
Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

65

BUILDING FAULT TOLERANCE WITHIN CLOUDS FOR

PROVIDING UNINTERRUPTED SOFTWARE AS SERVICE

1S. L. SUSHMITHA, 2 Dr. D. B. K. KAMESH, 3Dr. J.K. R. SASTRY, 4V. V. N. SRI RAVALI, 5Y.

SAI KRISHNA REDDY
1,4,5

Student, Department of Electronics and Computer Engineering, K L University, Vaddeswaram
2
Assoc. Professor, Department of Electronics and Computer Engineering, K L University, Vaddeswaram

3
Professor,Department of Electronics and Computer Engineering, K L University, Vaddeswaram

E-mail:
 1
sushmitha5264@gmail.com,

2
kameshdbk@gmail.com,

3
drsastry@kluniversity.in,

4
v.sriravali948@gmail.com,

5
syeruva989@gmail.com

ABSTRACT

Use of clouds for availing various IT based services (Software, Platform, Infrastructure platform) has been

in rampage. The way IT computing is done has been in radical change. However, many challenges are

thrown when one needs to use the clouds for their IT computing. The challenges include security and

privacy of the Information stored on the cloud and to provide continued services during the occurrence of

the faults within the clouds. This paper addresses architectural framework for implementing fault tolerance

at software as service.

Keywords: Cloud Computing, Virtual Machine(VM), Fault-Tolerance, Check Point, Software-As-A-

Service, Redundancy.

1. INTRODUCTION

With the swift growth in the technological and

computational demands as well as high availability

of Internet, Computing resources have become

inexpensive, powerful and available ubiquitously

than ever before. This latest drift has enabled a

significant transformation in IT environment to

emerge a new computing model known as "Cloud

Computing", popularly called "Cloud". The

advents in this latest model moved computation and

data away from the desktops and portable PCs into

massive data centres located elsewhere. It leases

resources to the users for general utility purpose, in

an on-demand fashion to release when not

necessary.

The prime intention of cloud computing is the

finer utilization of distributed resources, integrate to

achieve exorbitant throughput and resolve large

scale computational troubles. In this demanding

world, the promising cloud, should support features

like, dependability stability, flexible infrastructure,

quick provisioning, scalability, reliability, green IT

and like [4].

The footing concept of cloud computing was

developed way back, opined to organize

computation as a public utility. Also the key

characteristics of cloud were explored to minimise

human and home device efforts. With the massive

proliferation of Internet across the world, delivering

applications as services has become easier over the

Internet. As a result, the overall costs are

minimised.

In cloud environment, the conventional roles

of providers is classified into: infrastructure

providers who maintain the platform and rent

resources in accordance with usage-based pricing

model, and service providers who host one or many

infrastructure providers to rent resources to serve

the end users [1]. In cloud, the user’s ingress the

data, applications, or any other services over the

internet through browser irrespective of the device

or location of the user. This is possible because of

the infrastructure that is usually provided by the

third-party organizations. These vendor parties give

access and lease their services following the usual

delivery models of cloud-private, public, hybrid or

community [3]. The Cloud providers deploy their

services in accordance with the need of the end

user. The vendor provides the computing services

in three ways, namely, Infrastructure-as-a-Service

(IaaS), Platform-as-a-Service (PaaS) and Software-

as-a-Service (SaaS).

In general, the architecture of the cloud

environment can be split into layers depending on

the resources managed at each layer and the end

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

66

users [1]. Figure1 shows the general Architecture

used for implementation of a Cloud.

The physical resources of the cloud are

managed at the hardware layer which is typically

maintained at the data centres. The data centre

consists of several physical servers that are lined in

racks and connected with routers, switches and

other components. The hardware layer also

maintains the power supply and cooling system for

all the physical resources present at the data centre.

The virtualization layer or infrastructure layer

partitions the physical resources using virtualization

technologies to create a lot of storage or computing

resources. This layer is an eminent component of

cloud as the important features like dynamic

resource allocation are made available using

virtualization technologies. The virtualization

technologies are further layered upon by the

platform layer which holds the operating system

and the framework for applications. This layer

reduces the burden of deploying the applications

into the Virtual Machine(VM) containers. The

application layer stands at the top most level of

hierarchy which accommodates all the applications

that the end users utilize from the cloud.

Unlike the legacy service hosting

environment, the cloud architecture is more

adaptive. Each layer is coupled with the higher and

lower layers loosely enabling every layer to

independently evolve. This architectural feature

supports the increasing varied application demands

whilst minimising management and maintenance

expenses.

Software-as-a-Service or SaaS is made

available to end users over internet on pay-as-you-

go model. This sets the user free from actually

installing and running the applications or software

on the native desktop or PDAs. Also it spares the

user from the distress of deploying and maintaining

the software. The rumpus of managing large data is

not necessary with the IaaS and PaaS services

already provided by this service model. The

software may be shared by several clients, auto-

updated from the cloud, and additional licenses

needn't be purchased [2]. Any desired features may

be rolled out frequently with on-demand request.

The service characteristics render SaaS to often be

easily interoperable with other mashup apps.

Google Apps is one of the popular known SaaS

examples. Figure 2 shows architecture that

demonstrates the use of software as service.

All the clients operating on different devices

like PDA, mobile phones, laptops or desktops may

reach out to the cloud for any service with the

access of Internet. The client may only be subject to

view the user Interface or virtually the cloud of the

software as a service. The cloud communicates

with the client and middleware which creates a

connection between client and server. The

Middleware switches the request to a server

satisfying its necessary specification requirement.

The several servers maintained by the middleware

are deployed with the same software to be provided

as service. However, each server maybe working on

different platform or use database software but the

service provided is the same as any other server

linked with the middleware.

Though experienced and skilled professionals

develop and deploy services into the cloud, there

may always be the probability of some issues which

are over-looked. Every aspect has its own pros and

cons. Similarly, SaaS brings upon a few issues in its

behalf too. Following are some of the issues that

one will encounter when software has to be used as

service:

• A seamless update of the software or

application may be done in the cloud itself,

which may vary the outlook or work so far

done by the client in the application. This may

create a problem when the client is dependent

on a key feature of the application and the

upgrade gets rid of that feature.

• SaaS hosting is another way of keeping the

services available for the client by service

vendor instead of service provider. The matter

of concern here for the service provider is to

make sure that all the services can be accessed

by all the users across the globe and the

software services provide constant

availability.

• Security of data is one of the key aspects of

any computing or data storage services. In

SaaS, the client's data is stored in the large

pool of storage which is shared by other

client's too.

• The service providers cannot afford allocating

separate storage area to each client so they

follow multi-tenancy, i.e., storing data of

different clients at one pool. The clients are

unaware of the other users and their intentions

so their confidentiality and safety of

information may not be impact.

• Clients working on different platforms and

servers also try to connect with the cloud for

their services but cloud fails to support other

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

67

formats of data, thus raising Interoperability

Issue [4].

• With the increasing dependability on the

cloud, the number of clients requesting for

services is reaching the critical stage and the

provider may not be able to handle the high

load.

• All the client requests may be addressed by

the same software by the provider. Thus

terminating all the requests upon a wrong

usage of any one client.

• Faults caused by various reasons are one of

the major issue of concern and reason for the

termination or successful functioning of the

software deployed in the cloud.

A mistake in the software programming or

defect in the hardware stands responsible for any

failure or fault that arises in a system or cloud.

Faults are distinguished into hardware and software

faults basing on their domain. There are several

other factors, like creation phase, occurrence,

system failure boundaries, persistence, intent or

cause, relying on which classification of faults is

done. The scope of this paper is to identify and

analyse the causes and effects of Software Faults,

thus deriving an optimum method for tolerance.

A program running on a system maybe

hindered during its execution due to various faults

that are beyond the proximity of prediction. A few

software packages sustain the feature of recovery

system which allows it to roll back the previous

session status when a fault occurs. However, a few

faults may not be predicted to recover or avoid such

faults. Thus, the program fails entirely and

terminates its operation abruptly. The reason for

few such instances of occurrence of faults include

Overflow, Lack of memory, Execution fault, Loss

of files, CPU fault, Runtime Errors, Loss of

Identification, too much of switching, Insufficient

disk storage.

When any of these faults occur, the software

will fail, and as a consequence the service to the

end user will be disrupted. It is hard to recover from

the failure and commence the service to the user

from the point from where the service has been

disrupted. Therefore, it is absolutely necessary to

see to it that the software does not fail through

incorporating fault tolerant measures.

Problem Definition

Several clients are dependent on cloud for

various applications and software. The occurrence

of any software fault may result in the containment

of the general functioning of the client works. The

clients send their requests to cloud that are directed

to the Middleware which communicates between

the end user and the service provider. A software

fault may result in the termination of a service to

the end user due to which releasing all the current

work status, session details and uncommitted work

done, drawing the client to a great loss. Therefore,

there should be a provision of incorporating the

fault tolerant measures such that the software will

never fail.

2. RELATED WORK

Lakshmi Prasad Saikia et al.[8], studied the

existence of Fault-tolerance and how the

technologies evolved to imbibe the concept in the

increasing requirements. Their survey shows that

the concept of fault-tolerance came into existence

and developing since about 1970. Several renowned

journals, like IEEE transactions on Computer, IEEE

transaction on Reliability, and IEEE transactions on

cloud computing, have been publishing research or

survey papers and other related works. In the period

between 1971-1975, enough work was done to

come out with microprocessors and computers to

build the first fault tolerant computer for processing

online transactions.

Sourabh Dave et al., [9] studied various

techniques of fault-tolerance, specifically

replication and check pointing. Different types of

implementing fault tolerance have been studied

which effect the functioning of a cloud. They

carried out systematic investigation to identify the

pros and cons of the fault tolerant techniques and

suggested a much consistent fault-tolerant system

by combining the replication and check-pointing.

The different types of techniques have been

perfectly amalgamated to address the overhead and

crash of a process communicating with multiple

processes.

Cloud Computing offers adaptable results for

High Performance Computing applications by

furnishing huge amount of virtual machines. Even

in the presence of faults, Fault tolerance grants the

execution of HPC systems by creating multiple

nodes. Generally, check pointing is the widely used

fault-tolerance technique for HPC clouds. In 2012,

Ifeanyi et al., [12] have designed a new framework

which uses Process Level Redundancy(PLR) along

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

68

with Proactive and Reactive fault tolerance

techniques, and Live migration policy. Their basic

observations show that the fault is decreased by

40% by their approach.

To reduce the faults that occur on the devices,

the faults must be foreseen and managed such that

the system works efficiently even during the

failures. In the same year (2012), Anju Bala et

al.,[11] explained the current fault tolerance

techniques based on their behaviour and also

proposed a Cloud Virtualized System architecture,

which implements autonomic fault tolerance

method. Their preliminary outcomes indicate that

their suggested system accords different software

failures for server programs. To implement their

technique, they have used tools such as AZURE,

Hadoop, SHelp. To execute Linux based

applications, Amazon EC2 presents a virtual

environment.

The familiar technique in Cloud Computing is

Virtualization, i.e., creating number of virtual

machines with distinct operating systems, running

on a particular system. In 2012, L. Arockiam et al.,

[13] proposed a system, wherein a middle layer is

to be introduced between the application layer and

virtualization layer to obtain maximum fault-

tolerance. The objective of this middle layer is to

tolerate node failure and is also user transparent.

Fault Tolerance Manager is the middle layer, which

is arranged between the two layers. This consists of

Fault Detector, Replica Manager, Check Point

Manager, Recovery Overseer and Communication

Manager. The performance of these components

can be improved by considering different

algorithms.

In 2013, Ravi Jhawar et al., [10] have

introduced a new system-level model to manage the

faults that occur in Clouds. In this paper, they have

considered a Resource manager that records the

details and checks the working condition of the

devices which are to be provided to the client. The

system they have conferred is a two – stage

delivery model, consists of design stage, and run

time stage, to give effective results. Also they have

explored a Conceptual Framework, namely Fault

Tolerance Manager to embed fault tolerance as a

service layer between client’s applications and

hardware working over the virtual machine

manager at VM instances level.

In 2014, Jasbir Kaur et al., [14] carried out

their survey on different types of fault-tolerances

and their techniques. This paper includes the

definition of Cloud computing based on NIST

standards, important features, different service

models namely SaaS, PaaS, and IaaS and

deployment models. They have identified several

mechanisms to avoid the faults that can be

implemented either before or after their occurrence.

Generally, DBMS systems obtain fault

tolerance by Replication. In 1999, Maitrayi

Sabaratnam et al., [2] have proposed a system using

Replicated Database. The security properties of

DBMSs have serious threat, which can be evaluated

by the DBMS fault tolerance. Their system

comprises of two components, where the first part

deals with impact of fault-tolerance in the database,

if the variable data stored in database gets

corrupted. The second part deals with finding the

weak part in the buffer cache and propose the need

to look after the components either independently

or collectively.

3. CLOUD COMPUTING ARCHITECTURE

WITH SOFTWARE AS A SERVICE

The SaaS model also facilitates the user with

complete backend services along with the software,

through IaaS and PaaS support. The clients make

use of all the services by requesting their demands

to the cloud which has many servers working for a

software service. To address all the requests to the

required server, keep track of all the requests and to

maintain the details of every session, all the client-

server transactions are managed by a primary server

which is known as the Middleware. The

Middleware accepts the requests from the client

through a communication medium, virtually

believed to be cloud, and assigns the request to the

suitable server as well as maintains a log file. A log

file holds the details of the client-server pair

transaction, instance information and specifications

of the server. Particular software is deployed in

more than one server with different software

specifications or the same one to balance high load

or server failures. Each server creates instances for

every client request, which enables to create a new

environment such that failure of any instance does

not affect the other instances and not utilise the

complete server. The architecture that shows the

software as a service is shown in the Figure 2.

4. FAILURE ANALYSIS OF SOFTWARE AS
A SERVICE

Even though the architecture and components

for delivering software services are employed

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

69

wisely, the occurrence of software failures as

discussed earlier may tend an instance or server to

terminate or fail completely. If the number of client

requests exceeds the handling capacity of the

software server it may fonder due to overflow, too

much switching or CPU fault. The cause of an

instance to fall apart immediately maybe execution

fault, loss of files or any runtime errors. This drives

the server to temporarily stop the execution of a

client request until it redirects the request details

and session details to any other server which now

acts as the alternative server. However, this may

not be possible if the backend database server itself

is lost as it is the hub for all the sessions and plea

details. If the underlying database server itself goes

down, then the data may not be saved disabling the

feature of diverting the traffic as the transaction

details are essential for restarting the instance

elsewhere would have been already wiped off. It is

essential to address all these problems to enhance

the system to be more efficient.

5. AN EFFICIENT FAULT TOLERANCE

METHOD FOR ENHANCING THE
AVAILABILITY OF SOFTWARE AS A
SERVICE

Fault tolerance concept which began to gain

its importance since two decades [5]

has at least

seen its success in imbibing this concept in the

database servers[6][7].The probability that the

underlying database server will crash is minimal.

Nevertheless, with striking technological

advancements, the software faults do have seen

high inclination. To make available continuous

database related services to the user, and also

ensure that the software do not lose its essential

data, two processes namely Mirroring and Buffer

Copying have been considered and included into

the overall architecture of cloud computing.

Even if a server is corrupted unfortunately, all

the client request details will be diverted to other

servers which will continue processing the request.

Every process or software server maintains a

transaction log file which incrementally updates the

sequence of changes made by the transaction in the

database. The Redo Log File maintained keeps the

server informed about the changes made by the

instance for every time interval [8]. The server

creates a buffer for every instance and the instance

updates it with the data simultaneously while it

accesses it. The architecture framework for

Mirroring and Buffering is shown in the Figure 3.

All client requests for database services for

instance are first directed to the Middleware. The

middleware maintains a table of details of the

client-server transaction pair and the instances

created for the client request as shown in Table 1.

The middleware sends the request to the

suitable server which creates an instance for the

request and send the details to the middleware. The

server maintains the buffer in its RAM and, stores

the data and redo log file in its database storage.

The servers may also be allocated separate spaces

in the common database which is connected to each

server through a network instead of maintaining

their private data storage.

The database resident on one server is made to

be mirrored and stored in a different server

especially on the server that has a different

execution path. Mirroring leads to 100% data

duplication but helps in recovering from the

failures, if any, at a faster rate. These fundamental

methods helps in connecting the data storage on all

the servers such that any changes made in their

respective data files or redo log files are

immediately duplicated or mirrored into the other

server's data space. Whenever an instance fails, the

middleware carries out Buffer Copying i.e.,

accesses the buffer memory of that instance that

failed and copies it to the alternate server to

continue processing the request. A new instance is

created on a different server for servicing the

request of the user, in case of failure of an instance,

on some other server and at the same the buffer

related to the failed instance is also copied to the

buffer created for the new instance. Thus, both the

Mirroring and Buffering helps a new instance

taking over from the instance that has failed. The

reliability of such as arrangement greatly improves

into 4 folds as one can design 4 alternative paths to

access an instance created for accessing a particular

service. The middleware ensures that the client

request is fulfilled even if an instance of a server

fails. This method improves the reliability,

availability and minimal loss of time of the

software as a service level in cloud by making the

cloud service fault-tolerant.

6. ENHANCING FAULT TOLERANCE

WITHIN CLOUDS WHEN SOFTWARE
IS USED AS SERVICE

To make the service provided by the cloud

more reliable, the cloud must be able to leverage its

services in any kind of failure. The cloud must be

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

70

able to provide fault-tolerant services even when

the complete software crashes down or the database

server does not support instance creation. The cloud

shall not be led back to provide a software service

if the database software crashes down. The cloud

creates copies of the software so that the client

request may be processed even if the service

deployed in a software tool fails. The architecture

that considers the replication of service related

program is shown in the Figure 4.

Every client request is first received by the

middleware and the middleware which allocates the

request to be processed by any of the idle copies of

the replicated software and maintains the details of

the software copies as shown in Table 2. The user

request is assigned to one of the available processes

for servicing the request. Software packages like

Rationale Rose do not support the method of

managing the user requests through instance

creation.

Software packages like Rationale Rose can

handle only a single client request at a time, and the

request is serviced through a model file “mdl” that

contains data about all the models that the rational

rose software supports. The allocation of software

copy to a user is also maintained by the

Middleware. All the user requests as such are

directed to the middle for processing, monitoring

and reporting the status of processing to the client.

The Data files (mdl files) that are created for

each of the user by the attached copy of the rational

rose server are made sharable across several copies

of the same software. The sharing is affected to all

the copies of the same software that can be made to

be resident on multiple servers. Since the data files

are sharable, any of the software copy can access

the file. If for any reason one of the copies of the

software fails, some other copy of the software

which is free can be initiated to provide the service

using the data file related to the software copy that

has filed. The newly selected copy of the software

generally is picked from a different server to the

extent possible as a matter of strategy. Find new

and replace the failed with the new is the strategy

followed in this case. The tolerance level of the

rational rose software can further be increased by

implementing mirroring of the “mdl” file itself.

Thus the issue of an “mdl” file failing along with

the software copy that handles the data file can also

be taken care of by selecting a new copy of the

software and the mirrored mdl file so that fault

tolerance can be greatly enhanced.

7. COMPARATIVE ANALYSIS

Various authors have recommended different

types of fault tolerance models. Table 3 shows the

comparison of the methods proposed by several

authors. Many of the authors have banked on

implementing the fault tolerance using single

criteria. Most of the authors utilised system level

fault tolerance and as such no model has been

presented that deals with fault handling outside the

system level fault tolerance. It also seen that most

of the software that are needed have not considered

within its implementation the issues related to fault

occurrence and handling. Database software is one

kind that implements the system level fault

tolerances. All the methods presented by others

have not considered any issue of faults happening

due to failure of data resources which are used for

running of the software. Sushmitha et al., model
presented in this paper considers both the system

level failures and data level failures and built robust

fault tolerance framework to make cloud computing

much more versatile.

Mirroring and Buffering with process

replication has been seen as most ruggedized fault

tolerance methods as they lead to very high level of

reliability.

8. IMPLEMENTING FAULT TOLERANCE
ON A SAMPLE CLOUD

The fault tolerance methods proposed in this

paper has been applied to university level cloud

computing system, the architecture of which is

shown in Figure 5. The mean time between the

failures of the stream 10 times in 130 days works

out to a reliability of 92.3%.

The university architecture has been modified

to include the mirroring, buffering and replicating

processes. The modified architecture has been

shown in the Figure 6. The reliability of the KLU

network has been greatly enhanced as we witnessed

only 2 faults within 130 days of test trail made with

modified KLU network which works out to a

reliability of 98.2%. The model presented in this

paper clearly improved.

9. CONCLUSIONS

Cloud computing technologies are making

radical changes in the way computing is undertaken

in support of several levels and sizes of the business

establishments. The cost of computing is being

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

71

reduced quite drastically due to the use of cloud

computing technologies. The clouding computing

infrastructure while is leading many great

economies but still are suffering from different

kinds of fault due to which the users are not being

given with satisfactory services. Mirroring,

buffering and replication of the software addresses

most of the fault related issues that happen when

software is provided as service.

REFERENCES

[1] Jim Gray, Paul McJones, Mike Blasgen, Bruce

Lindsay, Raymond Lorie, Tom Price, Franco

Putzolu, Irving Traiger, "The Recovery

Manager of the System R Database Manager",

ACM Computing Survey, Vol. 3, No. 02, pp.

223-242, 1981.

[2] Maitrayi Sabaratnam, ØysteinTorbjørnsen,

Svein-Olaf Hvasshovd, "Evaluating the

Effectiveness of Fault Tolerance in Replicated

Database Management Systems", Fault-

Tolerant Computing, Twenty-Ninth Annual

international symposium(IEEE), 1999.

[3] William Hodak, Sushil Kumar, Ashish Ray,

"Oracle Database 11g High

Availability",http://www.oracle.com/us/solutio

ns/twp-databaseha-11gr1-134841.pdf

[4] Tharam Dillon, Chen Wu and Elizabeth Chang,

"Cloud Computing: Issues and Challenges",

24
th

 IEEE International Conference on

Advanced Information Networking and

Applications, pp. 27-33, 2010

[5] Qi Zhang, Lu Cheng, RaoufBoutaba, "Cloud

Computing: State-of-the-Art and Research

Challenges", pp. 7-18, 2010

[6] YashpalsinhJadeja, Kirit Modi, "Cloud

Computing - Concepts, Architecture and

Challenges", International Conference on

Computing, Electronics and Electrical

Technologies [ICCEET], pp. 877-880, 2012.

[7] V. M. Sivagami, K. S. Easwara Kumar,

"Survey on Fault Tolerance Techniques in

Cloud Computing Environment", International

Journal of Scientific Engineering and Applied

Science (IJSEAS), Vol. 1, No. 9,pp.419-425,

2015.

[8] Lakshmi Prasad Saikia and YumnamLanglen

Devi, "Fault Tolerance Techniques and

Algorithms in Cloud Computing",

International Journal of Computer Science &

Communication Networks, Vol. 4, No. 1, pp.

01-08.

[9] Sourabh Dave and Abhishek Raghuvanshi,

"Fault Tolerance Techniques in Distributed

System", International Journal of Engineering

Innovation & Research, Vol. 1, No. 2, pp.

124-130, 2012.

[10] Ravi Jhawar, Vincenzo Piuri, Marco

Santambrogio, “Fault Tolerance Management

in Cloud Computing: A System-level

Perspective”, IEEE Systems Journal, Vol 1,

Iss. 7, pp. 1-7, 2013

[11] Anju Bala and Inderver Chana, “Fault

Tolerance – Challenges, Techniques and

Implementation in Cloud Computing", IJCSI

International Journal of Computer science

issues, Vol. 9, Iss. 1, pp. 288-293, 2012

[12] Ifeanyi P. Egwutuoha, Shiping Chen, David

Levy, Bran Selic, "A Fault Tolerance

Framework for High Performance Computing

in Cloud", 12th IEEE/ACM International

Symposium on Cluster, Cloud and Grid

Computing, pp. 709-710, 2012.

[13] L. Arockiam, Geo Francis E, "FTM- A Middle

Layer Architecture for Fault Tolerance in

Cloud Computing", Special Issue of

International Journal of Computer

Applications (0975 – 8887) on Issues and

Challenges in Networking, Intelligence and

Computing Technologies – ICNICT 2012, pp.

12-16, 2012.

[14] Jasbir Kaur, SupriyaKinger, "Analysis of

Different Techniques Used For Fault

Tolerance", (IJCSIT) International Journal of

Computer Science and Information

Technologies, Vol. 5, No. 3, pp.4086-

4090,2014.

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

72

Figure 1: Architecture of Cloud Computing

Figure 2: Architecture Of Software As A Service Within A Cloud

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

73

Figure 3: Fault Tolerance Of Software As A Service Using Multiple Instances Through Buffer Copying And Disk

Mirroring

Figure 4: Fault Tolerance Of Software As A Service Using Multiple Copies Through Process Duplication

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

74

BSNL ROUTER/DSLAMBSNL ROUTER/DSLAM

HP A550
SWITCH

HP A550

SWITCHMikrotik Router

Cloud Core

Mikrotik Router

Cloud Core

CYBERROM CR 2500

JUNIPER ROUTERJUNIPER ROUTER

Mikrotik Router

1100X2AM

Mikrotik Router

1100X2AM

HP CORE SWITCH

hpX3506

HP CORE SWITCH

hpX3506

SEIMEN CORE SWITCHSEIMEN CORE SWITCH

FED, CSE, STAFF QTRS,
MECH, HOSTELS

S
W

IT
C

H
 R

A
C

K

HP WiFi Controller

SEIMENS CONTROLLER\C-4110

FULL BLOCKS

Ladies Hostel

Staff Quarters

MAIN LAN SWITCHMAIN LAN SWITCH

S
W

IT
C

H
 R

A
C

K

HP CORE SWITCH

hpX3506

HP CORE SWITCH

hpX3506 HP CORE SWITCH

hpX3506

HP CORE SWITCH

hpX3506

HP CORE SWITCH

hpX3506

HP CORE SWITCH

hpX3506

FTP, DHCP, KLU-WEB Server , ERP-1, ERP-2, DB2, ORACLE

5 DELL Blade Servers , 2

SUN Servers

Infiniti SwitchInfiniti Switch

5TB Storage

H
P

C

L

O
U

D

8

B

L

A

D

E
S

2 GPUs, 4CPUs

High performance

computing nodes eahc

equipped with 1.3T

BRIDGE

Figure 5: University Cloud Architecture

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

75

BSNL ROUTER/DSLAMBSNL ROUTER/DSLAM

HP A550

SWITCH

HP A550

SWITCH
Mikrotik Router

Cloud Core

Mikrotik Router

Cloud Core

CYBERROM CR 2500

JUNIPER ROUTERJUNIPER ROUTER

Mikrotik Router

1100X2AM

Mikrotik Router

1100X2AM

HP CORE SWITCH

hpX3506

HP CORE SWITCH

hpX3506

BRIDGEBRIDGE

WIndows

ORACLE

VI

WIndows

MiddleWare

ORACLE

Database

Client

Instance

-1

Instance

-2

Instance

-3

Buffe-1r

Buffer-2

Buffer-3

Databa
se

Redolo

g Files

WIndows

ORACLE

VI

Instance
-1

Instance
-2

Instance

-3

Buffe-1

Buffer-2

Buffer-3

Databa

se

Redolo

g Files

Miirroring

WIndows

Rational Rose-1

Rational Rose-2
Mdl

file -2

Mdl
file -1

Rational Rose-3
Mdl

file -3

New Copy of
Rational Rose

WIndows

Rational Rose-1

Rational Rose-2
Mdl

file -2

Mdl

file -1

Rational Rose-3
Mdl

file -3

COMMON CHASIS

BLADE-1 BLADE-2

BLADE-5 BLADE-6BLADE-3

WIndows

MiddleWare

ORACLE

BLADE-4

MIDDLEWARE BLADES

HP CLOUD

Figure 6: Fault Tolerance included University Cloud Architecture

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

76

Table 1: Instance Allocation Table

UID Server Instance Database
Name

Client _1 Server1 Instance_1 D1

Client_2 Server1 Instance_2 D1

Client_3 Server2 Instance_3 D1

Client_4 Server2 Instance_4 D2

Table 2: Software Allocation Table

UID Server Software Allocated

Client1 Server1 Rationale Rose_1

Client2 Server1 Rationale Rose_2

Client3 Server1 Rationale Rose_3

Client4 Server2 Rationale Rose_1

Table 3: Comparison Of Fault Tolerance Models

Parameter
Contributors to Fault Tolerance at Software as service

Sushmitha
Model

Saurabh

Dave
Ifeanyi

Anju

Bala
L.

Arockiam
Ravi

Jhawar
Maitrayi

Sabaratnam
Mirroring √ X X X X X X
Buffering √ X X X X X X
File sharing √ X X X X X X
Check pointing X X X X X X X
Multiple Process

Communication √ √ X X X X X

Process level

redundancy √ X √ X X X X

Virtualisation

√ X X √ X X X

Middleware service √ X X X √ X X
Fault tolerance

Manager
X X X X X √ X

System level fault

X X X X X X √

