
Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

51

LEAST-MEAN DIFFERENCE ROUND ROBIN (LMDRR) CPU

SCHEDULING ALGORITHM

1
D. ROHITH ROSHAN,

 2
DR. K. SUBBA RAO

1
M.Tech (CSE) Student, Department of Computer Science and Engineering, KL University, India.

2
Professor, Department of Computer Science and Engineering, KL University, India.

E-mail:
1
rohithroshan.devu@gmail.com,

2
subbarao_cse@kluniversity.in

ABSTRACT

This article presents a variant of Round Robin Algorithm called Least Mean-Difference Round Robin

(LMDRR) Algorithm. First, it calculates the mean of all processes burst times. Then it obtains the

difference of each process burst time with the calculated mean. From those differences, it selects the least

difference and assigns it to the CPU for executing it for a time slice. When the time slice is expired it

suspends the process and checks the remaining burst time of the process if it is less than time quantum then

it immediately executes the process, if the remaining time is greater than time quantum then it selects the

process with next least difference and execute it for another time slice. This entire process will be repeated

until all the processes in the ready queue are finished. The experimental results are compared with Round

Robin and Mean-Difference Round Robin algorithms and found that proposed algorithm succeeded in

improving CPU efficiency.

Keywords: Burst Time, Turnaround Time, Waiting Time, CPU Scheduling, Pre-emptive Scheduling, non

Pre-emptive Scheduling, LMDRR.

1. INTRODUCTION

Among key resources of a computer, CPU

is the most important component since it is the

heart of the system. Hence, scheduling is necessary

for OS (Operating System) [1]. For utilizing

resources productively, they should be shared

among multiple resources and users [2]. Maximum

sharing of resources relies on the effective

scheduling of processes in a system and its users for

the processor, which makes scheduling the

processes a key ingredient of multiprogramming

OS. Because the processor is a key resource,

process scheduling also called CPU scheduling,

turns out to be a predominant aspect in

accomplishing objectives mentioned above [1].

OS can constitute 3 different types of

schedulers: long, medium and short-term schedulers

as shown in Figure 1.

There are several scheduling algorithms available

that differ in efficiency basing on environment that

means we believe an algorithm is good in some

cases and not in other and vice-versa. A good CPU

scheduler should satisfy the following criteria:

Figure 1. Queue Diagram For Scheduling

● Maximize Throughput. (Throughput means

number of jobs completed per unit of time.)

● Minimize Response Time. (Response Time is

the time taken to respond for a program.)

● Minimize Turnaround Time. (Turnaround

Time is the total time required for process from

submission to its completion.)

● Minimize Waiting Time. (Waiting Time is the

time spent by the process in ready queue.)

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

52

● Maximize CPU Efficiency. (Keeping CPU

busy 100% with 0% wastage of CPU cycles.)

● Assure fairness for all jobs. (Give equal

amount of CPU time for all jobs.)

To resolve this issue, the CPU Scheduler in most

cases utilizes a timing mechanism and interrupts

running jobs periodically for a lapse of fixed time

slice. After that, the scheduler halts all activities of

the job and reschedules it into ready queue. Now,

the CPU is allocated another job that runs unless:

the timer goes off, an I/O command is issued by the

job, or the job is completed. Accordingly, the job is

moved to Ready, Wait or Finished queues,

respectively. This type of scheduling is called

Preemptive Scheduling and the other one is Non-

Preemptive Scheduling, which work without

interrupts.

2. LITERATURE SURVEY

To allot the CPU with jobs in the system,

the scheduler depends on Process Scheduling

Algorithm which is based on a particular strategy.

In early OS non-preemptive scheduling strategies

were used, but, in the recent interactive systems, the

algorithm should instantly respond to user requests.

The scheduling algorithms that are used often were:

2.1 First Come First Serve (FCFS)

FCFS scheduling algorithm services the

requests as they arrive. It is the easiest scheduling

algorithm and utilized as a standard to differentiate

other algorithms. FCFS is suitable in conditions in

which there is only one application access the

resource [3].

2.2 Shortest Job First (SJF)

SJF [4] is non-preemptive and attempts to

increase the response time of tasks regarding FCFS.

But it needs additional knowledge of every job's

service time. It selects the job with the smallest

time. The OS will suspend the current job if the

next job has less burst time. The main issue with

SJF is that larger processes need to wait for a long

time.

2.3 Priority Based Scheduling

This algorithm allocates every process to

CPU basing on the priority associated with it. The

processes with higher priorities are executed first

and processes with lower priorities are executed

later. In the event that different processes with

similar priorities, the CPU is allocated to processes

on the premise of FCFS. This scheduling algorithm

can be either preemptive or non-preemptive

depending on nature and environment [5].

2.4 Round Robin Scheduling (RR)

RR is the easiest among CPU scheduling

algorithms in an OS, and that allots time slices to

every process in circular order and in uniform

segments [6] [7] [8], dealing with all process

without any priority [9], possibly, the main trouble

in RR is with the time slice [10] [10] [11] [12]. Jobs

are arranged in the READY Queue in FCFS

strategy. The scheduler chooses the first job in the

queue and then sets the timer to a time slice, after

that it allots the job to the CPU. If the job is

finished, then all of its resources are released and

removed from the queue. If the job is not finished

and the timer goes off, then it is preempted and

placed at the end of queue.

2.5 Mean-Difference Round Robin (MDRR)

The existing [13] system minimizes the

performance characteristics such as waiting time,

context switches and turn-around time by executing

following steps:

Step 1: Calculate the mean of the burst time for all

process.

Step 2: Compute the differences for each process

burst time and the mean.

Step 3: Select the process with largest difference

value and allot the CPU with the selected

process for a time slice.

Step 4: Repeat 1 and 3 steps until all the jobs are

finished in READY queue.

In the following section, we present our LMDRR

algorithm which enhances CPU scheduling more

effectively than Round Robin (RR) and Mean

Difference Round Robin (MDRR).

3. METHODOLOGY

The algorithm presented in the paper computes the

average on total processes burst time presented in

the ready queue. Then, it ascertains the differences

of calculated average and process burst times. In

those differences, the algorithm takes the process

with the smallest difference value and allots CPU to

that process for one time slice. When the time slice

is expired, it suspends the process and checks the

remaining burst time of the process if it is less than

time quantum then it immediately executes the

process, if the remaining time is greater than time

quantum then it selects the process with next least

difference and execute it for another time slice. The

algorithm assures the repetition of this procedure

until all processes are finished in the ready queue.

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

53

3.1 Proposed Algorithm

Input:
BT[] - Array of burst times.

PID[] - Array of processes.

N - Total number of processes.

δ - Time Quantum.

Output:

Average waiting time (AWT) of all processes.

Average turnaround time (ATT) of all processes.

Algorithm:

Step 1: Compute the mean of burst time of every

process in the ready queue.

Sum =+ BT[i]; Mean=Sum/N;

Step 2: Compute the mean differences for every

process in the ready queue.

D[] = Mean-BT[i];

Step 3: Identify the process with smallest

difference value.

 Find Smin[] and PID[];

Avail CPU for executing the process for

one time slice.

PID[]. BT[i] = BT[i]-δ;

Step 4: If the remaining burst time of current

running process is less than or equal to TQ

(Time Quantum), then continue its

execution.

PID[]. BT[i] <= δ;

Step 5: Later, completing the step 4, select the

next process which is having the smallest

difference value.

Find Smin-1 [] and PID[];

Execute it and repeat step 4. If any two

processes have the same mean difference

value, then find the shortest process and

assign it to the CPU.

Step 6: For all the processes in the ready queue

repeat step 5.

Step 7: Repeat step 1 through step 6 until all the

processes in the ready queue are finished.

Step 8: Calculate the average waiting time of all

the processes in the ready queue.

AWT=Σ Wi/N;

Step 9: Calculate the average turnaround time of

all the processes in the ready queue.

ATT=Σ Ti/N;

D [] – Array of Mean-Difference.

Smin – Process with smallest difference value.

Smin-1 – Process with next smallest difference

 value.

Wi – Waiting time of i th process.

Ti – Turnaround time of i th process.

4. EXPERIMENTAL RESULTS

Example 1: Consider the set of processes, in the

order p1, p2, p3, p4 shown in the Table 1,

presumed to have arrived at time t0, with the time

quantum 10, 15, 20, 25 and duration of the CPU

burst times given in milliseconds.

Table 1: Processes With Their Burst Times In

Milliseconds

Process Id Burst Time

P1 53

P2 17

P3 68

P4 24

In the below Table 2 a comparative study of the

efficiency of the proposed LMDRR, RR and the

MDRR algorithm with different Time Quantum

values is showing that the proposed LMDRR

algorithm has the minimum Average Waiting Time

and Average Turnaround Time.

Table 2: RR, MDRR And The Proposed LMDRR

Algorithm Performance Comparison

Time

Slice

10

msec

15

msec

20

msec

25

msec

RR AWT 75.5 79.25 73 69.25

MDRR

AWT

73 75.5 58 63

LMDRR

AWT

63 54.75 54.75 58.5

RR ATT 117.5 119.5 115.5 109.75

MDRR

ATT

111 116 96 103

LMDRR

ATT

103.5 95.25 95.5 99

LMDRR Scheduling:

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

54

The mean of burst times in Table 1 is :

The mean-differences of the processes are shown in

Table 3.

Table 3: Processes Burst Time And Mean-Difference

Process Burst Time Mean-Difference

P1 53 12.5

P2 17 23.5

P3 68 27.5

P4 24 16.5

Now the process with least mean difference is

allotted to CPU and then the process with next least

mean-difference. Like this processes are allotted to

CPU in the order P1, P4, P2, P3. In this iteration P2

and P4 are completed.

After the first iteration the algorithm again

calculates the mean and differences for the

remaining processes

The mean-differences of the remaining processes

are shown in Table 4.

Table 4: Remaining Processes Burst Time And Mean-

Difference

Process Burst Time Mean-Difference

P1 28 7.5

P3 43 7.5

Since both the processes have same mean

difference the algorithm selects the process in

sequential order i.e., P1. As the P1 completes one

time slice, it has only burst time of 3msec is

remaining which is less than the time quantum 25

so immediately it will be executed. After that P3

will be allotted. Like this, the procedure repeats

until all the processes are finished. The complete

Gantt chart is shown in the Figure 2.

Figure 2: Gantt Chart For LMDRR Algorithm

The comparison graph of RR, MDRR and LMDRR

algorithms is presented in Figure 3.

0

20

40

60

80

100

120

10 msec 15 msec 20 msec 25 msec

RR AWT MDRR AWT LMDRR AWT

RR ATT MDRR ATT LMDRR ATT

Figure 3: Performance Comparison Graph Of RR,

MDRR And LMDRR

Example 2: Consider the set of processes, in the

order p1, p2, p3, p4, p5 shown in the Table 5,

presumed to have arrived at time t0, with the time

quantum 10, 14, 16, 18 and duration of the CPU

burst times given in milliseconds.

Table 5. Processes With Their Burst Times In

Milliseconds

Process Id Burst Time

P1 51

P2 22

P3 42

4 18

P5 62

A comparative study of the efficiency of the

proposed LMDRR, RR and the MDRR algorithm is

shown in the Table 6.

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

55

Table 6: RR, MDRR And The Proposed LMDRR

Algorithm Performance Comparison

Time

Slice

10

msec

14

msec

16

msec

18

msec

RR AWT 110.6 108.6 113 103.2

MDRR

AWT

108.6 100.2 111.2 97.8

LMDRR

AWT

83 85.2 84.2 87.8

RR ATT 149.6 144.8 152 142.2

MDRR

ATT

147.6 138.4 150.2 136.8

LMDRR

ATT

133.6 122.6 123.2 126.8

LMDRR Scheduling:

The mean of the burst times in Table 5 is:

The mean-differences of the processes are shown in

Table 7.

Table 7: Processes Burst Time And Mean-Difference

Process Burst Time Mean-Difference

P1 51 12

P2 22 17

P3 42 3

P4 18 21

P5 62 23

Now the process with least mean difference is

allotted to CPU and then the process with next least

mean-difference. Like this processes are allotted to

CPU in the order P3, P1, P2, P4, P5. In this

iteration P2 and P4 are completed.

After the first iteration the algorithm again

calculates the mean and differences for the

remaining processes

The mean-differences of the remaining processes

are shown in Table 8.

Table 8: Remaining Process Burst Times And Mean-

Differences

Process Burst Time Mean-Difference

P1 33 0.66

P3 24 9.66

P5 44 10.34

The processes are allotted to CPU in the order P1,

P3, P5. In this iteration process P1 and P3 will be

completed. Like this, the procedure repeats until all

the processes are finished. The complete Gantt

chart is shown in the Figure 4.

Figure 4: Gantt Chart For LMDRR Algorithm

The comparison graph of RR, MDRR and LMDRR

algorithms is presented in Figure 5.

0

20

40

60

80

100

120

140

160

10 msec 14 msec 16 msec 18 msec

RR AWT MDRR AWT LMDRR AWT

RR ATT MDRR ATT LMDRR ATT

Figure 5: Performance Comparison Graph Of RR,

MDRR And LMDRR

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

56

5. CONCLUSION

This paper presents a form of Round Robin

scheduling algorithm called Least Mean-Difference

Round Robin (LMDRR) algorithm. The algorithm

presented in the paper computes the average on

total processes burst time resided in the ready

queue. Then, it ascertains the differences of

calculated average and process burst times. In those

differences, the algorithm takes the process with the

smallest difference value and allots CPU to that

process for one time slice. When the time slice is

expired, the subsequent process from the ready

queue is taken which is having the smallest

difference value and it will be executed for another

time slice. The algorithm assures the repetition of

this procedure until all processes are finished in the

ready queue. The algorithm’s efficiency is

evaluated with two examples. Experimental results

are compared with MDRR and RR algorithm and

found that the proposed LMDRR algorithm

exhibited better optimal scheduling.

REFRENCES:

[1] Shah, Syed Nasir Mehmood, Ahmad Kamil Bin

Mahmood, and Alan Oxley. "Hybrid

scheduling and dual queue scheduling." In

Computer Science and Information Technology,

2009. ICCSIT 2009. 2nd IEEE International

Conference on, pp. 539-543. IEEE, 2009.

[2] Silberschatz, Abraham. "(WCS) Operating

System Concepts 7th Edition Flex Format."

(2005).

 [3] Garrido, José M., and Richard Schlesinger.

Principles of modern operating systems. Jones

& Bartlett Learning, 2008.

[4] Das, Vinu V., Narayan C. Debnath, R.

Vijayakumar, Janahanlal Stephen, Natarajan

Meghanathan, Suresh Sankaranarayanan, P. M.

Thankachan, Ford Lumban Gaol, and Nessy

Thankachan. Information Processing and

Management: International Conference on

Recent Trends in Business Administration and

Information Processing, BAIP 2010,

Trivandrum, Kerala, India, March 26-27, 2010.

Proceedings. Vol. 70. Springer Science &

Business Media, 2010.

[5] Dhamdhere, Dhananjay M. Operating Systems:

A Concept-based Approach, 2E. Tata McGraw-

Hill Education, 2006.

[6] Guo, Qing-pu, and Yang Liu. "The Effect of

Scheduling Discipline on CPU-MEM Load

Sharing System." In Wireless Communications,

Networking and Mobile Computing, 2008.

WiCOM'08. 4th International Conference on,

pp. 1-8. IEEE, 2008.

[7] Alam, Bashir, M. N. Doja, and R. Biswas.

"Improving the performance of fair share

scheduling algorithm using fuzzy logic."

In Proceedings of the International Conference

on Advances in Computing, Communication

and Control, pp. 567-570. ACM, 2009.

[8] Alam, Bashir, M. N. Doja, and R. Biswas.

"Finding time quantum of Round Robin CPU

scheduling algorithm using Fuzzy Logic."

In Computer and Electrical Engineering, 2008.

ICCEE 2008. International Conference on, pp.

795-798. IEEE, 2008.

[9] A. Silberschatz, P. B. Galvin, G. Gange,

“Operating Systems Concepts with Java,” John

Wiley and Sons. 6Ed 2004.

[10] Matarneh, Rami J. "Self-adjustment time

quantum in round robin algorithm depending on

burst time of the now running

processes." American Journal of Applied

Sciences 6, no. 10 (2009): 1831.

[11] Harwood, Aaron, and Hong Shen. "Using

fundamental electrical theory for varying time

quantum uni-processor scheduling." Journal of

systems architecture 47, no. 2 (2001): 181-192.

[12] Helmy, Tarek, and Abdelkader Dekdouk. "Burst

round robin as a proportional-share scheduling

algorithm." In Proceedings of The fourth IEEE-

GCC Conference on Towards Techno-Industrial

Innovations, pp. 424-428. 2007.

[13] Kiran, RNDS S., Polinati Vinod Babu, and BB

Murali Krishna. "Optimizing CPU scheduling

for real time applications using mean-

difference round robin (MDRR) algorithm."

In ICT and Critical Infrastructure:

Proceedings of the 48th Annual Convention of

Computer Society of India-Vol I, pp. 713-721.

Springer International Publishing, 2014.

