
Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

100

IDS IN CLOUD COMPUTING

A NOVEL MULTI-AGENT SPECIFICATION METHOD

R.ROMADI, S.EDDAHMANI, B.BOUNABAT

Equip of Information Research and Indexing Documents Texts and Multimedia

ENSIAS, Rabat, Morocco

E-mail : rromadi@gmail.com, eddahmansisaid@gmail.com

ABSTRACT

Intrusion detection systems (IDS) are most efficient way of defending against network-based attacks aimed at computer

systems. These systems are used in almost all large-scale IT infrastructures. As part of the migration to cloud services,

the situation is even more complex because of the characteristics of cloud, everything is virtual. The number of virtual

machines (VM) changes dynamically according to the resource requirement of the requested processing and can be of

the order of thousands to tens of thousands. Each VM has an IDS adapted to its services (web server, mail server, ftp

server, etc.) and to increase the performance we can use different types of IDS (signature-based IDS, anomaly-based

IDS) in one machine. Due to their complex nature, IDS in a cloud environment are extremely difficult to specify and

validate. In this paper, we propose a new formal model for the specification and the validation of such systems. This

approach considers these Systems as a Multi-Agent System consisting of concurrent reactive agents that cooperate with

each other to achieve the desired functionality. In addition, this approach uses formal synchronous specification and

verification tools in order to specify and to verify the systems behaviors.

Keywords : Cloud computing, IDS/IPS, Multi-Agents System

1. INTRODUCTION

 As defined by the NIST[1], the essential

characteristics of cloud computing are: Pooling /

roommate (multi -tenancy; the ability to respond

to a very significant demand (massive

scalability); elasticity or ability to simply adapt

resources to needs; resource auto-activation

(self-provisioning).

 Thus the number of instances of VMs running

simultaneously can be virtually enormous:

thousands to tens of thousands of machines and

secondly, it can change dynamically over time.

On the other hand, IDS can implement anomaly

and/or signature-based intrusion detection[2]. A

signature generally refers to a set of conditions

that characterizes the direct manifestation of

intrusion activities in terms of packet headers

and payload content. Historically, the signature-

based method has been the more common of the

two methods when looking for suspicious or

malicious activity on the network. This method

relies on its database of attack signatures and

when one or more of these signatures match what

is observed in the live traffic, in the case of a

IDS, an alarm is triggered and the event is logged

for further investigation. Signature-based

intrusion detection is only as good as its

database, if a signature is not in the database, the

IDS will not catch the attack. This is obviously a

drawback when you consider that hackers spend

a great deal of their time crafting attacks

designed to fool signature-based systems.

Anomaly-based intrusion detection, on the other

hand, takes a more generalized approach when

looking for and detecting threats to your

network. A baseline of normal behavior is

developed, and when an event falls outside that

norm, it is flagged and logged. The behavior is a

characterization of the state of the protected

system, which is both reflective of the system

health and sensitive to attacks. In this context, an

anomaly-based method of intrusion detection has

the potential to detect new or unknown attacks.

Like the signature-based method, however,

anomaly-based intrusion detection also relies on

information that tells it what is normal and what

isn’t. This is called a profile, and it is key to an

effective anomaly-based intrusion detection

system.

 There are advantages and disadvantages to

each method[2] the best-fortified network uses

the two methods together to provide the

maximum defense for the network infrastructure.

 The role of ids in protection against hacking is

no longer in doubt . A good IDS that meets the

required specifications is a great asset for any

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

101

organization. Attacks such as Dos/DDoS can

cause significant financial losses.

Due to their complex nature, IDS in a cloud

environment are extremely difficult to specify. In

this paper, we propose a new formal model for

the specification and the validation of such

systems. This approach considers the intrusion

detection System as a Multi-Agent System, i.e a

distributed computing system consisting of

several autonomous agents (Each IDS is

represented by an agent) that coordinate their

action in order to fulfill usually joint but also

sometimes competitive tasks. Concurrency is

further characterized by the need to express

communication and synchronization among

concurrent agents.

2. SPECIFICATION AND VERIFICATION TOOLS

Validation of an abstract specification of a

system is an important aspect of system design.

The problem here is how to determine if a

reactive system is successful. Our approach for

validation is to consider observable behavior as

criteria to determine success.

To hit this target, the specified SYNCHARTS

(SC) [3] behaviors are automatically translated to

the synchronous language ESTEREL [4].

This section will describe all the specification

and verification tools used in this work.

• SYNCHARTS

SC are introduced by Harel like a visual

formalism that provides a way to represent state

diagrams with notions like hierarchy,

concurency, broadcast communication and

temporized state. A SC can be seen like one or

several automata which are labeled by

?event[condition]/!action. SC is said to be

synchronous because the system reacts to events

by instantly updating its internal state and

producing actions, the actions produced can

trigger in the same instant other transitions, this

is named chain reaction causing a set of

transitions, the system is always in a waiting

state until the condition for a transition is true.

• ESTEREL

It’s a language, with precisely defined

mathematical semantics, for programming the

class of input-driven deterministic systems. The

software environment of ESTEREL provides

high-quality tools, including an editor, compiler,

simulator, debugger and verifier.

• Real-Time Temporal Logic

Temporal logic has been widely used for the

specification and verification of concurrent

systems. However, these temporal logics only

allow qualitative reasoning about time. Several

extensions have been proposed for expressing and

reasoning about real-time systems. These include

Real-Time Temporal Logic (RTTL), which is

based on linear time temporal logic, and allows in

addition the expression of quantitative real-time

properties (e.g. exact delays or event deadlines).

Example of RTTL Formula

s1 ∧ t = T → ◊ (s2 ∧ t ≤ T + 5) - If s1 is true now

and the clock reads T ticks, then within T + 5

clock ticks, s2 must become true. Thus, once s1

becomes true, s2 must become true no more than 5

ticks later. This formula can be also written as

follows: s1→ ◊[0,5] s2 or s1→ ◊<=5 s2

The formula s1↔s3 indicates that events s1, s3

are simultaneous. If C(w) is a RTTL formula

defining a temporal constraint on an event w, then

w ||= C(w) means that w satisfies the formula C(w).

3. DAGT BASED HIERARCHICAL

STRUCTURE OF IDS

In this paper, the agents are classed as either

deliberative or reactive. Deliberative agents

derive from the deliberative thinking paradigm:

the agents possess an internal symbolic,

reasoning model and they engage in planning and

negotiation in order to achieve coordination with

other agents. Reactive agents don’t have any

internal symbolic models of their environment,

and they act using a stimulus/response type of

behavior by responding to the present state of the

environment in which they are embedded.

We consider that an IDS can be modeled as a

distributed computing system consisting of

autonomous Agent.

3.1 Internal Organization of IDS

An IDS is defined by a set of agents, connected

to each other by communication interfaces. Thus,

its basic structure rests on a two levels tree (fig.

1)

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

102

Fig.1. The Internal Organization Of A Reactive System

Consists In A Tree That Is Made Up In Parallel Of A

Supervisor (Supervisory Agent), Of Two Or Several

Sub-Agents Components, And Two Communication

Interfaces Between The Supervisor And The Sub-

Agents.

Such system interacts with its environment by

the means

of:

- Actions exerted by this environment.

- External States emitted to the environment.

Supervisory and Sub-Agents Levels.

The supervisory agent (SDAgt: Supervisory

Decisional Agent) is a DAgt controlling the

component sub-agents, in order to achieve a goal

or to solve a given problem.

This agent will manage the sequences of

activation and the definition of the controlled

sub-agents objectives. This management depends

on:

- The actions exerted by the environment,

- The events generated by the sub-agents

activities,

- The temporal constraints specific to any

reactive system.

 Sub-Agent is a DAgt that can do basic

operations required in a step of a given task.

For example, it can check memory occupancy

rate by a given process, the integrity of a

system file, the contents of a log file, the status

of a port (open, closed, or filtered), etc. Each

Sub-Agent typically wraps calls to a single

service or resource, implementing the

appropriate error handling and retry logic

(subject to a timeout constraint). If the steps in

the workflow being run by the SDAgt utilize

several services and resources across different

steps, each step might reference a different

Sub-Agent.

In addition, an IDS can be summarized with a

simple SDAgt directly connected to the

controlled process. Each sub-agent can be

considered as a reactive system. Thus, its internal

structure is composed by its own SDAgt,

communication interfaces and sub-agents. A sub-

agent objectives are to carry out sequences of

tasks in response to any temporal constrained

action exerted on him by the higher level.

Communication Interfaces. The

communication interfaces are of two types:

decisional interface (Top/Down) and signaling

interfaces (Bottom/Up).

Fig.2. Decisional Interface That Translates A

Decision (D) Generated By The Sdagt Into Several

Actions (Ai), Each One Of Them Is Intended For A

Sub-Agent Of The Lower Level.

Fig.3. Signaling Interface That Synchronizes The

External States (E’i), Sent By Each Sub-Agent, And

Emits One Signaling (S) Intended For The Sdagt.

3.2 Temporal Properties

Through the notion of an action horizon (Ha) of

a decision, the time during which the decision

remains valid, the DAgt-based specification of

an IDS ensures that the elements will have time

periods coherent with the decision made by the

agent, and coherent with the time periods of

decisions made at lower levels of the hierarchy.

The higher an agent is in the hierarchy, the

greater the action horizon (Fig. 4).

. . .

C o m m u n i c a t i o n I n t e r f a c e s

D S

A A AE E E

A E

S u b - A g e n t S u b - A g e n t S u b - A g e n t

S u p e r v i s o r y A g e n t

SRDA

Sub-Agent2 Sub-Agent3...

Decisional Interface

d

a1

Sub-Agent1 ...
ai an

SRDA

Signalling Interface

s

e'1 e'i

Sub-Agent2 Sub-Agent3Sub-Agent1

e'n

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

103

Fig.4. Flow Of Information Inside A SMA Formed By

ARDC Agents. The Top-Down Flow Consists In

Actions (A, Aij) And Their Associated Decisions (Di,

Dij
k). The Bottom-Up Flow Consists In External States

(Rep (A), Rep(Aij)) And Their Associated Signaling

(Acqdec(Di), Acqdec(Dij
k)).

The temporal constraints must be checked on

each hierarchical level. The recursive character

of this structure makes it possible to generalize

the results obtained for only one hierarchical

level. Thus, we can prove by deduction and

according to notations of fig. 4:

dij
k
 ||= C(dij

k
) ⇒ a ||= C(a) (1)

Such system interacts with its environment by

the means of:

- Actions exerted by this environment.

- Alarms emitted to the environment.

The use of decisional agent in the modeling,

design, and implementation allows us to meet the

requirements mentioned previously:

• Flexible. Agent architectures are more

flexible, modular and robust than, for

example, object-oriented ones. They tend to

be open and dynamic as their components

can be added, modified or removed at any

time.

• Pro-activeness. Intelligent agents are able to

exhibit goal-directed behavior by taking the

initiative in order to satisfy their design

objectives:

• Reactivity. Agents are crucial when

operating in an unpredictable environment

containing a large number of data sources

scattered over multiples sources. If an agent

queries an information source and finds no

answers to its query, it would then try

alternate sources of information until it

could come up with a reasonable number of

answers.

• Learning. Another important characteristic

of autonomous behavior is the ability to

enhance future performance as a result of

past experiences. Machine learning

techniques allow an agent to learn new

methods or refine existing ones to meet

specific needs.

Communication and cooperation. Intelligent

agents are capable of interacting with other

agents (and humans) in order to o achieve a

common goal.

4. FORMAL DESCRIPTION OF

DECISIONAL AGENT

The proposed model of agent consists in putting

forward decisional models allowing the

representation of objects according to their

behavioral aspects and their degree of

intelligence.

Definitions. A Decisional Agent (DAgt) is 9-

tuple noted < A, D, S, E’, O, O’, act, dec, sig >

where :

- A: Set of actions exerted on the agent. Each

action, undergone by an object, represents a

possible operation to be carried out on this

object in order to achieve a specific goal.

- D: Set of decisions generated by the agent.

Each decision is a solution concerning

process behavior in the future; each decision

is characterized by its action horizon : Ha, the

time during which this decision remains

valid.

- S: Set of Signaling received by the agent.

Each Signaling received by an object, reflects

at any given time the state of the controlled

tools used to achieve a specific goal.

- E’: Set of external states delivered by the

agent. Each one represents the object state

emitted to the environment.

- E: Set of agent’s internal states. Each one

indicates the current state of the agent.

- O: Set of agent’s internal objectives. Each

decision is elaborated in order to achieve an

internal objective according to the current

external objective and the actual internal

state.

SRDA

Agentj Agentn...

Communication Interfaces

{di} {acqDec(di)}

{ai1} {rep(ai1)}

a rep(a)

Agent Agent...
{a}{rep(a)} {rep(a)}

Communication

Agent1 ...
{aij} {rep(aij)} {ain} {rep(a

{dij
k}

{acqDec(dij
k)}

SRDA

{aij} {rep(aij)}

{a}

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

104

- O’: Set of agent’s external objectives which

can be achieved. These objectives represent

the agent’s interpreting of each action.

From a dynamic point of view, the sets above

indicate the received events (A, S), the emitted

events (D, E’) and the internal events (E, O, O’).

Decisional Functions. act, dec, and sig are three

decisional functions that define the behavior of a

DAgt.

act : A → O’

a → o’ with,

∀ a ∈ A, ∃! o’∈ O’ / o’ = act(a) ⇒ a ↔ o’

(2)

(1) means that the occurrence of an action a

implies instantaneously the occurrence of its

associated external objective o’ by the function

act.

dec : O’ × E → D × O

(o’, e) → (d, o) with,

 dec(o’, e) = (d, o) ⇒ [o’∧ e ↔ d ∧ o]

(3)

(2) means that depending of the current external

objective o’ and as soon as the agent is in an

appropriate internal state e, corresponding

decision d an internal objective o, by the function

dec, are instantaneously produced.

sig : O’ × O × S → E × E’

 (o’, o, s) → (e, e’) with,

sig(o’, o, s) = (e, e’) ⇒ [o’∧ o ∧ s ↔ e ∧ e’] (4)

(3) means that that depending of the current

external objective o’ and the expected internal

objective o, and as soon as the receipt of a

signaling s, its associated external state e’ is

instantaneously emitted and the new agent

internal state becomes e.

Fig.5. According To The Formal Definitions Above,

Figure.5. Shows The Internal Structure Of A Dagt. Act

Interprets An Action As An External Objective, That It

Used By Dec And Sig To Generate Agent Appropriate

Responses.

Internal Architecture of a DAgt. This section

presents a set of SynCharts which describe the

external objective of a DAgt.

External Objectives Manager. A Decisional

Agent has an External Objective Manager. It

consists in a SynCharts model of the function act

described above (Fig. 6).

Fig.6. This Shows A Figure Consisting Of A Synchart

Model Of External Objectives Manager. Each State

Represents An External Objective Whose Activation Is

Started By The Reception Of A Specific Action

(?Action), And Terminated By The Emission Of The

Acknowledgment External State (!Externalobjective).

In addition, each operating mode of the agent

(normal mode, diagnostics modes, etc.) can be

considered as an external objective to be reached.

The objectives manager has to maintain the same

objective or to change it, according to the

occurred fault or failure.

External Objectives Modeling. An external

objective is composed by many others SC states

corresponding to the associated internal states

and internal objectives that are deducted by the

functions dec and sig definitions (Fig. 7). The

specified SynCharts behaviors are automatically

translated to the synchronous language

ESTEREL [4]. It’s a language, with precisely

defined mathematical semantics, for

programming the class of input-driven

deterministic systems. The software environment

of ESTEREL provides high-quality tools,

including an editor, compiler, simulator,

debugger and verifier.

Fig.7. This Figure Shows The General Syncharts

Model Of An External Objective.

act Dec

Sig

RDA

Action

Signaling

External Objective Decision

External State

Environment

C

External Objective1

?Action1 ?Actionn

...
?ExternalState1

External Objectiven

?External Staten

C
 !Decision_1

 ?S_Ok_1/!e'1
o1 s2 of sf

sb2

 ?Ha(Decision_1)

sbf

 ?Ha(Decision_f)

 ?S_Ok_f/!e'f

External Objective o'

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

105

The transition (Internal state → Internal

objective) is made by a decision emission

(!Decision), and the transition (internal objective

→ Internal state) is made by a signaling receipt

(?S_OK), and eventually an external state

emission (!e’). Internal state C corresponds to the

default initial state of a SC model. Internal state

and Internal objective are indicated respectively

by ei et oi. In case of an action horizon

exceeding without receiving any

acknowledgment signaling, the agent’s internal

state changes from ei to ebi (breakdown state).

5. TEMPORAL CONSTRAINTS OF AN

DAGT

Decision Temporal Constraints. Each decision

is characterized by its action horizon, Ha: the

time during which this decision remains valid.

So, an occurrence of a decision requires the

occurrence of its corresponding acknowledgment

signaling, in a delay that doesn’t exceed its

action horizon.

This defines the following function, acqDec:

acqDec : D → S × IN

 d → (s, Ha) = acqDec(d),

with

acqDec(d) = (s, Ha) ⇒ [d → ◊<=Ha s] (5)

In the following sections and for any decision

d:

- acqDec(d) indicates the acknowledgment

signaling of d,

- Ha(d) is the action horizon of d,

- C(d) points out the constraint [d→◊<=Ha(d)

acqDec(d)]

The temporal property that a DAgt must

verify :

 ∀ d ∈ D, d ||= C(d) (6)

External Objective Temporal Constraints.

Each external objective o’ is characterized by an

acknowledgment specific external state e’, that

indicates the good ending of o’. this defines a

function acq :

acq : O’ → E’

o’ → e’ = acq(o’), with

∀ o’ ∈ O’, ∃! e’ ∈ E’ / e’ = acq(o’) (7)

Dynamically, the event acq(o’) comes as

early as the receipt of the acknowledgment of the

last decision generated by o’.

Another function called durMAx is

introduced in order to associate to each external

objective o’ the longest duration of its operations

execution.

durMax : O’ → IN

card (Do’)

o’ → ∑ Ha(di), where di∈

D(o’)

i=1

By combining the two functions acq and

durMAx, we can obtain the following

constraint:

∀ o’ ∈ O’, o’ → ◊<=durMax(o’) acq(o’) (8)

i.e. after an occurrence of an external

objective o’, the agent must generate the

corresponding acknowledgment, in a delay that

does not exceed durMax(o’).

Action Temporal Constraints. Another

function rep is introduced in order to define the

acknowledgment of an action received by the

agent.

rep : A → E’

a → e’ = acq(act(a))

C(a) indicates the constraint [a → ◊<=durMax(act(a))

rep(a)], the temporal property that a DAgt must

verify is :

∀ a∈A, a ||= C(a) (9)

The following assertion can be proved by

deduction

∀ a ∈ A, [∀ d ∈ D(act(a)), d||= C(d)] ⇒ a ||=

C(a)(10)

6. CONCLUSION

The contribution of this paper is to give a new

formal approach to deal with specification and

formal verification of a monitoring system

composed by several intrusion detection systems.

The originality is to consider each component of

this system as a Reactive Decisional Agent, and

to bring together several formal synchronous

modeling and validation tools. With its top-down

process and its principles of decomposition, this

method allows to get a model which is more

easily understandable by the user. The

SYNCHARTS models are used here in order to

describe the reactive agent behaviors. These

behaviors will be checked in a qualitative

(respectively quantitative) way by the

synchronous language ESTEREL (respectively by

Real Time Temporal Logic deduction). The

Journal of Theoretical and Applied Information Technology
 10

th
 June 2016. Vol.88. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

106

mechanism of action horizon, the time during

which an agent decision remains valid, is

moreover useful to specify temporal

performances.

The resulting model can be useful for every

application in which it is necessary to include one

or several reactive components.

REFERENCES

[1] P. Mell and T. Grance, "The NIST definition

of cloud computing," September 2011.

[2] Guide to Intrusion Detection and Prevention

Systems (IDPS), NIST special 800-94, by

Karen Scarfone PeterMel.

[3] D.Harel, M.Politi, Modeling Reactive

Systems with Statecharts : The

STATEMATE Approach, Mc Graw-Hill,

ISBN 0-07-026205-5

[4] F.Boussinot, and R. de Simone : The

ESTEREL language. Proceeding of IEEE,

79(9) : 12931304
[5] Neda Afzali Seresht, Reza Azmi MAIS-IDS :

« A distributed intrusion detection system

using multi-agent AIS approch »

Engineering Applications of Artificial

Intelligence, Volume 35, October

2014, Pages 286-298

 [6] Sapna S. Kaushik, Dr. Prof.P.R.Deshmukh,

“Detection of Attacks in an Intrusion

Detection System”, International Journal of

Computer Science and Information

Technologies, Vol. 2 (3) , 2011, pp. 982-986

[7] F. Abdoli and M. Kahani, “Ontology-based

Distributed Intrusion Detection System”,

Proceedings of the 14th International CSI

Computer Conference (CSICC'09), pp.65-70

[8] Dayong Ye, Quan Bai, Minjie Zhang,

“OntologyBased Knowledge Representation

for a P2P Multi-Agent Distributed Intrusion

Detection System”, IFIP International

Conference on Network and Parallel

Computing, 2008, pp.111- 118

[9] Yu Lasheng , and MUTIMUKWE Chantal,

“Agent Based Distributed Intrusion

Detection System (ABDIDS)”, Proceedings

of the Second Symposium International

Computer Science and Computational

Technology(ISCSCT ’09), pp. 134-138

