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ABSTRACT 
 

The cuckoo search algorithm is a novel metaheuristic based on the reproduction behavior of some cuckoo 
species in combination with the Lévy flight behavior of some birds and fruit flies. It has been applied to a 
wide range of optimization problems with good performance such as a TSP; nonetheless, it has yet to be 
applied to the vehicle routing problem, specifically the capacitated vehicle routing problem. In this study 
cuckoo search is proposed to solve the capacitated vehicle routing problem. The proposed algorithm uses a 
set of twelve neighborhood structures process based on λ-interchanges scheme and cross-exchange 
operators with the aim of gaining significant improvements in solution quality. The result shows that the 
performance of the proposed algorithm is comparable to that of the other algorithms and is able to find 
near-optimal solution in reasonable time, which indicates that cuckoo search has the potential to solve the 
capacitated vehicle routing problem. 

Keywords: Optimization, Cuckoo Search, Capacitated Vehicle Routing Problem, Neighborhood 

Structures, Levy Flight. 

 
1. INTRODUCTION  
 

Various metaheuristic have been successfully 
applied to solve the vehicle routing problem (VRP). 
However, as yet none of these algorithms have been 
able to reach the optimal solution across all the 
benchmark datasets and the community is still 
looking for a more stable and robust algorithm. The 
main challenge of the VRP is to design least-cost 
(distance, time) routes for a fleet of vehicles to 
serve geographically scattered clients. There are 
many types of VRP, which are classified according 
to different applications and restrictions. One of 
these is the capacitated VRP (CVRP) in which the 
total demand for any vehicle cannot exceed a preset 
capacity value.  

As the CVRP is classified as a NP-hard problem 
based on the theory of computational complexity, 
various approaches have been presented to solve the 
CVRP, and these can be divided into two types: 
exact and metaheuristic algorithms. Exact 
algorithms such as branch and bound and dynamics 
programming which able to obtain the optimal 
solution [1, 2]. However, their performance is 
limited to small-sized problems with reasonable 
time. Metaheuristics is a category of algorithm that 
has been developed based on biology, physics and 
artificial intelligence and has been shown to have 
efficient optimization performance in various fields. 

They can be classified into two main types: single 
and population based methods.  

Various metaheuristics have been presented to 
solve the CVRP such as bees mating optimization 
algorithm [3]. electromagnetism-like algorithm [4], 
Ant Colony Optimization [5, 6], artificial bee 
colony algorithm [7, 8], Tabu Search [9, 10], the 
Genetic Algorithm [11], Particle Swarm 
Optimization [12-14], Adaptive Memory 
Programming [15], water flow alike algorithm [16], 
membrane algorithm [17], cooperative parallel 
metaheuristic [18].  

A successful metaheuristics approach will find a 
balance between exploring new parts of the search 
space and refining areas of the search space where 
current information suggests the minimum might be 
located. Recently, a new metaheuristic known as 
cuckoo search (CS) has received much attention 
from researchers in various optimization areas. It 
was introduced by Yang and Deb in 2009. Cuckoo 
search has shown better performance compared to 
GA and PSO. It is  characterized by three key 
components: (i) a simple selection strategy; (ii) 
more efficient randomization as it uses so-called 
Lévy flight, which preserves the step length 
(whether large or small) and so there is a better 
balance between exploration and exploitation; and 
(iii) fewer parameters to be tuned, which means it is 
potentially more generic and can adapt to a wider 
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range of optimization problems [19]. In addition, in 
CS each nest can have many eggs and thus it can 
represent a set of solutions as it can be extended 
into a type of meta-population algorithm, or even a 
hyper-heuristic algorithm [20]. However, to the best 
of our knowledge no work has attempted to apply 
CS to solving the CVRP. Therefore, this research 
proposes a method of CS to solve the CVRP. 

The remainder of this paper is organized as 
follows: In section 2, a brief literature review of CS 
and its application is provided. In section 3, the 
proposed CS algorithm and how it is applied to the 
CVRP is presented. In section 4, an experimental 
result for selecting the algorithm parameter is 
presented followed by the results of an experiment 
to compare the performance of the proposed CS 
algorithm with that of other metaheuristics. Finally, 
Section 5 concludes the study. 

2. LITERATURE REVIEW 
 

Cuckoo search has been applied to various 
optimization problems ranging from continuous to 
discrete optimization problems and from single-
objective to multi-objective problems. In addition, 
several attempts have been made to improve the 
basic algorithm. Cuckoo search has been shown to 
be very effective in solving continuous optimization 
problems such as welded beam design problems 
[21] and spring design [22]. In addition, CS exhibits 
superior performance in a range of constrained 
optimization problems such as business 
optimization applications [23], single-objective 
optimum synthesis of a six-bar double dwell 
linkage [24] and for phase equilibrium and stability 
calculations, where it has been shown to be a 
reliable method for solving thermodynamic 
calculations [25]. 

Cuckoo search has also gained much attention in 
relation to solving discrete optimization problems in 
various domains. For instance, Pop, Chifu [26] 
proposed a CS hybrid algorithm for selecting 
optimal web service composition, Vazquez [27] 
used CS to train a spiking neural network and 
Layeb [28] proposed a new approach based on a 
quantum-inspired CS algorithm to deal with the 
basic problem in one-dimensional bin packing. The 
following year, Chifu, Pop [29] also presented a CS 
for selecting the optimal web service composition. 
More recently, Burnwal and Deb [30]  proposed a 
CS-based approach for solving the flexible 
manufacturing system scheduling problem, while 
Ouaarab, Ahiod [31] proposed an extended and 
improved version of the standard CS to solve the 
traveling salesman problem (TSP). 

Several studies have been conducted in attempts 
to improve CS. For instance, the study by Walton, 
Hassan [32] included a modification of the CS 
where a crossover between the solution is added to 
gain part of the other solution properties. Also 
Soneji and Sanghvi [33] compared the simplified 
version of the CS algorithm with a modification 
where Lévy flight is modified using Mantegna’s 
algorithm and McCulloch’s algorithm. This 
modification involves the addition of information 
exchange between the top eggs, or the best 
solutions.  

As a further extension, Yang and Deb [34] 
produced a multi-objective CS for design 
engineering applications. For multi-objective 
scheduling problems, significant progress was made 
by Chandrasekaran and Simon [35] using a CS 
algorithm. 

3. THE BASIC CUCKOO SEARCH FOR THE 
CAPACITATED VEHICLE ROUTING 
PROBLEM 

 
Cuckoo search is one of the latest nature-inspired 

metaheuristic algorithms that belong to the swarm 
intelligence category. Recent studies show that CS 
is potentially far more efficient than PSO and GA 
[20, 21] for continuous search space problem. The 
algorithm is inspired by the reproduction behavior 
of cuckoo birds. Cuckoos are fascinating birds not 
only because of the beautiful sounds they can make, 
but also because of their aggressive reproduction 
strategy. Some species of cuckoos lay their eggs in 
communal nests, though they may remove others’ 
eggs to increase the hatching probability of their 
own eggs. Quite a number of species engage in 
obligate brood parasitism by laying their eggs in the 
nests of other host birds (often other species). If a 
host bird discovers the eggs are not its own, it will 
either throw away these alien eggs or simply 
abandon its nest and build a new nest elsewhere. 
These characteristics are utilized in the CS 
approach because, after each step, the worst 
solutions are discarded and new solutions are 
generated, as if the worst nests are being identified 
by host birds so they have to be discarded and the 
new nests are searched for by host birds [20], and 
then in each iteration a cuckoo solution tries to 
replace a nest among the solution nests to get the 
best solution after each repetition. The strength of 
CS lies in how the cuckoo exploits and explores the 
solution space. The algorithm can be summarized 
based on the following ideal rules:  

Each cuckoo lays one egg at a time, and dumps it 
in a randomly chosen nest; 
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The best nests with high-quality eggs will be 
carried over to the next generations; 

The number of available host nests is fixed and 
there is always a probability that the cuckoo egg 
will be discovered by the host. If an egg is 
discovered, the host bird throws it away. This effect 
is approximated by discarding a fraction of the eggs 
and replacing them at each generation. 

Essentially, these rules provide a selection 
process for the optimization algorithm, ensuring the 
best eggs survive from generation to generation. To 
complete the algorithm, a method of generating the 
eggs is required. This is where Lévy flight is 
applied. A cuckoo i generates a new solution xi(t+1) 
via Lévy flights, according to Eq. 6 [7]: 

xi(t+1)=xi(t)+α ⊕ Lévy (s, λ)  (6) 

where α is the step size that follows the Lévy 
distribution that is shown in Eq. (7): 

Lévy(s,λ) ∼ s –λ ,(1 < λ ≤ 3)  (7) 

This has an infinite variance with an infinite 
mean. Here, s is the step size drawn from a Lévy 
distribution. A detailed description of the CS can be 
found in [20, 21].  

4. PROPOSED CUCKOO SEARCH FOR THE 
CAPACITATED VEHICLE ROUTING 
PROBLEM 

 
The adaptation of using the CS with the discrete 

solution space of CVRP is similar to the adaptation 
of Ouaarab, Ahiod [31] since its shows better 
performance for TSP. The CS works with a 
population of candidate solution eggs. At each 
generation, the n best individuals of the cuckoo 
eggs which is not discovered by the host bird nest 
are selected and ranked based on their fitness. There 
are considerably large neighborhoods structures 
have been used as a local search mechanism to 
improve the cuckoo eggs fitness to make the cuckoo 
eggs looks like host nest eggs and therefore have a 
better chance to survive and not discovered as an 
alien eggs. The details of CS procedure are outlined 
as follows: 

4.1. Egg Representation  
 

Assuming that a cuckoo lays a single egg in one 
nest, we can say that one egg in a nest is a solution 
represented by one individual in the population. An 
egg can also be one new candidate solution laid by 
a cuckoo for a place/location reserved by an 
individual in the population, while the nest is the 
container of that new cuckoo egg.  

In CS the number of nests is fixed and this 
number represents the size of the population. A nest 
is a container of an individual of the population and 
its abandonment involves its egg being replaced in 
the population by a new one. Obviously, a nest can 
have multiple eggs for future extensions, but in this 
study each nest contains only one egg. 

In the CVRP, we can say that an egg is the 
equivalent of a Hamiltonian cycle of served routes 
that start and end at the central depot. The egg 
representation adopted in this study can be 
described as follows: Assume a CVRP with n 
costumers and v available vehicles for delivery, 
then the number 0 denotes the depot and 1, 2,… n 
denotes the costumers. Based on the v vehicles at 
the depot, so each egg has at most the v distribution 
path (route), every path (route) starts at the depot 
and stops at the depot. Example of possible routes is 
shown in Figure 1. 

 Depot Customer   
Route 1 0 2 3 4 0  
Route 2 0 6 7 1 8 5 0 
 . . . . . .  
 . . . . . .  
 . . . . . .  
 . . . . . .  
Route n 0 12 16 32 53 0  

Figure 1. Egg Representation. 

 
4.2. Host Nest Initialization  
 

The initial host bird eggs are generated using a 
cheapest insertion heuristic, whereby cheapest 
customer with minimum traveling cost sequentially 
inserted to its respective route until all vehicles are 
full. The main interest is to build initial quality 
solutions using relatively simple schemes. 

4.3. The Neighborhood Structures and the Lévy 
Flight 

 
A multiple neighborhood structures is used in this 
study to improve the cuckoo bird’s eggs to imitate 
the host nest eggs in pattern and shape, and 
therefore have a good chance to survivor. These 
neighborhood structures consist of seven inter-route 
(two routes involved) and five intra-routes (only 
one route).  Five of seven inter-route based on the 
λ-interchanges scheme [36], which consists of 
exchanging up to λ customers between two routes. 
In this study, λ = 2 considered due to high 
computational cost associated with large λ. The 
details of other can be found in [37-39]. The 
different neighborhood structures and their 
explanations can be outlined in Table 1. These 
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neighborhood structures need to be linked to the 
step length generated by the levy flight.  

 
 

Table 1. Neighbourhood structures. 

Name Category Details 

SHIFT-1-0 inter-route  One customer is transferred from a route one to a route two. 
SWAP-1-1 inter-route  Permutation between one customer from a route one and a one customer 

from a route two is swapped. 
SHIFT-2-0  inter-route  Two adjacent customers are transferred from a route one to a route two. 
SWAP-2-1  inter-route  Permutation of two adjacent customers from a route one swapped by a one 

customer from a route two. 
SWAP-2-2  inter-route  Permutation between two adjacent customers from a route one swapped by 

another two adjacent customers from route two 
CROSS inter-route  the arc between two adjacent customers i and j belonging to a route one, 

and the one between i’ and j’ route two both are removed. Next an arc 
inserted connecting i and j’ and another is inserted linking i’ and j. 

K-SHIFT inter-route  A subset of consecutive customers is transferred from a route one to the 
end of a route two. 

REINSERTION intra-routes One, customer is removed and inserted in another position of the route. 
OR-OPT2 intra-routes Two adjacent customers are removed and inserted in another position of 

the route. 
OR-OPT3 intra-routes Three adjacent customers are removed and inserted in another position of 

the route. 
TWO-OPT intra-routes Two nonadjacent arcs are deleted and another two are added in such a way 

that a new route is generated. 
EXCHANGE intra-routes Permutation between two customers is swapped. 
 

Lévy flight is generated by a probability density 
function that has a power law tail. The Cauchy 
distribution is often used for this purpose [40]. The 
method we use to generate random number from a  

Lévy distribution is shown in Figure 2. A search of 
this type is frequently found in nature and is 
generally considered to represent the optimum 
random search pattern [20]. 

 Procedure LévyRandomNumber() begin 
 double u, v 
 u=π*(U(0,1]-0.5) 
 {When α = 1, the distribution simplifies to Cauchy} 
 if α == 1 then 
      return (c tan u) 
 end if 
 v=0 
 While v == 0 do 
      v=-log(U(0,1]) 
 end while 
 {When α = 2, the distribution defaults to Gaussian} 
 if α == 2 then 
      return (2c v sin(u)) 
 end if 
 {The following is the general Lévy case} 
 Return  

 End 
Figure 2. Lévy Flight Via Catchy Distribution 

 
In this study, the twelve neighborhood structures 
will associated with the step length generated by 
levy flight which can be categorized into small to 

medium (most frequent) or large (less frequent). A 
small change in eggs shape and color made by a 
neighborhood that change only small part of the 
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solution such as (SHIFT-1-0, SWAP-1-1, SHIFT-2-
0, REINSERTION, and OR-OPT2), gradually 
followed by another neighborhoods that modify 
larger part of the solution such as (OR-OPT3, 
TWO-OPT, EXCHANGE and SWAP-2-1), up to 
the larger jump which associated with 
neighborhood that change even much larger part of 
the solution such as (SWAP-2-2, CROSS, K-
SHIFT). To facilitate the control of these numbers, 
interval between 0 and 1 are assumed. Therefore, 
according to the value given by the Lévy flight in 
this interval we can choose the appropriate step 
length as follows: 
 

If the value of Lévy is in: 
• [0,i], one step of small neighborhood 

structure performed. 
• [(k−1)×i, k×i], one step of medium 

neighborhood structure performed. 
• [k×i,1], we perform a big neighborhood 

step 
 
The value of i in this process is i=(1/(n+1)),where n 
is the max number of steps; and k is{2,...,n}. So, if 
we assume that n=12, then i =0.07, so the interval is 
divided into twelve parts as listed in Table 2: 

 
Table 2. Levy Flight Association With Neighbourhood Structures. 

 Levy no. generated Neighborhood structures used 
1 {0,i}=(0,0.07) SHIFT-1-0 
2 {i,i×2}=(0.07,0.14) SWAP-1-1 
3 {i×2,i×3}=(0.14,0.21) SHIFT-2-0 
4 {i×3,i×4}=(0.21,0.28) REINSERTION 
5 {i×4,i×5}=(0.28,0.35) OR-OPT2 
6 {i×5,i×6}=(0.35,0.42) OR-OPT3 
7 {i×6,i×7}=(0.42,0.49) TWO-OPT 
8 {i×7,i×8}=(0.49,0.56) EXCHANGE 
9 {i×8,i×9}=(0.56,0.63) SWAP-2-1 
10 {i×9,i×10}=(0.63,0.7) SWAP-2-2 
11 {i×10,i×11}=(0.7,0.77) CROSS 
12 {i×11,1}=(0.77,1) K-SHIFT 

 
In this study, the association of these steps to the 
neighborhood structure is set without any prior 
knowledge. Obviously, it’s better to sequence them 
based on experimental knowledge. The pseudo 
code of the basic CS is presented in Figure 3.  
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Initialization  

Setting the MaxIter 
Setting the host nest size n 
Setting the fraction of worse nests pa 
For i←0:n 
 Initialize host nest Eggi, add it to │nest│ presented in section 4.2 
End for 
Calculate the initial host nest fitness, f(Eggi) 
Sort Eggs by order of its fitness 
Calculate the abandon worse nests, aban = pa*n 
Set best cuckoo, Eggbest = Egg1  
iteration=0; 
Improvements 

While (iteration< MaxIter) do  
 Iteration=Iteration+1 
 Select randomly host nest Egg form │nest│ to lay a new cuckoo egg  
 Generate a new cuckoo Egg’ by taking a Lévy flight from the selected host nest Egg as 

presented in subsection 4.3  
 Calculate fitness function for the new egg, f(Egg’) 
 If (f(Egg’) < f(Egg)) then 
 Egg ← Egg’ 
 f(Egg) ← f(Egg’) 
 end if 
 for all eggs to be abandoned < aban do 
 Generate a new cuckoo Egg’ by taking a Lévy flight from the selected host nest Egg as 

presented in subsection 4.3 
 End for 
 Evaluate the fitness of the new eggs and rank all solutions 

end while 
Figure 3. The Proposed CS 

5. COMPUTATIONAL EXPERIMENT 
 

Experiments are conducted to test the performance 
of the CS on [14] instances, and have been used by 
[13] and [12]. There are 16 CVRP instances, the 
total number of clients varies from 30 to 135 
clients, and the total number of vehicles varies from 
3 to 10 vehicles. The locations of customers appear 
in some instances in clusters, while in other 
problems the customers are randomly scattered or 
semi clustered.  
The experiments were performed on a 3.2 gigahertz 
Intel core i3 CPU, and the heuristics were coded 
using C++ in a Microsoft Visual Studio 2013 

environment. The best solution (Min.), average 
solution (Avg.), standard deviation (Std.) are 
computed over 31 independent runs on each 
problem, along with the average computational 
time in seconds required to reach the final best 
solutions. The best solutions that are equal to the 
best-known solutions (BKS) for the benchmark 
problems are asterisked and shown in bold. The 
parameters setting in this study was set based on the 
suggestion from [20, 21] which is shown in the 
Table 3. 

 

Table 3. Parameter Setting. 

Parameter value 

the abandon of the worst nest(pa ) 0.25 
The eggs size (n) 50 

The iteration number (S) 20000 
 
Experimental result of the proposed basic CS and 
other basic methods found in literature which are: 
GA of [41], SA of [14] and WFA of [16] is 
summarized in Table 4. The performance of the 

proposed basic CS is capable to get promising 
result and able to get near to optimal solution for 
some instances such as the A-n33-k5, B-n35-k5 and 
F-n72-k4, while the GA is able to get three optimal 
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solutions for A-n33-k5, B-n35-k5 and E-n30-k3 
instances, and the SA is able to get two optimal 
solutions for A-n33-k5 and E-n30-k3 instances, 
there are only three instances available for the basic 
WFA, the other are not available (shown as dashed 
line). Moreover, the other three methods did not 
report the (avg. and std.) to carry out fair 

comparison and statistical analysis. From other 
prospective, the computational time of the basic CS 
is outperform the basic GA and SA for all instances 
with improvements in time reach up to 95% for 
some instances, (WFA is reported without 
computational time). Therefore, the basic CS is has 
potential to solve the CVRP. 

 

Table 4. Computational Result For 16 Benchmark Problems. 

Instance BKS 
Objective function 

Computational time (s) 
GA SA WFA 

CS 
Min. Avg. Std. GA SA CS 

A-n33-k5 661 661 661 - 688 692.0 16.67 39.6 38.2 3.391 
A-n46-k7 914 928 931 - 973 994.76 8.05 136.4 143.8 8.782 
A-n60-k9 1354 1360 1363 - 1414 1413.49 11.16 295.5 286.3 12.72 
B-n35-k5 955 955 960 - 962 966.37 24.87 46.9 58.4 5.31 
B-n45-k5 751 762 760 - 770 794.88 10.45 129.3 123.5 5.62 
B-n68-k9 1272 1296 1298 - 1320 1326.73 15.39 396.2 409.2 24.44 

B-n78-k10 1221 1248 1256 - 1284 1307.94 26.79 568.4 483.3 27.18 
E-n30-k3 534 534 534 - 565 559.07 24.41 30.5 69.3 6.67 
E-n51-k5 521 531 541 545 590 618.28 7.98 289.6 362.4 14.38 
E-n76-k7 682 697 704 - 746 763.69 22.25 498.7 619.3 56.62 
F-n72-k4 237 246 253 - 255 265.27 19.35 468.5 604.6 80.41 

F-n135-k7 1162 1246 1243 - 1301 1319.58 11.32 1894.2 2533.9 1165.8 
M-n101-k10 820 836 848 864 844 843.69 12.84 992.1 986.6 24.51 
M-n121-k7 1034 1068 1081 1149 1088 1110.22 15.11 1643.1 2729.5 126.45 
P-n76-k4 593 605 612 - 679 688.27 8.72 528.4 489.6 66.65 

P-n101-k4 681 706 715 - 758 760.75 14.16 1213.2 1964.9 167.47 
 

6. CONCLUSIONS 
 
This study proposed a simple cuckoo search for 
solving the capacitated vehicle routing problem. 
Computational experiments on benchmark datasets 
demonstrated the effectiveness of the proposed 
approach compared to state of the art 
metaheuristics. Although our proposed approach 
produced acceptable and promising results in terms 
of solution quality when compared to existing 

techniques, it requires less computation time for 
most problem instances, so reducing the solution 
quality without compromising computation time 
calls for further research. However, while the CS 
could obtain near to optimal solutions for some 
CVRP, we could not find the best-known solutions 
for all problem instances. A deeper understanding 
of the CS mechanism is still needed in order to 
design a more effective way to improve solution 
quality. 
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