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ABSTRACT 

 

This paper presents a comparative study of the African Buffalo Optimization algorithm and the Random-

ized Insertion Algorithm to solving the asymmetric Travelling Salesman’s Problem with the overall objec-

tive of determining a better method to solving the asymmetric Travelling Salesman’s Problem instances. 

Our interest in the asymmetric Travelling Salesman’s Problem (ATSP) is borne out of the fact that most 

practical daily-life problems are asymmetric rather than symmetric. The choice of the Random Insertion 

Algorithm as a comparative algorithm was informed by our desire to investigate the general belief among 

the scientific community that Heuristics being mostly problem-dependent algorithms are more efficient that 

metaheuristics that are usually general-purpose algorithms. Moreover, both the metaheuristic, the African 

Buffalo Optimization and the Heuristic, Randomized Insertion Algorithms hold some of the best results in 

literature in solving the ATSP. Similarly, both methods employ different search techniques in attempting 

solutions to the ATSP: while the African Buffalo Optimization uses the modified Karp-Steele technique, 

the Randomized Insertion employs random insertion mechanism. After investigating all the 19 benchmark 

ATSP datasets available in TSPLIB, it was discovered that the Randomized Insertion Algorithm achieves 

slightly better result to the problems but the African Buffalo Optimization is much faster.  

Keywords: Heuristics, Metaheuristics, Asymmetric Travelling Salesman’s Problem, Randomized Insertion 

Algorithm, African Buffalo Optimization. 

 

 

1. INTRODUCTION  

The search for better ways of doing things 

has led to several scientific investigations and the 

development of several deterministic, heuristic and 

metaheuristic algorithms, especially, in attempts to 

solve combinatorial problems [1]. Some of the de-

terministic algorithms include Raphson-Newton 

[2], Nelder-Mead [3] and Hooke-Jeeves [4] etc. 

The deterministic algorithms display exceptional 

capacity in identifying optimal solutions, only that 

they get weaker, slower and less efficient as the 

problem space enlarges [5]. The need for the de-

velopment of more efficient search optimization 

techniques led to the design of heuristics and me-

taheuristic algorithms. Some of the popular and 

extremely efficient heuristic algorithms include the 

Lin-Kernighan algorithm [6], Randomized Inser-

tion Algorithm [7], Branch-and-Bound heuristics 

[8], Divide-and-conquer algorithm [9], Dynamic 

programming [10], Greedy algorithm [11] etc. 

Similarly, the popular metaheuristics algorithms 

that have enjoyed wide applications include the 

Genetic Algorithm (GA) [12] Ant Colony Optimi-

zation (ACO) [13], Artificial Bee Colony (ABC) 

[14], Particle Swarm Optimization (PSO) [15] etc.  
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The major difference between the heuristics 

and metaheuristics algorithms being that heuristics 

are generally educated guesses which exploit readi-

ly available information towards solving a particu-

lar problem [16] while metaheuristics are rather 

general-purpose algorithms designed to solve dif-

ferent kinds of problems with proper tuning of the 

metaheuristic algorithm parameters. Moreover, 

metaheuristics are simply intelligent high level 

heuristics that operate by deliberately controlling 

and tuning lower level heuristic algorithms [17]. 

To this end, many experts claim that heuristics are 

more efficient than their metaheuristics counterpart 

[18]. This is one of the motivations for this com-

parative investigation since these two algorithms: 

African Buffalo Optimization (ABO), a metaheu-

ristic technique and the heuristic, Randomized In-

sertion Algorithm (RAI) hold some of the best re-

sults in literature with respect to providing solu-

tions to the asymmetric Travelling Salesman’s 

Problems (ATSP). 

1.1 The Travelling Salesman’s Problem 

The travelling Salesman’s Problem (TSP) 

which is said to be one of the most studied prob-

lems among combinatorial optimizations problems 

since its development [19, 20], basically, refers to 

the problem of a particular salesman who travels 

round a set of locations in a large community or a 

given set of customers locations in a number of 

villages/town/cities visiting his customers and re-

turning to the starting location at the end of the tour 

using the shortest/cheapest possible route. A con-

straint in this problem is that the travelling sales-

man is to ensure that as much as possible, he 

should visit a particular location/village/town/city 

exactly once. The starting city which is also the 

ending location is the only one allowed to have 

double visitation. In a way, therefore, the TSP is a 

graph theory challenge with the cities represented 

as vertices and the connecting links/roads are 

viewed as arcs of the vertices. To make the TSP as 

practical as possible, the arcs are given a weighted 

cost which represents the travel expenses, time or 

distances between points j to k. Associating an arc 

with a cost, helps in determining the route with the 

cheaper cost in the graph [21].  

There are, primarily, two types of TSP: asym-

metric TSP and the symmetric TSP. In the symmet-

ric TSP, the cost/distance between arcs j and k is 

the same as that between k and j in the whole 

graph. Whereas, for the asymmetric TSP, there 

exist, at least, an instance where the distance be-

tween arcs j and k is not exactly the same 

cost/distance as that between k and j. The asym-

metric TSP can be represented mathematically as: 

 

in at least one edge in the 

graph. (1)       

 

Also the symmetric TSP can be represented as 

 

                     

(2) 

Since the development of the TSP in the ear-

ly 1930s, there has been several scholarly investi-

gations on the symmetric TSP. However, the same 

cannot be said of the asymmetric TSP. This is ra-

ther puzzling because the asymmetric TSP finds 

regular applications in most practical daily-life 

experiences. For instance, the problem of a haulage 

driver on a long haul is very likely asymmetric. So 

also is the case of an inspectorate officer on routine 

inspection to a number of company locations; a 

post office official delivering mails to different 

addresses within a given geographical locations; a 

school bus driver picking up school children and 

returning them at the end of a school day; a welfare 

official delivering food to home-bound people; an 

itinerant teacher on routine tutorial visits to his 

students’ locations  etc. [22] The most likely route-

selection in solving these problems would be 

asymmetric. The asymmetric measurement of dis-

tances has a closer relationship to real-life applica-

tions as it takes cognizance of one-way traffic, spe-

cial cost factors and other civil engineering consid-

erations [21].  

Specifically, this paper is a contribution to 

the ongoing investigation on determining the more 

efficient cum effective search system between the 

heuristics and metaheuristics algorithms [23, 24] 

by investigating the search efficiency and speed of 

the metaheuristic, African Buffalo Optimization 

algorithm and the heuristic Randomized Insertion 

Algorithm.  

This paper is organized in this way: the first 

part discusses the major classes of optimization 

algorithms, introduces the Travelling Salesman’s 

Problem as well as highlights the need for the 

asymmetric TSP; section two examines the African 

Buffalo Optimization (ABO) detailing the algo-

rithms basic flow. The third section concentrates 

on the Randomized Insertion Algorithm (RAI) with 

emphasis on its procedures to obtain solutions to 

the target problem. The fourth session focusses on 

the experiments performed and the discussion of 

the results obtained. This is followed by the con-
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2. AFRICAN BUFFALO OPTIMIZATION 

The African Buffalo Optimization (ABO) is a 

recently developed lean metaheuristic optimization 

algorithm [25] which was designed primarily to 

provide solutions to issues of delay in obtaining 

solutions, stagnation, the use of several parameters 

etc. in the existing algorithms like the Genetic  

Algorithm, Simulated Annealing, Ant Colony Op-

timization and Particle Swarm Optimizations, to 

mention a few. 

The ABO basically simulates the two basic vocali-

zations of the African buffalos in their migrant 

lifestyle through the African vast forests and sa-

vannahs in search of lush pastures. These are the 

‘maaa’ vocalizations with which the buffalos 

summon themselves to graze at a particular loca-

tion because it is safe, favorable and has sufficient 

pastures as well as the alarm ‘waaa’ communica-

tion calls with which they organize themselves to 

explore safer or more fruitful grazing locations [26, 

27].  

2.1. The Basic flow of ABO 

The ABO starts by randomly initializing 

the buffalos, placing them to nodes/locations with-

in the search space (in this case, the ATSP graph). 

Next, the animals, probabilistically, choose any 

closest and/or cheapest unvisited node for them to 

visit. This choice is influenced by the cost of the 

move determined solely by the available heuristic 

in the first move. Subsequent movements are influ-

enced by the cost heuristic of such moves, the per-

sonal benefit of the move to the buffalo as deter-

mined by its previous experience and the overall 

benefit of the particular move to the entire buffalo 

population. Mathematically, this is represented by 

the democratic Equation (3) in Figure 1. 

Figure 1: ABO algorithm 

Moreover, the algorithm updates the buf-

falos’ fitness. In this way, the algorithm determines 

the location of best buffalo ( ) in the herd in 

relation to the optimal solution.  Also, each ani-

mal’s personal best ( ) is determined. 

The buffalos keep a memory of their coordinates. If 

the current fitness value of a particular buffalo is 

superior to the prevailing , the algorithm 

saves it as the herd’s best location .  Simi-

larly, if the current fitness of a particular buffalo is 

better than any in its memory, the algorithm saves 

it as that animal’s best ( ). At this junc-

ture, if the  meets the exit criteria, the al-

gorithm terminates and provides the best buffalo’s 

location vector as the optimal solution. If not, it 

goes to another iteration and repeats the process 

until it meets the exit criteria.  

2.2. African Buffalo Optimization Solution mecha-

nism for the ATSP 

The basic solution steps of the ABO in solving 

the ATSP are: 

A. Choose, according to the available heuristics, 

an initial city for each of the buffalos and ran-

domly locate them in those cities.  

 

1. Initialization: randomly place buffalos at vertices at the solution space;  

2. Assess the buffalos fitness  using Equation  (3) 

                                               (3)  

 

where  and are the exploration and exploitation moves respectively of   buffalo k (k=1,2,………..N) ;   

and  are learning factors;   is the herd’s best fitness and , the individual buffalo’s best fitness 

3. Update the  location of buffalo k (  and ) using (4) 

                                                                       (4) 

4. Is  updating? Yes, go to 5. No, go to 2  

5. Is the stopping criteria met? Yes, go to step 6, else step 3 

6. Output best solution. 
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      (5)   

  

  

B. Update buffalo fitness using Equations 3 and 

4, respectively. 

C. Determine   &   . 

D. Using Equation 5 and available heuristic val-

ues, probabilistically construct a buffalo tour 

by adding cities that the buffalos have not vis-

ited. 

E. Confirm that the  is updating? Yes, 

go to (F.). No, go to (A.) 

F. Is the exit criteria reached? Yes, go to (G.). 

No, return to (B.)  

G. Output the best result. 

 

2.3. Internal Workings of the ABO in Arriving 

at a Solution 

 The ABO employs the Modified Karp 

Steele solution technique in its solution of the 

Asymmetric Travelling Salesman’s Problem [28]. 

This solution technique follows a simple solution 

steps of, firstly, constructing a cycle factor F of the 

cheapest weight in the K graph. Secondly, select a 

pair of arcs taken from different cycles of the K 

graph and patch in a way that will result in a mini-

mum weight. Patching is basically removing the 

selected arcs in the two cycle factors and then re-

placing them with cheaper arcs and in this way 

forming a bigger cycle factor, thereby reducing the 

number of cycle factors in graph K by one. 

         Thirdly, the second step is repeated until we 

arrive at a single cycle factor in the entire graph 

K. The African Buffalo Optimization handles the 

problem of delay in arriving at solutions through 

the use of two primary parameters to ensure 

speed, namely lp1 and lp2. Similarly, the algo-

rithm closely monitoring the route of the   

as well as ascertaining the in each 

construction step helps solve the problem of stag-

nation and ensure efficiency. In the event that 

the  fails to update in a number of itera-

tions, the ABO re-initializes the entire herd. 

 

 
Figure 2: ABO flowchart 

 

3. THE RANDOMIZED INSERTION AL-

GORITHM (RAI) 

 The Randomized Insertion Algorithm which 

uses the arbitrary insertion algorithm is a relaxation 

of the Cheapest Insertion Algorithm and was de-

veloped to provide solution to the Asymmetric 

Travelling Salesman’s Problems through the use of 

approximate algorithm that will obtain optimal 

results within the shortest possible time [29]. The 

RAI has one of the best results in literature in at-

tempting solutions to the ATSP and this informs its 

choice in this comparative investigation. 
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3.1 The RAI Algorithm 

The RAI algorithm is presented in Figure 3 below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

This algorithm works by generating an initial 

tour (See algorithm steps 1-4) and through subse-

quent systematic removal and addition of arcs in 

the cheapest possible generates a good near-

optimal or optimal solution. 

3.2. The Internal Solution Strategy of RAI 

      The basic solution steps of the RAI is, firstly, 

randomly select two initial nodes  and , then 

form a Cycle    within the graph. Next in each 

subsequent construction step, randomly choose a 

node which is not a part of the current Cycle and 

insert into the Cycle in the cheapest possible way. 

In this way the cost of the Cycle increases mini-

mally. This procedure is repeated until all the 

nodes are added into the tour.  Then the algorithm 

calculates the path discovered and outputs a solu-

tion.  

 

 

 

4. EXPERIMENTS AND DISCUSSION OF 

RESULTS 

      In applying these two algorithms, the African 

Buffalo Optimization and the Randomized Inser-

tion Algorithm to solve Asymmetric Travelling 

Salesman’s Problems, a number of experiments 

were performed on all the 19 ATSP instances as 

listed in the TSPLIB95. The experiments were 

done using a desktop computer running the Win-

dows 7 O.S, Intel Core, i7-3770 CPU@ 3.4GHz, 

3.4GHz, 4 GB RAM. The ATSP is coded in 

MATLAB programming language and ran on 

MATLAB 2012b Compiler. The results obtained 

from the experiment using African Buffalo Opti-

mization were compared with the results from the 

Randomized Insertion Algorithm [30] and present-

ed in Table 1. 

In Table 1, the first column lists the ATSP in-

stances as available in TSPLIB [31], the second 

column indicates the number of cities represented 

by the ATSP instances. This is followed by the Opt 

Values, that is, the optimal results as listed in 

TSPLIB. The next two sets of columns calculates 

the value obtained from applying the ABO and the 

RAI respectively with Best = the best values ob-

tained by the algorithm; Average = Average values 

obtained after 50 runs; Rel. Error% = percentage 

relative error from the optimum; and Time (secs) = 

the best time in seconds that the algorithm used to 

obtain result. 

The relative error was obtained by: 

 

   (6) 

As can be seen from the Table, the ABO ob-

tained very good results in all instances, obtaining 

over 96.7% in all 19 ATSP instances under investi-

gation. This is a noble feat. The RAI performed 

excellently well too, as can be seen in Table 1, ob-

taining over 98.2% cumulative accuracy in all cas-

es.  

 Moreover, the ABO obtained the optimal solu-

tion in five instances to RAI’s 13 accurate results. 

The difference in performance here can be tracea-

ble to their use of two different search techniques 

in obtaining results. While the RAI uses the ran-

dom insertion method, ABO employs the modified 

Karp- Steele method. Whatever, it is a competitive 

performance.

1. Initiate tour construction with a randomly selected 

node and self–loop. 

2. Randomly select an arc that is not in the initial tour. 

3. Add this arc between neighboring arcs on the tour 

in the cheapest way possible. If the tour is still in-

complete, return to step 2. 

4. Store this tour solution as, say, Tour S. 

 Repeat twice in each construction step, steps 5 

through 9. 

5. Randomly choose  and j ( Є N = {1… n}, 1 ≤  

≤ ≤ n). 

6. From the circuit with all arcs, remove a path begin-

ning with arc  through arc , and connect arc 

  − 1 with arc  + 1. 

7. Randomly choose an arc from the removed path. 

8. Insert this arc between two neighboring arcs on the 

tour in the cheapest possible way. If the tour is still 

not complete, go to step 7. 

9. Compare present solution with the solution S. 

Keep the better one.  

 
Figure 3: The RAI algorithm 
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Table 1: Comparative Experimental Results 

 

Furthermore, the cumulative relative error of 

the ABO (calculated by summing up the values of 

the relative errors) is 3.24% to RAI’s 1.78%. This 

is also a commendable performance by the ABO in 

view of the fact that the RAI is a heuristic algo-

rithm and has one of the best results in literature. It 

is also interesting to note that the while the RAI had 

the biggest problem in Rbg323, the ABO obtained 

the optimal result there. Conversely, the ABO big-

gest challenge was in Ftv170 where it recorded the 

highest relative error of 1.45%. Here the RAI had a 

relative error of just 0.33%. This, again, could be 

attributable to their use of different search tech-

niques. 

Nonetheless, the uncommon strength of the 

ABO comes to play when calculating the execution 

costs. The execution cost calculates the relative use 

of CPU resources in achieving results. In an in-

stance-by-instance execution speed assessment, the 

RAI slightly outperformed the ABO in just one 

instance, namely, Br17 where ABO executed in 

0.028 seconds to RAI’s 0.027 seconds. In all the 

remaining 18 instances, the algorithm of choice 

when speed is a factor is the ABO. In the second 

ATSP instance, it took ABO 0.037 seconds to ob-

tain optimal result to RAI’s 1.598 seconds: ABO 

here was over 43 times faster. This trend continues 

in all other instances. For example, in Ftv64 while 

RAI spent 5.241seconds to execute, the ABO used 

as just 0.041 seconds. Here ABO is about 127.83 

times faster. Also, in the difficult ATSP instance 

Ftv170, it took ABO 0.65 seconds to RAI’s 276.1 

seconds. This translates to ABO being over 424.76 

times faster.  

Similarly, the ATSP instances involving larger 

number of cities such as rbg323, rbg358, rbg403 

and rbg403 are where the speed of ABO is even 

more glaring. For instance it took ABO 2.050 se-

conds to obtain optimal solution to RAI’s 3874 

seconds [ABO being 1889.75 faster] in rbg323; in 

solving rbg358, ABO used 3.040 seconds to RAI’s 

6825 seconds [ABO being 2245.07 times faster]; 

for rbg403, ABO used 4.741 seconds to RAI’s 

11137 seconds [ABO being 2349.08 times faster] 

and finally in rbg443, ABO spent 10.377 seconds to 

RAI’s 17126 seconds [ABO, again, being 1650.38 

times faster]. 

In all, while the ABO used 21.452 seconds to 

solve all the 19 ATSP instances under investiga-

tion, the RAI spent 39300.332 seconds. 

ATSP 

Instances 

No of 

Cities 

Opt 

Value 

                   ABO                    RAI 

   Best Average Rel. 

Error% 

Time 

(secs) 

Best Average Rel. 

Error% 

Time 

(secs) 

Br17 17 39 39 39.98 0 0.028 39 39 0 0.027 

Ry48p 48 14422 14440 14455 0.12 0.037 14422 14543.20 0 1.598 

Ft70 70 38673 38753 38870.5 0.21 0.05 38855 39187.75 0.47 7.068 

Ftv33 34 1286 1287 1288.4 0.08 0.029 1286 1288.16 0 0.393 

Ftv35 36 1473 1474 1475.8 0.07 0.030 1473 1484.48 0 0.508 

Ftv38 39 1530 1530 1536.4 0 0.026 1530 1543.12 0 0.674 

Ftv44 45 1613 1614 1647.25 0.06 0.032 1613 1643.6 0 1.198 

Ftv47 48 1776 1777 1783 0.06 0.029 1776 1782 0 1.536 

Ft53 53 6905 6905 6920.25 0 0.028 6905 6951 0 2.398 

Ftv55 56 1608 1610 1618.2 0.12 0.029 1608 1628.74 0 2.878 

Ftv64 65 1839 1839 1938 0 0.041 1839 1861 0 5.241 

Ftv70 71 1950 1955 1958.5 0.26 0.09 1950 1968.44 0 7.376 

Ftv170 171 2755 2795 2840.5 1.45 0.65 2764 2832.74 0.33 276.1 

Kro124p 100 36230 36275 36713 0.12 0.08 36241 36594.23 0.04 30.34 

P43 43 5620 5645 5698 0.44 0.065 5620 5620.65 0 0.997 

Rbg323 323 1326 1326 1417.75 0 2.050 1335 1348 0.68 3874 

Rbg358 358 1163 1187 1299.2 0.18 3.040 1166 1170.85 0.26 6825 

Rbg403 403 2465 2467 2475 0.08 4.741 2465 2466 0 11137 

Rbg443 443 2720 2723 2724 0.11 10.377 2720 2720 0 17126 

TOTAL     3.24 21.452   1.78 39300.332 
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So cumulatively, the ABO was 1,832.012 times 

faster than the RAI.  

  Someone may rightly say that speed is a func-

tion of the CPU speed, RAM’s capacity, the pro-

grammer’s expertise, the programming language of 

implementation and a few other factors but it 

should also be observed that the algorithm that uses 

such few parameters and has a straight-forward 

fitness function like the ABO will be difficult to 

match whenever speed is a factor [32, 29, 33, 34]. 

And since speed is one of the hallmarks of a good 

algorithm, it could be safe to say that the ABO 

clearly is a faster algorithm and outperforms the 

RAI in executing the benchmark ATSP instances in 

TSPLIB. 

5. CONCLUSION 

From the foregoing analysis and discussion of 

results, it is obvious that both ABO and RAI are 

competitive in obtaining optimal solutions to 

Asymmetric Travelling Salesman’s Problem in-

stances. The results show that RAI slightly outper-

formed the ABO in attaining optimal solutions to 

the ATSP cases under investigation with 98.22% 

accuracy to ABO’s 96.76%. Also, RAI obtained the 

optimal solution in 13 out of the 19 instances, with 

the ABO obtaining optimal solution in five instanc-

es and very near optimal solution in the remaining 

cases. However, in terms of speed required to ob-

tain results, the ABO is the dominant algorithm of 

choice. The ABO cumulatively was 1,832.012 

times faster than the RAI. Similarly, in an instance-

by-instance speed assessment, the ABO clearly 

outperformed the RAI in 18 out of the 19 ATSP 

instances under investigation. The RAI was slightly 

faster than the ABO only in Br17 where it executed 

at 0.027 seconds to ABO’s 0.028 seconds. 

In conclusion, therefore, since accuracy (trust-

worthiness) and efficiency are two of the four ma-

jor criteria for determining a better algorithm, the 

other two being general applicability and ease of 

use [29, 35], the ABO can be adjudged a better al-

gorithm than RAI since it performed creditably well 

in obtaining optimal or near-optimal results in all 

the test cases under investigation. Even though the 

RAI slightly outperformed the ABO here by 1.76%. 

ABO, being a metaheuristic algorithm should have 

wider applicability than the RAI which is a heuris-

tic. Since speed is one of the measures of efficien-

cy, it is safe to conclude that the ABO is a better 

algorithm in solving the benchmark ATSP instanc-

es and this result further validates the view that 

metaheuristics are more efficient algorithms than 

heuristics [36, 24]. The authors, therefore recom-

mend the comparison of the performance of ABO 

with other state-of-the-art algorithms in solving 

other optimization problems like PID tuning of 

AVR parameters, knapsack problem, job schedul-

ing and vehicle routing.  
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