculty of Computer System and Software Engineering 

University Malaysia Pahang (UMP), Pekan, Pahang, Malaysia 

Email: 1ashis.62@gmail.com,1ashis@hstu.ac.bd, 2mnizam@ump.edu.my 
 
 

ABSTRACT 

 
Generating an examination timetable for an institution is a challenging and time-consuming task due to its 
inherent complexity and lots of constraints associated with scheduling the exams. In fact, it is a 
combinatorial optimization problem that requires heuristic searches to converge the solution into an 
optimized area. This paper presents combining the partial graph heuristic with hill climbing search (PGH-
HC) to solve the examination timetabling problem. The approach first orders the exams using graph 
heuristics, and partially selected exams, which are generated based on predefined constant called exam 
assignment value (EAV), are assigned to timeslots and / or rooms. Next, the hill climbing search is 
employed to improve the partially scheduled exams. The above process continues until all exams have been 
scheduled. The overall aim here is to devise a straightforward approach which employs tuning of fewer 
parameters in solving the exam timetabling problem. Two benchmark examination timetabling datasets, 
Toronto un-capacitated datasets and ITC2007 capacitated datasets are considered for measuring the 
efficiency of the proposed method. We analyse the PGH-HC with different EAV, graph heuristics and 
termination criteria on these benchmark datasets. Experimental results reveal that, in general, PGH-HC with 
relatively a smaller EAV and a higher number of iterations (i.e. longer termination durations) is found to 
produce better quality solutions for all problem instances. Besides, the proposed approach is able to 
generate better quality solutions for all problem instances compared to traditional graph heuristic with hill 
climbing search (TGH-HC) and produce competitive results while comparing with the state-of-the-art 
approaches. 

Keywords: Combinatorial optimization problem, graph heuristics, hill climbing, scheduling, Timetabling  
 

1. INTRODUCTION 

 
Solving the examination timetabling problem is a 

nontrivial task as it contains lots of constraints and 
these constraints conflict with each other. Most of 
the educational institutions provide considerable 
attention while scheduling their institutions’ final 
examination. In algorithmic point of view, it is a 
NP-hard problem along with solving this 
timetabling problem with good quality solutions is 
rarely achievable using manual or even exact 
approach. Researchers have introduced various 
optimization techniques as seen in the scientific 
literature in order to solve the problem. Surveys 
provided by Carter, et al. [1] and Qu, et al. [2] on 
examination timetabling problem highlight 
numerous techniques, such as graph heuristic [3], 
tabu search [4], simulated annealing [5], great 
deluge[6], late acceptance hill climbing [7], 
evolutionary algorithms [8-10], constraint 
programming [11], case-based reasoning [12] and 

fuzzy methodologies [13], for solving this issue. 
Besides, PATAT series of conference proceedings, 
which were held from 1995 to 2014, have given a 
good description of the problem and various 
techniques (available at the following link 
http://www.patatconference.org/). 

Examination timetabling problem is defined as 
assigning a set of exams into a set of finite timeslots 
and rooms and at the same time satisfying some 
constraints. These constraints are categorized as 
hard constraints and soft constraints. The hard 
constraints must be satisfied for obtaining a feasible 
solution, whereas the quality of the solution 
depends on soft constraints satisfaction. Soft 
constraints can be violated but a penalty value is 
given for every violation. A typical hard constraint 
might be no student takes more than one exam at 
the same time and a soft constraint might be to 
spread the exams evenly over the exam periods. 
Examination timetabling problem is classified as 
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capacitated and un-capacitated. In the un-
capacitated timetabling problem, room capacity is 
not considered but room capacity is considered as 
hard constraint for capacitated timetabling problem. 

Most of the earlier works attempt to generate 
examination timetabling in two phases: firstly, to 
construct one or more complete initial feasible 
solution(s), and then to improve the quality of the 
feasible solution(s) [14-16]. Usually, sequential 
graph heuristics are employed in constructing the 
initial solution due to their simplicities and 
capabilities in generating feasible solutions. In 
improvement phase, various local search and 
population-based meta-heuristics such as hill 
climbing, simulated annealing, great deluge 
algorithm, genetic algorithm and many others are 
used to improve the solution quality. Usually, in 
this sequential approach, the initial solution biases 
the result of the improvement steps, with a good 
initial solution tending to produce good improved 
solution [14, 17]. Additionally, if the initial solution 
is bad (local optima), sometimes the improvement 
phase is unable to work effectively in producing 
quality solution [18, 19]. 

In this work, we present a partial exam 
assignment with graph heuristic and hill climbing 
approach (PGH-HC) to solve the examination 
timetabling problem. The procedure starts with 
ordering the exams using graph heuristic and then 
the ordered exams are selected for scheduling based 
on a predefined constant. This constant refers to as 
exam assignment value (EAV). Then, these 
partially scheduled exams are improved using hill 
climbing method. The process repeats until all 
exams have been scheduled. In any case, where an 
exam is unable to be scheduled, we implement 
‘complexExamManager’ mechanism during the 
exam scheduling process.  

 The paper is organized as follows: section 2 
presents the examination timetabling problems and 
their formulations, whereas section 3 describes the 
partial graph heuristic with hill climbing approach 
(PGH-HC) in details. Section 4 highlights 
traditional graph heuristic with hill climbing 
approach (TGH-HC). In section 5, experimental 
setups are presented follow with results and 
discussions in section 6. Finally, section 7 
concludes the research works executed in this 
paper.  

 

 

2. EXAMINATION TIMETABLING 

PROBLEM DESCRIPTIONS AND 

FORMULATIONS 

 
In this paper, two distinct datasets, namely 

capacitated (ITC2007) and un-capacitated (Toronto) 
datasets are used for testing. These datasets are 
described below: 

2.1 Un-capacitated Benchmark Datasets 

 
In 1996, Carter and Laporte introduced the 

Toronto examination benchmark datasets. These 
datasets are un-capacitated examination timetabling 
datasets where unlimited number of seats during 
exam assignment is assumed. The Toronto datasets 
consist of 13 problem instances. Table 1 shows the 
properties of the datasets. The datasets are available 
at http://www.asap.cs.nott.ac.uk/resources/data. 

shtml. 

Table 1: Toronto Datasets 

 
In Toronto datasets, one hard and one soft 

constraint are considered. Hard constraint is that no 
students are allowed to sit two or more exams 
simultaneously (also known as clashing constraint). 
In addition, soft constraint is to spread exams 
evenly so that students get ample time for last 
minute preparation before the next exams. Eq-1 is 
an objective or penalty function of Toronto datasets 
and the aim of the function is to reduce the soft 
constraint violation as much as possible providing 
hard constraint is satisfied. From this equation, 
proximity cost 16 is defined when exams are 
assigned successively. With the increase of gap 
between exams, proximity cost is reduced. 
Therefore, penalty value 8, 4, 2, and 1 are assigned 
for 1, 2, 3, and 4 time slot gap between exams 
respectively. More details description of the 
equation is found in [1]. 

Datasets 
Number 

of 
timeslots 

Number 
of 

Exams 

Number of 
Students 

Conflict 
Density 

car-s-91 35 682 16925 0.13 
car-f-92 32 543 18419 0.14 
ear-f-83 24 190 1125 0.27 
hec-s-92 18 81 2823 0.42 
kfu-s-93 20 461 5349 0.06 
lse-f-91 18 381 2726 0.06 
pur-s-93 42 2419 30029 0.03 
rye-s-93 23 486 11483 0.07 
sta-f-83 13 139 611 0.14 
tre-s-92 23 261 4360 0.18 
uta-s-92 35 622 21267 0.13 
ute-s-92 10 184 2750 0.08 
yor-f-83 21 181 941 0.29 
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N is the number of examinations.  

M is the total number of students. 

T is the number of available timeslots. 

cij is the conflict matrix, where each element in 
the matrix is the number of students taking 
examination i and j, and where i, j�{1,..., N}.  

tk (1≤ tk ≤T) specifies the assigned timeslot for 
examination k (k�{1,..., N}). 

2.2 Capacitated benchmark datasets 

 
The ITC2007 examination datasets, which 

contain real-world hard and soft constraints, are 
capacitated problem. Unlike un-capacitated 
datasets, they are more complex to solve. Eight 
instances of the datasets are publicly available (see 
Table 2). In Table 2, A1 is the number of registered 
students, A2 indicates number of exams, A3 
represent the number of timeslots, A4 indicates 
room availability, A5 means the number of period 
related hard constraints, A6 is the number of hard 
constraints associated with rooms and A7 is the 
conflict density 

Table 2: ITC2007 Examination Datasets 

Datasets A1 A2 A3 A4 A5 A6 A7 

Exam1 7,833 607 54 7 12 0 5.05% 

Exam2 12,484 870 40 49 12 2 1.17% 

Exam3 16,365 934 36 48 170 15 2.62% 

Exam4 4,421 273 21 1 40 0 15.0% 

Exam5 8,719 1018 42 3 27 0 0.87% 

Exam6 7,909 242 16 8 23 0 6.16% 

Exam7 13,795 1096 80 15 28 0 1.93% 

Exam8 7,718 598 80 8 20 1 4.55% 

 

Feasibility of the datasets is accomplished when 
all exams are assigned into timeslots and rooms 
without violation of the hard constraints. The hard 
constraints for ITC2007 examination datasets are 
defined as follows: 

H1. Any student cannot sit more than one exam at 
the same time. 

 
H2. The exam capacity should not exceed the 

room capacity. 
 
H3. The exam length should not violate the period 

length. 
 
H4. Three ordering of exams must be respected. 

• Precedences: exam i will be scheduled 
before exam j. 

• Exclusions: exam i and exam j must not 
be scheduled at the same period. 

• Coincidences: exam i and exam j must be 
scheduled at the same period. 

 
H5. Room exclusiveness must be maintained. For 

example, exam i must take place only in room 
number 206. 

The more the soft constraints are satisfied, the 
better the quality of solutions is obtained. Soft 
constraints for the ITC2007 examination datasets 
are defined as follows: 

S1. Two Exams in a Row(
R

sC 2
): Avoid the 

number of occasions where a student sits 
consecutive exams on the same day. 

S2. Two Exams in a Day (
D

sC 2
): Avoid the 

number of occasions where a student sits two 
exams in a day. Note that when exams are one 
after another, this is counted as Two Exams in 
a Row for avoiding duplication.   

S3. Spreading of Exams (
PS

sC ): Exams should be 

spread as evenly as possible over the time 
periods.  

S4. Mixed Duration (
NMDC ): Avoid the number 

of occasions where exams with different 
durations are scheduled into the same room. 

S5. Scheduling of Larger Exams (
FLC ): Avoid 

the number of occasions where the largest 
exams are assigned later in the timetable.   
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S6. Room Penalty( 
RC ): Avoid the number of 

occasions where certain rooms with associated 
penalty are used for scheduling 

S7. Period Penalty (
PC ): Avoid the number of 

occasions where certain periods with 
associated penalty are used for scheduling 

The objective function is  formularized as in Eq-2 
[20]. It attempts to minimize the violation of 
(penalty) soft constraints for producing good quality 
solution without violating the hard constraints. 
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(Eq-2) 

In this equation, W (with different subscription) 
stands for related weight for each of the soft 
constraints, whereas S indicates a set of students. 
Associated weighted values are not multiplied with 

RC and 
PC as these values are already added in 

the definition. Weights of the datasets are presented 
in Table 3. Details explanation of the ITC2007 
exam tracks as well as the mathematical model will 
be found in [20, 21]. 

Table 3: Weights of the ITC2007 Examination Datasets 

 
3. PARTIAL GRAPH HEURISTIC WITH 

HILL CLIMBING (PGH-HC) 

APPROACH 

 

3.1 Graph Heuristic Selection and Ordering 

The basic examination timetabling problem can 
be classified as graph colouring problem where a 
set of exams represents a set of vertices and the 
confliction of exams (hard constraint) can be 
represented as edges. Vertices with common edges 
have different colours, indicating timeslots. 

Usually, in timetabling problem, a vast number of 
exams have to be accommodated into limited 
number of timeslots, which is a challenging task. 
This task could be smoother if they are ordered 
based on difficulty for scheduling. Graph heuristics 
are such type of ordering strategies where most 
difficult exams are chosen for scheduling first. The 
ordering is accomplished with different heuristics. 
However, scientific literature frequently uses largest 
degree (LD), largest enrolment (LE), largest 
weighted degree (LWD) and saturation degree (SD) 
heuristics for ordering. The heuristics are described 
as follows. 

• Largest degree (LD): This technique orders the 
exams based on the largest number of 
conflicting examinations.  

• Largest weighted degree (LWD): This heuristic 
is similar to the largest degree except the exams 
are ordered based on the number of students in 
conflict.  

• Largest enrolment (LE): The exams are ordered 
based on the number of registered students in 
the exams.  

• Saturation degree (SD): The exams are ordered 
based on the number of remaining timeslots 
available; exams with the least number of 
available timeslots in the timetable are given 
priority to be scheduled first. SD is a dynamic 
heuristic where the ordering of exams is 
updated as the exams being scheduled. 

In SD, we use three (3) ordering strategies 
which include SD(LD), SD(LWD) and SD(LE). 
For example in SD(LD), the exams are ordered 
according to LD and during exam allocation, these 
exams are scheduled based on SD. If a condition 
where the number of remaining timeslots is similar 
between exams, these exams are selected based on 
LD feature. The same approach is employed for 
SD(LWD) and SD(LE). 

3.2 Description of the Model   

The basic framework of our proposed approach is 
illustrated in Figure 1. Initially, a heuristic, H was 
chosen as listed in section 3.1 (line 1). Next, we set 
the exam assignment value (EAV) to designate the 
number of exams for scheduling (line 2). In our 
experiment, the EAV is represented as a percentage 
of total exams. For instance, if EAV=25% with total 
exams of 165, only 41 exams will be selected for 
scheduling (we refer to this as partial exams). 

The iteration starts with ordering the un-
scheduling exams using the selected heuristic (line 

Datasets 

weight 
for two 
in a day  
 

)( 2D
W  

weight 
for two 

in a 
row 

)( 2RW  

weight 
for 

period 
spread 

)( PS
W  

weight for 
no mixed 
duration 

 

)( NMD
W  

weight 
for the 
front 
load 

penalty 

)( FLW  

Exam1  5 7 5 10 5 
Exam2  5 15 1 25 5 
Exam3  10 15 4 20 10 
Exam4  5 9 2 10 5 
Exam5  15 40 5 0 10 
Exam6  5 20 20 25 15 
Exam7  5 25 10 15 10 
Exam8  0 150 15 25 5 
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4). Afterwards, these partial exams are selected 
based on value EAV (line 5) from the ordered 
exams. These partial exams are then randomly 
scheduled to available timeslots and rooms (i.e. for 
capacitated dataset, ITC2007) without violating the 
hard constraints (line 6). During scheduling, if an 
exam is unable to be assigned to any timeslots, a 
complexExamManager is used which attempt to 
handle those difficulties to schedule exam (line 7). 
A details explanation of the complexExamManager 
is discussed in section 3.3. When all partial exams 
are scheduled successfully, they are removed from 
the unscheduled exam set and the penalty cost is 
calculated (refer Eq-1 for Toronto and Eq-2 for 
ITC2007) based on the partially scheduled exams 
so far (lines 9-11). Next, hill climbing (HC) is used 
to improve the quality of the partially scheduled 
exams with the aim of satisfying the soft constraints 
(i.e. minimizing the penalty value) – line 13. The 
above process repeats for the next batch of 
unscheduled partial exams. These exams are 
reordered again. Once these partial exams are 
scheduled, they are then improved using hill 
climbing method. The entire process repeats until 
all exams have been scheduled. Finally, the final 
solution and its penalty are stored. 

1. Choose a heuristic H from [SD(LE),SD(LWD),SD(LE)] 
2. Set exam assignment value, EAV 
3.   while Until end of all exams assigned to timeslots 
4.       Order the unscheduled exams using heuristic H and  

put into an unscheduled set 
5.       Select partial exams from the ordered list based on EAV 
6.      Schedule partial exams while satisfying all hard 

constraints 
7.       If An exam is unable to schedule 

       Use complexExamManager 
8.       end if 
9.      If Current partial exams are scheduled successfully 
10.             Remove them from unscheduled set and insert into  
                  a scheduled set 
11.           Calculate (temporary) penalty cost of all scheduled  
                  exams so far 
12.    end If 
13.    Use Hill Climbing  to improve the penalty value 
14.   end while 

15. Return final penalty cost as result 

Figure 1: Partial Graph Heuristics with Hill Climbing 

(PGH-HC) Approach 

3.3 ComplexExamManager Procedure 

It is observed that when a dataset has more 
conflict density and multiple hard constraints, 
exams tend to face difficulties during the 
scheduling. In the partial exam scheduling, there 
might be a condition where exams are unable to be 
assigned to any timeslots or rooms. Additionally, in 
partial exam scheduling, the unscheduled exams 

have to be scheduled into an improved partial 
scheduling solution (assuming a set of partial exams 
has been completely scheduled and improved, and 
now we are in the second round of partial exam 
scheduling). Therefore, the unscheduled exams get 
less freedom to be scheduled into timeslots and 
rooms. Hence, when an exam cannot be scheduled 
to any timeslots and rooms, then a mechanism 
called complexExamManager is employed so that 
the exam can be scheduled. Firstly, when a 
particular exam cannot be scheduled, it is 
considered as ‘complexExam’. Then a particular 
timeslot and/or room is selected which has less 
conflicted exams with the complexExam. The 
conflicting exams are then moved to different 
timeslots and/or rooms while maintaining the 
feasibility of the current solution. Next, the 
‘complexExam’ are assigned to the selected timeslot 
and/or available room. Otherwise, the next less-
conflicted timeslot are taken and the same process 
is executed until all available timeslots are checked. 
However, if this step still unable to schedule the 
exam, we indicate that the exam is very complex 
exam. We then attempt to schedule the exam in the 
next iteration. Figure 2 shows the algorithm for 
scheduling the complex exam. 

1. Select the unscheduled exam. we call it complexExam 
2. Select the current partial scheduling vector 
3. 
4. 

for each Timeslot  
   Count  the number of conflicted exams with 

complexExam 
5. end for 
6. Sort all the timeslots in ascending order according to 

 number of conflicts and insert into a queue Q 

7. while there exist timeslot in Q 
8.     De-queue timeslot T 

9.  Try to schedule  conflicted exams in another time 
slot(s) 

10.    if All conflicted exams are scheduled  
11.           Try to move complexExam  in  the timeslot T      

          and  any available room in T 
12.             if complexExam is scheduled successfully 
13.                     Update partial scheduling vector 
14.                       Return from the loop 
15.            end if 
16.     end if  

17. end while 

Figure 2: ComplexExamManager Procedure 

3.4 Improvement using Hill Climbing (HC) 

In the next step, hill climbing (HC) is employed 
to improve the quality of the partially of scheduled 
exams. That is, it minimizes the penalty cost. The 
selection of  the hill climbing is preferred due to the 
fact that  it does not need to set up any parameter 
settings as well as it can exploit the solution space 
quickly.  
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Figure 3 illustrates the improvement using hill 
climbing approach. The algorithm starts with 
initializing the partial solution vector as current 
solution and the cost is derived from previous 
partial scheduling. Number of neighbourhoods is 
defined, which indicates the number of different 
solutions after twigging the initial solution vector. 
Stopping criteria are defined by the number of 
iterations or time duration, indicating how many 
times the improvement of solution is occurred. 
During the iteration, different neighbourhood 
structures are used for generating candidate 

solutions and a promising candidate solution *s  is 

identified. Then the cost of candidate solution )( *sf  

is compared with the cost of current solution )(sf . 

If )( *sf  is equal or less than )(sf , the current 

solution s is replaced by the candidate solution 
*s . 

This iteration end until meeting the stopping criteria 
and finally the partial best solution is returned. 

1. Set the initial partial solution vector s as current solution  

2. Set the initial cost function )(sf  as current cost function 

3. Set n - number of neighborhood structures  
4. Set a time duration or  number of iterations as stopping 

criteria 
5. while stopping criteria do not meet do 
6. Calculate neighbor solutions by applying neighborhood  

structures ),....,,,( 321 nNNNN  and consider best  

solution as candidate solution  

7.    if )()( * sfsf ≤  

8.       
*ss =  

9.    end if 
10. end while 

Figure 3: Hill Climbing Procedure (called by Figure 1, 

line 13) 

4. TRADITIONAL GRAPH HEURISTIC 

WITH HILL CLIMBING APPROACH 

(TGH-HC) 

 
TGH-HC is a two-step approach for solving 

examination timetable. At first, a complete feasible 
solution is constructed and then hill climbing search 
improves the quality of the solution. Figure 4 
illustrates the approach. Exams are ordered using 
six (6) graph heuristics: LD, LWD, SE, 
SD(LD),SD(LWD), SD(LE). For each heuristic 
ordering, initial feasible solution and its penalty are 
computed for thirty (30) individual runs. Among 
these penalty values, the best value with 
corresponding solution vector is taken as an initial 
solution. Finally, hill climbing improves the 
solution vector further and returns final penalty cost 

if its solution vector satisfy all hard constraints. We 
will also implement the TGH-HC onto the 
experimented examination datasets to allow for 
comparison with the proposed method.  

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

do initial ordering based on heuristics H [LD,LWD,LE, 
SD(LE),SD(LWD),SD(LE)]  

for each Heuristic of H 

   for 30 iterations 

        Construct initial feasible solution           

        Calculate initial feasible penalty 

   end for 

end for  

Select best penalty cost and solution vector 

Use Hill climbing (HC) for improvement 
if Final solution vector satisfies all hard constraints 
      Return final penalty cost as result 
end if 

Figure 4: Traditional Graph Heuristic with Hill Climbing 

(TGH-HC) Approach 

5. EXPERIMENTAL SETUP 

 
In order to test the PGH-HC approach, the 

Toronto datasets as well as the ITC 2007 exam 
datasets are used. 

For Toronto benchmark datasets, we choose 
twelve instances of the datasets (Table 1). Four 
different EAV, including 10%, 25%, 50% and 75% 
from the total number of exams, are used for 
experiment. Moreover, in the partial construction of 
exams three different graph heuristics including 
SD(LD), SD(LWD), SD(LE) are employed. For 
improvement of partial solution quality with hill 
climbing (HC), three different termination criteria, 
which include 10,000, 50,000 and 100,000 
iterations, are set as stopping criteria. Three 
neighbourhood structures which are introduced in 
hill climbing search are described as follows: 

• N1: randomly select an exam and move the 
selected exam to a randomly selected timeslot.  

• N2: randomly select two exams and swap their 
timeslots.  

• N3: select two timeslots randomly and move 
all exams between the two timeslots. 

In each iteration of the improvement phase, only 
one neighbourhood structure that provides the best 
penalty cost among three is selected as candidate 
neighbourhood. Note that, same stopping criteria 
and neighbourhood structures are applicable for 
TGH-HC in solving Toronto datasets. 

We experiment with eight instances from the 
ITC2007 examination track (Table 2). Here we 
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incorporate two EAV, which includes 5% and 10% 
from the total number of exams. Moreover, like 
Toronto, we use three graph heuristics comprising 
SD(LD), SD(LWD), SD(LE) in partial construction 
phase. However, for ITC2007, we do not use 
predefined iteration as termination criterion. Rather, 
we use time duration in such a way that it defines 
iteration dynamically for each partial improvement. 
This time duration defines how long the program 
runs for complete solution generation and 
improvement. We experiment with two time 
durations: 600 seconds and 3600 seconds. We set 
the termination criterion for 600 seconds as this was 
used during the ITC2007 second exam timetable 
competition. Following neighborhood heuristics are 
assigned for improvement phase: 

• N1: Move a random exam to a different 
timeslot and room.  

• N2: Select two exams randomly and swap their 
timeslots and rooms.   

• N3: Move an exam to a different room within 
the same timeslot. 

• N4: Move two random exams to  different 
timeslots and rooms. 

In each iteration during improvement, only one 
neighborhood is selected randomly and employed if 
the solution it provides is feasible; otherwise, we 
choose different neighborhood. Note that, same 
time durations and neighbourhood structures are 
applicable for TGH-HC in solving ITC2007 
datasets. 

For both Toronto and ITC2007 exam track, each 
instance was experimented with different 
combination of EAV, graph heuristics and iterations 
(time durations for ITC2007). We ran each 
experiment 30 times using different random seeds. 
Finally, the programs were implemented in Java 
(Java SE 7) and performed on Intel Corei3 (3 GHz) 
PCs with 2 GB RAM running Windows 7 
Professional SP3. 

6. RESULTS AND DISCUSSIONS 

 
In our experiments, firstly, TGH-HC and PGH-

HC procedures are applied on Toronto datasets. 
Next, these two procedures are used on ITC2007 
exam track. Different EAV, graph heuristics, and 
termination criteria are considered during the 
experiments as described in the experimental setup. 

We have performed t-test for demonstrating 
whether proposed PGH-HC performs better than 
TGH-HC in solving both benchmark datasets. 

Confidence interval is set at 95% (α=0.05 level of 
significance).  The null hypothesis (H0) is defined 
as there is no significant difference between TGH-
HC and PGH-HC. On the other hand, alternative 
hypothesis (H1) is defined as PGH-HC is better than 
TGH-HC. The target is to validate the H1. 

6.1 Experimental Results with Toronto 

Datasets 

Table 4(a)-(d) illustrate the effect of the penalty 
values of Toronto datasets where three different 
iterations and four EAV are considered. Best and 
average penalty costs for all datasets are enlisted 
where both TGH-HC and PGH-HC approaches are 
used. It is observed that for the same EAV, with a 
large number of iterations, the penalty costs are 
usually smaller for both TGH-HC and PGH-HC 
approach. However, with the same number of 
iterations, an increase in the EAV value tends to 
produce larger penalty costs (poorer quality of the 
solution) for PGH-HC approach, but penalty costs 
are unchanged for TGH-HC approach because it is 
independent of EAV. It is observed that good 
quality solutions are obtained when EAV is small 
(i.e. 10%) and the iteration number is high (i.e. 
100,000). It is also noticed that in general PGH-HC 
produces better results compared to TGH-HC for 
the same EAV value and iterations. During smaller 
EAV, the differences of penalty values between 
these two approaches are more noticeable than 
higher EAV. For example, with 75% EAV, we do 
not get significant difference in penalty values 
between the two approaches, whereas opposite of 
that is true for smaller EAV, such as 10%. 

Table 5 shows the comparison between TGH-HC 
and PGH-HC where best penalty values (best costs 
with corresponding average values) in the 
experiments are highlighted. Best results are taken 
from Table 4(a)-(b) (results with bold font). 

Referring to both Table 5 and Table 7, the 
arrangement of the column are as follow: column A 
contains datasets. Column B represents initial best 
solution and graph heuristic that produces the best 
solution. Column C and D represent best and 
average costs after hill climbing improvement is 
employed respectively. For PGH-HC, best and 
average costs are represented in column E and F 
respectively, whereas column G and H show the 
graph heuristic and EAV that produce the best costs 
respectively. Finally, column I shows the 
improvement of PGH-HC over TGH-HC in 
percentage. Finally, column J presents the p-values 
from t-test between these two approaches. 
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Table 4: Penalty Values of Toronto Datasets for Different Iterations 

(a) with 10% EAV 

Datasets 
 

10,000 iterations 50,000  iterations 100,000 iterations 
TGH-HC PGH-HC TGH-HC PGH-HC TGH -HC PGH-HC 

Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg 
car-s-91 5.60 5.81 5.15 5.33 5.54 5.74 5.08 5.28 5.54 5.74 5.09 5.27 
car-f-92 4.75 4.94 4.36 4.49 4.72 4.92 4.23 4.48 4.71 4.92 4.28 4.48 
ear-f-83 40.50 41.95 37.46 40.14 40.48 41.68 37.06 40.13 39.33 41.75 37.93 40.24 
hec-s-92 12.08 12.65 11.21 11.80 12.06 12.48 11.19 11.85 11.91 12.56 10.98 11.76 
kfu-s-93 16.05 16.81 14.72 15.76 16.03 16.77 14.53 15.70 16.03 16.77 14.90 15.68 
lse-f-91 12.43 13.12 11.13 11.94 12.29 13.03 11.21 11.90 12.13 13.03 11.12 11.95 
rye-s-93 10.44 10.85 9.42 10.00 10.38 10.80 9.45 9.89 10.38 10.80 9.40 9.88 
sta-f-83 157.54 158.41 157.39 158.38 157.54 158.40 157.23 158.34 157.54 158.39 157.31 158.43 
tre-s-92 9.56 9.84 8.52 8.93 9.54 9.82 8.59 8.88 9.55 9.81 8.55 8.89 
uta-s-92 3.88 3.97 3.50 3.61 3.86 3.98 3.43 3.59 3.83 3.93 3.44 3.59 
ute-s-92 28.94 30.16 26.64 28.52 28.94 30.15 26.57 28.39 28.94 30.15 26.99 28.32 
yor-f-83 40.51 42.04 38.88 41.62 40.46 41.27 38.83 41.20 40.20 41.26 39.71 41.82 

 

(b) with 25% EAV 

Datasets 
 

10,000 iterations 50,000  iterations 100,000 iterations 
TGH-HC PGH-HC TGH-HC PGH-HC TGH -HC PGH-HC 

Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg 
car-s-91 5.60 5.81 5.21 5.58 5.54 5.74 5.21 5.54 5.54 5.74 5.29 5.52 
car-f-92 4.75 4.94 4.39 4.66 4.72 4.92 4.46 4.64 4.71 4.92 4.34 4.62 
ear-f-83 40.50 41.95 37.86 40.79 40.48 41.68 38.98 40.86 39.33 41.75 38.31 40.73 
hec-s-92 12.08 12.65 11.28 12.03 12.06 12.48 11.27 11.93 11.91 12.56 11.02 11.95 
kfu-s-93 16.05 16.81 14.84 15.96 16.03 16.77 15.06 15.95 16.03 16.77 14.91 15.97 
lse-f-91 12.43 13.12 11.65 12.46 12.29 13.03 11.66 12.51 12.13 13.03 11.58 12.50 
rye-s-93 10.44 10.85 9.63 10.26 10.38 10.80 9.52 10.22 10.38 10.80 9.61 10.09 
sta-f-83 157.54 158.41 157.39 158.38 157.54 158.40 157.43 158.37 157.54 158.39 157.31 158.43 
tre-s-92 9.56 9.84 8.80 9.22 9.54 9.82 8.74 9.20 9.55 9.81 8.86 9.18 
uta-s-92 3.88 3.97 3.64 3.73 3.86 3.98 3.54 3.71 3.83 3.93 3.56 3.70 
ute-s-92 28.94 30.16 27.16 28.93 28.94 30.15 26.80 29.11 28.94 30.15 27.34 28.99 
yor-f-83 40.51 42.04 39.64 42.12 40.46 41.27 39.84 41.72 40.20 41.26 38.92 41.79 

 

(c) with 50% EAV 

Datasets 
 

10,000 iterations 50,000  iterations 100,000 iterations 
TGH-HC PGH-HC TGH-HC PGH-HC TGH -HC PGH-HC 

Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg 
car-s-91 5.60 5.81 5.58 5.83 5.54 5.74 5.53 5.85 5.54 5.74 5.58 5.80 
car-f-92 4.75 4.94 4.62 4.85 4.72 4.92 4.58 4.81 4.71 4.92 4.60 4.80 
ear-f-83 40.50 41.95 38.31 41.25 40.48 41.68 38.94 41.26 39.33 41.75 37.96 41.26 
hec-s-92 12.08 12.65 11.43 12.24 12.06 12.48 11.27 12.12 11.91 12.56 11.22 12.18 
kfu-s-93 16.05 16.81 15.12 16.30 16.03 16.77 15.03 16.26 16.03 16.77 15.16 16.38 
lse-f-91 12.43 13.12 11.99 12.85 12.29 13.03 11.89 12.84 12.13 13.03 12.00 12.80 
rye-s-93 10.44 10.85 9.78 10.50 10.38 10.80 9.78 10.48 10.38 10.80 9.84 10.63 
sta-f-83 157.54 158.41 157.45 158.44 157.54 158.40 157.37 158.36 157.54 158.39 157.71 158.44 
tre-s-92 9.56 9.84 8.78 9.51 9.54 9.82 8.96 9.46 9.55 9.81 8.98 9.47 
uta-s-92 3.88 3.97 3.70 3.86 3.86 3.98 3.64 3.85 3.83 3.93 3.66 3.85 
ute-s-92 28.94 30.16 27.03 29.30 28.94 30.15 27.02 29.31 28.94 30.15 27.67 29.31 
yor-f-83 40.51 42.04 40.65 42.30 40.46 41.27 39.34 42.29 40.20 41.26 39.71 42.22 

 

(d) with 75% EAV 

Datasets 
 

10,000 iterations 50,000  iterations 100,000 iterations 
TGH-HC PGH-HC TGH-HC PGH-HC TGH -HC PGH-HC 

Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg 
car-s-91 5.60 5.81 5.68 5.99 5.54 5.74 5.68 5.91 5.54 5.74 5.67 5.96 
car-f-92 4.75 4.94 4.63 4.95 4.72 4.92 4.57 4.93 4.71 4.92 4.66 4.94 
ear-f-83 40.50 41.95 38.58 41.41 40.48 41.68 38.76 41.22 39.33 41.75 38.30 41.54 
hec-s-92 12.08 12.65 11.47 12.16 12.06 12.48 11.22 12.03 11.91 12.56 10.99 12.01 
kfu-s-93 16.05 16.81 15.60 16.83 16.03 16.77 15.59 16.79 16.03 16.77 15.58 16.78 
lse-f-91 12.43 13.12 12.17 13.07 12.29 13.03 12.23 13.06 12.13 13.03 12.08 13.05 
rye-s-93 10.44 10.85 10.05 10.82 10.38 10.80 10.01 10.62 10.38 10.80 10.03 10.61 
sta-f-83 157.54 158.41 157.45 158.52 157.54 158.40 157.35 158.36 157.54 158.39 157.53 158.29 
tre-s-92 9.56 9.84 9.11 9.58 9.54 9.82 9.02 9.57 9.55 9.81 9.09 9.57 
uta-s-92 3.88 3.97 3.75 3.94 3.86 3.98 3.74 3.92 3.83 3.93 3.75 3.93 
ute-s-92 28.94 30.16 27.78 29.67 28.94 30.15 27.61 29.84 28.94 30.15 27.69 29.67 
yor-f-83 40.51 42.04 39.78 42.29 40.46 41.27 40.32 42.57 40.20 41.26 39.46 42.06 
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Table 5: Comparison of Result obtained by TGH- HC and PGH-HC for Toronto Datasets  

 
 
 
 

Datasets 
(A) 

TGH-HC PGH-HC Improvement
% = 

100×
−

C

CE  

(I) 

t-test Initial Solution 

with Graph 
Heuristic Ordering 

(B) 

Hill 

Climbing 

 
 
 

Best 
(E) 

 

 

Avg 

(F) 

 
Graph 

Heuristic 
Ordering 

(G) 

 

 

EAV (%) 

(H) 

Best  

(C) 

Avg 

(D) 

  p-value 
(J) 

car-s-91 8.33 – LD 5.54 5.74 5.08 5.28 SD(LWD) 10% 8.30 2.28E-25 
car-f-92 7.00 – LD 4.71 4.92 4.23 4.48 SD(LE) 10% 10.19 1.33E-24 
ear-f-83 52.35 - SD(LE) 39.33 41.75 37.06 40.13 SD(LE) 10% 5.77 3.76E-07 
hec-s-92 16.21 - SD(LWD) 11.91 12.56 10.98 11.76 SD(LD) 10% 7.81 3.01E-12 
kfu-s-93 23.68 - (LD) 16.03 16.77 14.53 15.70 SD(LD) 10% 9.36 1.06E-12 
lse-f-91 18.83 - (LE) 12.13 13.03 11.12 11.95 SD(LE) 10% 8.33 5.08E-15 
rye-s-93 18.28 - SD(LD) 10.38 10.80 9.40 9.88 SD(LWD) 10% 9.44 1.14E-17 
sta-f-83 166.43 - SD(LE) 157.54 158.39 157.23 158.34 SD(LE) 10% 0.20 0.034875 
tre-s-92 12.07- SD(LE) 9.55 9.81 8.55 8.89 SD(LWD) 10% 10.47 3.84E-28 
uta-s-92 5.53 – LE 3.83 3.93 3.43 3.59 SD(LE) 10% 10.44 1.63E-31 
ute-s-92 38.03 – SD(LD) 28.94 30.15 26.57 28.39 SD(LWD) 10% 8.19 1.06E-13 
yor-f-83 49.80 – LD 40.20 41.26 38.83 41.20 SD(LE) 10% 3.41 0.0006 

 
Table 6: Penalty Values of ITC2007 Datasets for Different Termination Criteria 

(a) with 5% EAV 

Datasets 600 seconds 3600 seconds 
TGH-HC PGH-HC TGH-HC PGH-HC 

Best Avg Best Avg Best Avg Best Avg 
Exam1 12,421 13,048.88 7,961 8,375.847 10,648 10,972.4 6,377 6,997.27 
Exam2 2,807 3,766.787 1,716 2,535.1 1,545 2,189.142 760 960.30 
Exam3 43,098 47,160.2 19,963 24,573.4 23,257 27,476.22 15,092 16,893.63 
Exam4 34,241 34,937.07 23,000 26,226.28 33,648 34,355.99 21,676 27,825.62 
Exam5 15,643 16,773.46 9,724 11,379.87 7,955 8,517.41 5,224 6,153.29 
Exam6 29,630 33,880.08 26,170 28,354.36 29,515 30,703.08 26,165 27,519.42 
Exam 7 19,080 21,612.42 12,007 13,647.47 12,568 13,745.5 7,219 7,772.40 
Exam 8 23,315 25,002.29 12,482 16,639.03 13,029 15,487.32 10,520 16,274.30 

 

(b) with 10% EAV 

Datasets 600 seconds 3600 seconds 

TGH-HC PGH-HC TGH-HC PGH-HC 

Best Avg Best Avg Best Avg Best Avg 

Exam1 12,421 13,048.88 8,027 9,218.47 10,648 10,972.4 6,942 7,602.8 
Exam2 2,807 3,766.787 1,751 3,783.33 1,545 2,189.142 816 1,007.8 
Exam3 43,098 47,160.2 21,435 26,281.83 23,257 27,476.22 16,057 18,440.37 
Exam4 34,241 34,937.07 22,211 27,380.74 33,648 34,355.99 22,408 25,636.95 
Exam5 15,643 16,773.46 10,039 12,172.8 7,955 8,517.41 5,944 7,379.4 
Exam6 29,630 33,880.08 27,005 29,456.61 29,515 30,703.08 26,630 28,201.38 
Exam7 19,080 21,612.42 13,318 14,455.87 12,568 13,745.5 7,201 7,453.69 
Exam8 23,315 25,002.29 12,635 17,945.13 13,029 15,487.32 10,201 13,980.27 

 
Table 7: Comparison of Result obtained by TGH- HC and PGH-HC for ITC2007 Exam Datasets 

Datasets 
(A) 

TGH-HC PGH-HC Improvement 
% = 

100×
−

C

CE  

(I) 

t-test 
Initial Solution 

with Graph 
Heuristic 
Ordering 

(B) 

Hill Climbing Best 
(E) 

Avg 
(F) 

Graph 
Heuristic 
Ordering 

(G) 

EAV 
(%) 
(H) Best 

(C) 
Avg 
(D) 

p-value 
 

(J) 
Exam1 25,989-SD(LE) 10,648 10,972.40 6,377 6,997.27 SD(LE) 5% 40.11 4.81E-46 
Exam2 30,960- SD(LE) 1,545 2,189.14 760 960.30 SD(LE) 5% 50.81 6.8E-19 
Exam3 85,356-SD(LD) 23,257 27,476.22 15,092 16,893.63 SD(LE) 5% 35.11 1.21E-27 
Exam4 41,702- SD(LD) 33,648 34,355.99 21,676 27,825.62 SD(LD) 5% 35.58 4.03E-12 
Exam5 132,953- LD 7,955 8,517.41 5,224 6,153.29 SD(LE) 5% 34.33 8.07E-27 
Exam6 44,160-SD(LE) 29,515 30,703.08 26,165 27,519.42 SD(LWD) 5% 11.35 1.84E-27 
Exam7 53,405- SD(LE) 12,568 13,745.50 7,201 7,453.69 SD(LWD) 10% 42.70 1.11E-30 
Exam8 92,767 –SD(LE) 13,029 15,487.32 10,201 13,980.27 SD(LWD) 10% 21.71 0.005634 
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From Table 5, it is clear that PGH-HC is able to 
produce better results than TGH-HC approach for 
all instances. We obtain maximum improvement of 
10.47% for tre-s-92 datasets followed by uta-s-92 
and car-f-92 where improvement is around 10%. 
For the datasets car-s-91, kfu-s-93, rye-s-93, ute-s-
92, and lse-f-91, we obtain at least 8% improvement 
(column I). It is also observed that combining SD 
with other heuristics produce better results (column 
G). Additionally, from the experiment, it is shown 
that for all instances 10% EAV produces best 
results. That is, smaller EAV is able to produce 
better results. It is also observed that p-values for all 
datasets are smaller than the level of significance of 
0.05 .This means that there is a strong support for 
the hypothesis H1, and we can say there is a 
significant evidence of better performance of the 
PGH-HC over TGH-HC for solving Toronto 
benchmark datasets.  
 

6.2 Experimental Results with ITC2007 

Datasets 

Table 6(a)-(b) illustrate the characteristics of 
penalty values of ITC2007 datasets when two 
different termination criteria and two EAV are 
employed. Average costs as well as best costs for 
thirty individual runs using both TGH-HC and 
PGH-HC are highlighted. It is observed that in both 
TGH-HC and PGH-HC, with the same EAV, longer 
time duration is able to produce better penalty costs. 
Moreover, the increase of the EAV value within the 
same time duration leads to increase the penalty 
values for PGH-HC (i.e. bad quality solutions), but 
stable for TGH-HC because of its non-correlation 
with EAV. In general, PGH-HC performs better 
than TGH-HC for all datasets. However, their 
discrepancy is more apparent when lower EAV (i.e. 
5%) and longer time duration (i.e. 3600 seconds) 
are employed.  

A comparison between TGH-HC and PGH-HC 
for solving ITC2007 benchmark datasets is 
highlighted in Table 7. Best results are taken from 
Table 6(a)-(b) (results in bold font). For each 
instance, we have presented the best penalty cost 
and the average penalty cost. It is observed from the 
results that PGH-HC produces better result than 
TGH-HC for each instance of ITC2007 exam track. 
For Exam2, we have obtained improvement of more 
than 50% when comparing between PHG-HC and 
TGH-HC. For all other datasets except for Exam6 
and Exam8 with an improvement percentage of 
11.35 and 21.71 respectively, at least around 35% 
improvement is obtained. We notice that six out of 
eight datasets (except Exam7 and Exam8) produce 

good results with EAV of 5% (column H). This 
shows that, whenever possible, it would be betst to 
use small EAV. Finally, it is also observed from the 
t-test that p-values for all eight instances are smaller 
than the level of significance of 0.05, which 
indicate the validity of hypothesis H1. Therefore, 
there is statistically significant evidence to support 
that PGH-HC approach produces better results than 
TGH-HC.  

6.3 Comparison with the state-of-the-art 

approaches 

Table 8 shows the comparison of the best result 
of the proposed PGH-HC approach with the state-
of-the-art approaches for solving Toronto datasets. 
We have ranked the approaches according to their 
penalty costs in solving each instance and presented 
in the first bracket next to the corresponding penalty 
value. Average rank for each approach for solving 
overall Toronto datasets is also computed. 
Additionally, the best results are highlighted with 
bold font.  It is observed that PGH-HC approach is 
able to solve the twelve instances of Toronto 
datasets.  It is noticeable that approaches of Burke 
et al. [22], Caramia et al. [25], and Turabieh et al. 
[24] have better ranking and produce many good 
results. Although our approach does not produce 
any best result for any of the instances, the results 
are still comparable to the approaches in Table 8. In 
our approach, for sta-f-83 dataset, we obtain second 
best result. Moreover, our approach is ranked 3rd 
for car-f-92 and rye-s-93 datasets; fourth best result 
is obtained for three datasets and for rest of the 
instances decent rank is observed compared to other 
approaches. In average, the rank of the approach is 
fourth. 

Table 9 shows the comparison of our approach 
with the five winners of the competition on 
ITC2007 datasets where termination criterion was 
set at 600 seconds. In general, our proposed PGH-
HC approach has the ability to produce quality 
solution for all eight exams and for one instance 
(Exam6), where the best result is obtained. Six out 
of eight datasets are able to produce better result 
than Pillay [28]. Although De Smet[29] produced 
better result for five instances compared to our 
result,  they, however, were unable to produce any 
result for three of the instances where we manage to 
produce a good result. Additionally, we also 
manage to produce better result in three instances 
compared to Atsuta et al. [30]. 

Finally, Table 10 compares our proposed 
approach with other reported results in the literature 
in solving ITC2007 exam datasets. Furthermore, the 
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ranking of each approach and the average results 
are presented. Here it is observed that in general  
McCollum et al. [31] and Abdullah et al. [32] 
produce the best results for most of the instances. 
This may be due to their longer termination criteria 
(more than 600 seconds). Although we tried to run 
longer (3600 seconds), our approach did not 
produce any best result; they are, however, 
comparable to the other approaches. We obtain the 
fifth best result for Exam6 and Exam8, whereas the 
seventh best for other instances except Exam5. If 
we compute average ranking, our approach is in the 
seventh position. 

6.4 Discussions 

 
Most of the approaches presented in the literature 

highlight population based meta-heuristics and 

hyper heuristics to solve the exam timetabling 
problem. In those presented methods, their 
approaches are complex and most often numerous 
parameter settings have to be tuned for producing 
good quality results. In our proposed approach, 
PGH-HC involves less and straight forward 
parameter tuning. Our only parameter is the EAV 
for the partial exam selection process and user can 
easily determine this value. From our experiment, 
usually smaller EAV value produced better result. 
Having smaller EAV value encourages the 
proposed approach to improve the partial solution 
further than having a larger EAV value. Although 
sometimes smaller EAV takes more computational 
time, the overall quality result can be obtained with 
reasonable time. 

Table 8: Comparison of Our Approach with the State-of-the-art Results from the Literature for Toronto Datasets 

Datasets 
Carter et al. 

1996[1] 
Rahaman et 
al. 2014[23] 

Turabieh et al. 
2011[24] 

Burke et al. 
2012[22] 

Caramia et al. 
2008[25] 

Pillay et al. 
2009[26] 

Sabar et al. 
2012[27] 

Our 
approach 

car-s-91 7.10 (8) 5.12 (5) 4.80 (2) 4.60(1) 6.60 (7) 4.97 (3) 5.14 (6) 5.08 (4) 
car-f-92 6.20 (8) 4.41(5) 4.10(2) 3.90(1) 6.00(7) 4.28(4) 4.70(6) 4.23(3) 
ear-f-83 36.40(5) 36.91(6) 34.92(3) 32.80(2) 29.30(1) 35.86(4) 37.86(8) 37.06(7) 
hec-s-92 10.80(4) 11.31(6) 10.73(3) 10.00(2) 9.20(1) 11.85(7) 11.90(8) 10.98(5) 
kfu-s-93 14.00(3) 14.75(6) 13.00(1) 13.00(1) 13.80(2) 14.62(5) 15.30(7) 14.53(4) 
lse-f-91 10.50(4) 11.41(7) 10.01(3) 10.0(2) 9.60(1) 11.14(6) 12.33(8) 11.12(5) 
rye-s-93 7.30(2) 9.61(4) 9.65(5) –(6) 6.80(1) 9.65(5) 10.71(6) 9.40(3) 
sta-f-83 161.50(8) 157.52(3) 158.26(5) 156.90(1) 158.20(4) 158.33(6) 160.12(7) 157.23(2) 
tre-s-92 9.60(8) 8.76(6) 7.88(1) 7.90(2) 9.40(7) 8.48(4) 8.32(3) 8.55(5) 
uta-s-92 3.50(4) 3.54(5) 3.20(1) 3.20(1) 3.50(4) 3.40(2) 3.88(6) 3.43(3) 
ute-s-92 25.80(3) 26.25(5) 26.11(4) 24.80(2) 24.40(1) 28.88(7) 32.67(8) 26.57(6) 
yor-f-83 41.70(8) 39.67(5) 36.22(3) 34.90(1) 36.20(2) 40.74(7) 40.53(6) 38.83(4) 
Average 

Rank 
(Round) 

5.42(5) 5.25(5) 2.75(3) 1.83(2) 3.17(3) 5.00(5) 6.58(7) 4.25(4) 

 

Table 9: Comparison with Five Winners on ITC2007 Competition Datasets 

Datasets 
Muller,2009 

[33] 

Gogs et al. 
2008 
[34] 

Atsuta et al. 
2008 
[30] 

De Smet 
2008 
[29] 

Pillay 
2008 
[28] 

Our approach 
(600 seconds) 

Exam1 4,370 5,905 8,006 6,670 12,035 7,961 
Exam2 400 1,008 3,470 623 3,074 1,716 
Exam3 10,049 13,862 18,622 - 15,917 19,963 
Exam4 18,141 18,674 22,559 - 23,582 22,211 
Exam5 2,988 4,139 4,714 3,847 6,860 9,724 
Exam6 26,950 27,640 29,155 27,815 32,250 26,170 

Exam7 4,213 6,683 10,473 5,420 17,666 12,007 
Exam8 7,861 10,521 14,317 - 16,184 12,482 
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Table 10: Comparison of Our Approach with the State-of-the-art Results from the Literature for ITC2007 Datasets 

Datasets 
Muller 
2009 
[33] 

Gogos 
et al.  
2008 
[34] 

Atsuta et 
al 2008 

[30] 

De Smet 
2008 
[29] 

Pillay,2008
[28] 

McCollum 
et al. 2009 

[31] 

Rahman 
et al. 2014 

[23] 

Abdullah 
et al. 2012 

[32] 

Alzaqebah 
et al. 2015 

[35] 

Our 
approach 

(3600 
seconds) 

Exam1 
4,370 

(2) 
5,905 

(6) 
8,006 

(9) 
6,670 

(8) 
12,035 

(10) 
4,633 

(3) 
5,231 

(5) 
4,350 

(1) 
5,154 

(4) 
6,377 

(7) 

Exam2 
400 
(3) 

1,008 
(8) 

3,470 
(10) 

623 
(6) 

3,074 
(9) 

390 
(2) 

433 
(5) 

385 

(1) 
420 
(4) 

760 
(7) 

Exam3 
10,049 

(4) 
13,862 

(6) 
18,622 

(9) 
- 

(10) 
15,917 

(8) 
9,830 

(2) 
9,265 

(1) 
9,951 

(3) 
10,182 

(5) 
15,092 

(7) 

Exam4 18,141 
(5) 

18,674 
(6) 

22,559 
(8) 

- 
(10) 

23,582 
(9) 

17,251 
(2) 

17,787 
(3) 

18,000 
(4) 

15,716 

(1) 
21,676 

(7) 

Exam5 2,988 

(1) 
4,139 

(7) 
4,714 

(8) 
3,847 

(6) 
6,860 
(10) 

3,022 
(2) 

3,083 
(4) 

3,040 
(3) 

3,350 
(5) 

5,224 
(9) 

Exam6 26,950 
(6) 

27,640 
(7) 

29,155 
(9) 

27,815 
(8) 

32,250 
(10) 

25,995 

(1) 
26,060 

(3) 
26,010 

(2) 
26,160 

(4) 
26,165 

(5) 

Exam7 4,213 
(2) 

6,683 
(6) 

10,473 
(8) 

5,420 
(5) 

17,666 
(10) 

4,067 

(1) 
10,712 

(9) 
4,250 

(3) 
4,271 

(4) 
7,201 

(7) 

Exam8 7,861 
(3) 

10,521 
(6) 

14,317 
(8) 

- 
(10) 

16,184 
(9) 

7,519 
(2) 

12,713 
(7) 

7,450 

(1) 
7,922 

(4) 
10,201 

(5) 

Average 
Rank 

(Round) 
3.25(3) 6.50(7) 8.63(9) 7.88(8) 9.38(9) 1.88(2) 4.63(5) 2.25(2) 3.88(4) 6.75(7) 

 
7. CONCLUSIONS 

 
In this research, our primary aim has been to 

develop a straight-forward approach to solve the 
examination timetabling problem. Hence, we have 
proposed combination of graph heuristic with hill 
climbing approach (PGH-HC) to address the 
problem. This approach is different as we 
incorporate partial construction and improvement 
approaches which attempt to schedule subsets of 
exams and improve these partially scheduled 
exams. Two benchmark datasets, which are Toronto 
un-capacitated and ITC2007 (exam track) 
capacitated datasets, have been incorporated to 
evaluate the proposed approach. Experimental 
results indicate that the proposed PGH-HC 
outperforms the TGH-HC for all instances on both 
datasets. It is also observed that PGH-HC is able to 
produce competitive results when compared with 
the state-of-the-art approaches reported in the 
scientific literature. Furthermore, different EAV 
and stopping criteria have been analysed and it 
reveal that smaller EAV value and longer 
improvement cycle (i.e. iterations, or time 
durations) is able to produce better result. 

For future works, focus will be given to the 
further improvement of the proposed algorithm by 
including adaptive improvement cycle. We are 
optimistic that this will produce better results. We 

are also motivated to apply other meta-heuristic 
approaches, such as great deluge algorithm and 
simulated annealing to replace the hill climbing 
technique. 
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