
Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

489

USING FRAMEWORK TO SYNCHRONIZE ONTOLOGY

WITH RELATIONAL DATABASE

1
AHMED EL ORCHE,

2
MOHAMED BAHAJ

Faculty of Sciences & Technologies / Department of Computer and Information Science, Settat, Morocco

E-mail:
1
ahmed.elorche@gmail.com,

2
mohamedbahaj@gmail.com

ABSTRACT

Ontology is building bloc of semantic web. Ontologies evolve over time and not static. The synchronization

of the relational database with the ontology is required once the ontology is changed. In this paper the

authors propose an approach to synchronize the relational database with the ontology in two steps, firstly to

match the relational database schema with the ontology, secondly to make design of a framework able to

compare the current ontology's version with the pervious one, then manipulate the changes happened to

build SQL queries to be executed in the relational database.

Keywords: Synchronization, Semantic, Database, Datatype, Object Properties, OBDB, Ontology.

1. INTRODUCTION

The web semantic was designed to display

information in human-readable way. Thus,

information access and information search will be

more precise and more complete. The ontology is

the building bloc of the web semantic. Database

models, notably relational databases, have been the

leader in last decades, enabling to store modify and

extract information. The other side, ontologies have

seemed as an alternative to databases in

applications that require a semantic meaning.

The synchronization between the OBDB

(ontology based database) and RDB is more

important for some reasons as performance and

development of the web semantic. That need every

time launching the operation of update the ontology

or the RDB or both of them. Many papers have

begun the migration from RDB to ontology and in

the reverse direction. The communication between

ontologies and databases can be established if

information represented by ontologies corresponds

to data described in a database in a certain way.

In order to establish this communication the

reference [8] pointed the following classification:

- Using the same conceptual modeling

technique for representing ontologies and

databases.

- Generating database schemas from

ontologies.

- Obtaining Ontologies from database

representations.

- Using OBDB (Ontologies Based

Databases)

It means that always run a migration for the

whole ontology or RDB and sometimes for a small

change causing the impact of the performance of an

entire system, for that we have to find solution to

target just the changed objects. The reference [5]

allows data updates specified as triplets to be

propagated back to the relational database as tuples.

Algorithms to translate the triplets to be updated,

inserted, deleted into equivalent relational

attributes/tuples whenever possible are presented.

The reference [2] presents an alternative approach

to managing RDF data in the database trough

introducing a new Oracle object type for storing

RDF data. The object type is built on top of the

Oracle Spatial Network Data Model, which is

Oracle’s network solution in the database. This

exposes the NDM functionality to RDF data,

allowing RDF data to be managed as objects and

analyzed as networks. The reference [3] presents a

method for semantic and direct conversion of RDB

to an ontology done in two steps, the first interested

in schema and the second focuses on data. The

reference [3] defined the model of ontology as a set

of classes, a set of properties of datatype, a set of

object properties, a list of individuals.

In Section 2 we clarify the related work of the

paper. Section 3 introduces more the proposed

approach. Section 4 describes the structure of the

OBDB. Section 5 describes and gives algorithms

and methods used by the framework proposed in

this approach. Section 6 concludes the paper.

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

490

2. RELATED WORK

The reference [1] proposes an approach to detect

any changes applied in the ontology then generate

SQL queries to synchronize the RDB with the

OBDB. But the representation of columns length in

the references [1] and [3] is missing. The

representation of foreign key in the ontology in the

references [3] makes the synchronization is

irreversible from OBDB to RDB. The ability to

migrate columns having the same name and

belongs to different tables is very likely, that

causing a problem of ambiguity in OBDB. In order

to overcome these problems, we demonstrate in this

paper a simple approach based on defining and

make correspondence between the objects of

database and owl classes, objects properties or

datatypes properties of the ontology in a way to

avoid all the problems already discussed above. In

the same paper [1], the approach is based on a set

of rules that generate SQL queries on a comparison

of two versions of the ontology through SPARQL

queries. The lack of the approach is the exceptions

appear at the time of update of RDB. To avoid this

problem, the current paper proposes new approach

to update the RDB schema using the framework,

this operation is based on the analysis and treatment

of the extracted triplets of OBDB, then generate

SQL script to be executed one shot in the RDB

without errors.

3. PROPOSED APPROACH

The objective of this approach is to make a

matching of the OBDB with the database. An

update on OBDB requires an update in database.

We will define as objects the columns, the

constraints, the indexes and the tables of database

then make correspondence between each one with

classes in the OBDB. The link between a column

and a table will correspond in ontology by object

properties as well as between constraints/indexes

and a column of database, the values of check

constraints will be presented in the OBDB by

datatype properties. Also the objective of this

approach is how managing the triplets of ontology

and how update the RDB regarding these triplets.

Where does the idea of creating an intermediate

framework able to store the triplets in specific

tables, as well as it should follow algorithms for

interoperability between SPARQL/SQL queries

then periodically send SQL queries to the database

if one or more changes in OBDB are happened.

4. ONTOLOGY BASED DATABASE

The reference [10] shows in the simplest case, an

OWL class corresponds to a RDB table, an OWL

datatype property corresponds to a table field,

and an OWL object property corresponds to a

foreign key.

In real life examples the mappings are not so

straightforward. In this section we describe a direct

translation of RDB to OBDB and demonstrate also

the process of generation owl classes, owl datatype

properties and object properties.

We assume that the OBDB will be generated

from RDB. The structure of the OBDB schema

adopted in this paper is:

OBDB = {{C}, {DT}, {DO}/

C is a set of classes corresponds to database

objects,

DT is a set of datatypes corresponds to the

objects type, or constraints values.

DO is a set of data objects corresponds to links

between database objects

}

In this approach any object in database will

correspond to a class in the OBDB, The tables and

their columns will be linked by objects properties,

the same goes for relations between indexes and

columns, between constraints and columns and

between constraints and constraints in the case of

foreign keys.

As described in the figure 8, there is a single

parent class of all others classes corresponds to the

database objects: table, column, indexes and

constraints. Among problems encountered in the

modeling of the database constraints in OBDB are

the difference between foreign key constraints and

the others. That is why we propose to create class

parent Constraint for each type of constraint classes

(primary key, foreign key, unique, Not Null,

check).

The presentation of foreign keys is different

from a paper to another; in this paper we use two

object properties to model this type of constraint.

The first object property will be used to link the

constraint with the column and the second will be

used to link the constraint with the primary key of

the referenced table.

Each table has one or more columns, obviously

the names of these columns are different in the

table, but another table may have a column with the

same name, which an ambiguity in the modeling of

OBDB appears. To find a solution to overcome this

issue we propose to model the column by unique

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

491

identifier instead the column name only as follow:

table_name.colomn_name.

Example:

<column rdf:ID="card.card_number">

The datatype properties are used to define the

characteristics of each object of ontology such as

the name or type, but in this paper we use the

datatype properties to model the value of a

constraint if needed like the case of CHECK

constraints, or to model the type and the length of

columns.

The figure 1 shows the owl ontology classes that

correspond to OBDB objects in Figure 9.

Figure 1: Owl ontology – 1

The figure 2 shows a part of owl ontology used to

create object properties to link column with table.

Figure 2: Owl ontology – 2

The figure 3 shows an example of three tables of

RDB linked between them through foreign keys

constraints. In the rest of this section we will

describe how to model these tables with owl

ontology.

Figure 3: RDB tables

The figure 4 shows the part of the owl ontology

generated to model the table “CARD” in the figure

3.

Figure 4: Graph of data model - 2

The figure 5 shows a part of owl ontology used

to create object properties, datatype properties to

link columns with constraints.

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

492

Figure 5: RDB schema

5. FRAMEWORK

The framework is composed by its own database

and programs to manage all triplets of OBDB; it

should be supported as interface between OBDB

and the RDB. Its database will contain different

types of objects such as tables, primary keys,

foreign keys, sequences, indexes and triggers. The

figure 10 shows list of data model triplets extracted

from the OBDB to be stored and managed by the

framework.

The figure 6 describes the purpose proposed by

the approach to ensure the synchronization from

OBDB to RDB using the triplets of the ontology.

The first step concerns the extraction of OBDB

triplets by the framework using SPARQL queries,

the purpose of the second step is how analyze and

store data of ontology in the framework database,

and in the third step after compare the obtained

triplets with the triplets already stored, if there is
change happened the framework database the

program will generate SQL queries to be executed

in RDB according to the change detected.

Figure 6: Ontology/RDB synchronization steps

The framework contains a set of tables created

for the purpose to store the triplets of ontology.

Register triplets in a single table is not practical for

the synchronization task. That is why we adopt in

this approach a set of tables. First type of tables is

to keep the triplets under the form (subject,

predicate, object). The second type of tables is to

classify the triplets according to their different

types of RDB objects (columns, tables, constraints,

indexes), the third type of tables is to store the links

between different objects or values of check

constraints.

5.1 Framework Database Description

Table 1: Framework Database description

Table Description

odb_triplets_df Contains the old state of

triplets of ontology

odb_triplets Contains the current state of

triplets of ontology

odb_tables Contains RDB / RDB table

name list

odb_columns Contains the list of all the

columns that exist in the

tables of OBDB / RDB

odb_constraints Contains all types of

constraints of OBDB/RDB

odb_indexes Contains all indexes of

OBDB/RDB

odb_object_properties Contains all objects properties

to link columns with its tables

odb_datatypes contient les objects properties

pour lier les indexes et les

colonnes de RDB

The Figure 11 describes the diagram data model of

the framework database.

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

493

5.2 OBDB Interface

The ontology in the reference [1] is defined as

four-tuple:

O = < C, DT, OP,I > Where:

C = {C1, C2 … Cn} is a set of classes

DT = {DT1, DT2 … DTm} is a set of data type

properties.

OP = {OP1, OP2 … OPp} is a set of object

properties.

I = {I1, I2 … Ip} is a set of individuals.

The current paper presents how to build SQL

queries directly from an ontology through a set of

rules and algorithms, the main idea is how to

compare and detect changes between two versions

of the same OBDB schema Oi and Oj where:

Oi = < Ci, DTi, OPi >

Oj = < Cj, DTj, OPj >

Now, we will adopt the approach rules used in

the reference [1] to compare two list versions of

<C>, <DT> or <DO> to detect changes.

The idea of this step is to make the extraction of

all triplets of the ontology into ODB_TRIPLETS

table. First we should copy the data of

ODB_TRIPLETS to ODB_TRIPLETS_DF, second

overwrite the content of ODB_TRIPLETS by new

data extracted from ontology. To detect whether

there are a differences between the two versions of

the ontology we should compare the two tables

ODB_TRIPLETS and ODB_TRIPLETS_DF. Each

difference detected will be translated as a

modification applied on the ontology. We will

distribute different triplets detected on others tables

of the framework database. At this stage the

framework will also determine the type of operation

applied to the triplet (I: insert, U: update, D: delete).

The different class’s types of ontology are:

{Table, Column, Index, PrimaryKey, ForeignKey,

Not Null, Check, Unique}.

The different type of object properites of

ontology are: {hasColumn, hasIndex,

hasPrimaryKey, hasForeignKey, hasNotNull,

hasCheck, hasUnique, hasReferencedCol}.

The algorithm below shows the process followed

to compare two versions of ontology, then populate

or update framework database according to the

changes detected.

DECLARE

Tab_i is cursor of triplet where predicate=’type’,

object=’table’ and triplet in ODB_TRIPLETS

and not in ODB_TRIPLETS_DF;

Col_i is cursor of triplet where predicate =’type’,

object=’column’ and triplet in ODB_TRIPLETS

and not in ODB_TRIPLETS_DF;

Idx_i is cursor of triplet where predicate =’type’,

object=’index’ and triplet in ODB_TRIPLETS

and not in ODB_TRIPLETS_DF;

Pk_i is cursor of triplet where predicate =’type’,

object=’primaryKey’ and triplet in

ODB_TRIPLETS and not in

ODB_TRIPLETS_DF;

Fk_i is cursor of triplet where predicate =’type’,

object=’foreignkey’ and triplet in

ODB_TRIPLETS and not in

ODB_TRIPLETS_DF;

Chk_i is cursor of triplet where predicate

=’type’, object=’Check’ and triplet in

ODB_TRIPLETS and not in

ODB_TRIPLETS_DF;

U_i is cursor of triplet where predicate =’type’,

object=’Unique’ and triplet in ODB_TRIPLETS

and not in ODB_TRIPLETS_DF;

NN_i is cursor of triplet where predicate =’type’,

object=’NotNull’ and triplet in ODB_TRIPLETS

and not in ODB_TRIPLETS_DF;

DT_i is cursor of triplet where predicate

=’checkValue’ or = ‘dataType’ and triplet in

ODB_TRIPLETS and not in

ODB_TRIPLETS_DF;

Tab_d is cursor of triplet where predicate

=’type’, object=’table’ and triplet in

ODB_TRIPLETS_DF and not in

ODB_TRIPLETS;

Col_d is cursor of triplet where predicate

=’type’, object=’column’ and triplet in

ODB_TRIPLETS_DF and not in

ODB_TRIPLETS;

Idx_d is cursor of triplet where predicate

=’type’, object=’index’ and triplet in

ODB_TRIPLETS_DF and not in

ODB_TRIPLETS;

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

494

Pk_d is cursor of triplet where predicate =’type’,

object=’primaryKey’ and triplet in

ODB_TRIPLETS_DF and not in

ODB_TRIPLETS;

Fk_d is cursor of triplet where predicate =’type’,

object=’foreignkey’ and triplet in

ODB_TRIPLETS_DF and not in

ODB_TRIPLETS;

Chk_d is cursor of triplet where predicate

=’type’, object=’Check’ and triplet in

ODB_TRIPLETS_DF and not in

ODB_TRIPLETS;

U_d is cursor of triplet where predicate =’type’,

object=’Unique’ and triplet in

ODB_TRIPLETS_DF and not in

ODB_TRIPLETS;

NN_d is cursor of triplet where predicate

=’type’, object=’NotNull’ and triplet in

ODB_TRIPLETS_DF and not in

ODB_TRIPLETS;

DT_d is cursor of triplet where predicate

=’checkValue’ or = ‘dataType’ and triplet in

ODB_TRIPLETS_DF and not in

ODB_TRIPLETS;

hcol_i is cursor of triplet where predicate

=’hasColumn’ and triplet in ODB_TRIPLETS

and not in ODB_TRIPLETS_DF;

hIdx_i is cursor of triplet where predicate

=’hasIndex’ and triplet in ODB_TRIPLETS and

not in ODB_TRIPLETS_DF;

hPk_i is cursor of triplet where predicate

=’hasPrimarykey’ and triplet in ODB_TRIPLETS

and not in ODB_TRIPLETS_DF;

hFk_i is cursor of triplet where predicate

=’hasForeignkey’ and triplet in ODB_TRIPLETS

and not in ODB_TRIPLETS_DF;

hChk_i is cursor of triplet where predicate

=’hasCheck’ and triplet in ODB_TRIPLETS and

not in ODB_TRIPLETS_DF;

hU_i is cursor of triplet where predicate

=’hasUnique’ and triplet in ODB_TRIPLETS

and not in ODB_TRIPLETS_DF;

hNN_i is cursor of triplet where predicate

=’hasNotNull’ and triplet in ODB_TRIPLETS

and not in ODB_TRIPLETS_DF;

hRc_i is cursor of triplet where predicate

=’hasReferencedCol’ and triplet in

ODB_TRIPLETS and not in

ODB_TRIPLETS_DF;

hcol_d is cursor of triplet where predicate

=’hasColumn’ and triplet in

ODB_TRIPLETS_DF and not in

ODB_TRIPLETS;

hIdx_d is cursor of triplet where predicate

=’hasIndex’ and triplet in ODB_TRIPLETS_DF

and not in ODB_TRIPLETS;

hPk_d is cursor of triplet where predicate

=’hasPrimarykey’ and triplet in

ODB_TRIPLETS_DF and not in

ODB_TRIPLETS;

hFk_d is cursor of triplet where predicate

=’hasForeignkey’ and triplet in

ODB_TRIPLETS_DF and not in

ODB_TRIPLETS;

hChk_d is cursor of triplet where

predicate=’hasCheck’ and triplet in

ODB_TRIPLETS_DF and not in

ODB_TRIPLETS;

hU_d is cursor of triplet where predicate

=’hasUnique’ and triplet in

ODB_TRIPLETS_DF and not in

ODB_TRIPLETS;

hNN_d is cursor of triplet where predicate

=’hasNotNull’ and triplet in

ODB_TRIPLETS_DF and not in

ODB_TRIPLETS;

hRc_d is cursor of triplet where predicate

=’hasReferencedCol’ and triplet in

ODB_TRIPLETS_DF and not in

ODB_TRIPLETS;

BEGIN

foreach tab in Tab_i do

record.table_name � tab.subject;

reocrd.processing_step � ‘I’;

insert record in ODB_TABLES;

end foreach;

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

495

foreach Col in Col_i do

 record.table_name � Col.subject;

 record.processing_step � ‘I’;

 insert record in ODB_COLUMNS;

 end foreach;

foreach Idx in Idx_i do

 record.table_name � Idx.subject;

 record.processing_step � ‘I’;

 insert record in ODB_INDEXES;

 end foreach;

foreach Pk in Pk_i do

 record.constraint_name � Pk.subject;

 record.constraint_type � ‘PK’;

 record.processing_step � ‘I’;

 insert record in ODB_ CONSTRAINTS;

 end foreach;

 foreach Fk in Fk_i do

 record.constraint_name � Fk.subject;

 record.constraint_type � ‘FK’;

 record.processing_step � ‘I’;

 insert record in ODB_ CONSTRAINTS;

 end foreach;

foreach Chk in Chk_i do

 record.constraint_name� Chk.subject;

 record.constraint_type � ‘CH’;

 record.processing_step � ‘I’;

 insert record in ODB_ CONSTRAINTS;

 end foreach;

foreach U in U_i do

 record.constraint_name� U.subject;

 record.constraint_type � ‘U’;

 record.processing_step � ‘I’;

 insert record in ODB_ CONSTRAINTS;

 end foreach

foreach NN in NN_i do

 record.constraint_name� NN.subject;

 record.constraint_type � ‘NN’;

 record.processing_step � ‘I’;

 insert record in ODB_ CONSTRAINTS;

 end foreach

foreach DT in DT_i do

 record.DT_name� DT.subject;

 record.type � DT.predicate;

 record.value � DT.object;

 record.processing_step � ‘I’;

 insert record in ODB_ DATATYPE;

 end foreach

foreach tab in Tab_d do

 record.table_name � tab.subject;

 record.processing_step � ‘D’;

 Update record in ODB_TABLES;

 end foreach;

foreach Col in Col_d do

 record.table_name � Col.subject;

 record.processing_step � ‘D’;

 Update record in ODB_COLUMNS;

 end foreach;

foreach Idx in Idx_d do

 record.table_name � Idx.subject;

 record.processing_step � ‘D’;

 Update record in ODB_INDEXES;

 end foreach;

foreach Pk in Pk_d do

 record.constraint_name � Pk.subject;

 record.processing_step � ‘D’;

 Update record in ODB_ CONSTRAINTS;

 end foreach;

foreach Fk in Fk_d do

 record.constraint_name � Fk.subject;

 record.processing_step � ‘D’;

 Update record in ODB_ CONSTRAINTS;

 end foreach

foreach Chk in Chk_d do

 record.constraint_name� Chk.subject;

 record.processing_step � ‘D’;

 Update record in ODB_ CONSTRAINTS;

 end foreach;

foreach U in U_d do

 record.constraint_name� U.subject;

 record.processing_step � ‘D’;

 Update record in ODB_ CONSTRAINTS;

 end foreach;

foreach NN in NN_d do

 record.constraint_name� NN.subject;

 record.processing_step � ‘D’;

 Update record in ODB_ CONSTRAINTS;

 end foreach;

foreach DT in DT_d do

 record.DT_name� DT.subject;

 record.type � DT.predicate;

 record.value � DT.object;

 record.processing_step � ‘D’;

 insert record in ODB_ DATATYPE;

 end foreach

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

496

foreach hcol in hcol _i do

 record.linked_subject � hcol.subject;

 record.link_type � ‘TAB’;

 record.linked_object � hcol.object;

 record.processing_step � ‘I’;

 insert record in

ODB_OBJECT_PROPERTIES;

 end foreach;

foreach hIdx in hIdx_i do

 record.linked_subject � hIdx.subject;

 record.link_type � ‘IDX’;

 record.linked_object � hIdxobject;

 record.processing_step � ‘I’;

 insert record in ODB_OBJECT_PROPERTIES;

 end foreach;

 foreach hPk in hPk_i do

 record.linked_subject � hPk.subject;

 record.link_type � ‘PK’

 record.linked_object � hPk.object;

 record.processing_step � ‘I’;

 insert record in ODB_OBJECT_PROPERTIES;

 end foreach;

 foreach hFk in hFk_i do

 record.linked_subject � hFk.subject;

 record.link_type � ‘FK’

 record.linked_object � hFk.object;

 record.processing_step � ‘I’;

 insert record in ODB_OBJECT_PROPERTIES;

 end foreach;

 foreach hU in hU_i do

 record.linked_subject � hU.subject;

 record.link_type � ‘U’

 record.linked_object � hU.object;

 record.processing_step � ‘I’;

 insert record in ODB_OBJECT_PROPERTIES;

 end foreach;

foreach hNN in hNN_i do

 record.linked_subject � hNN.subject;

 record.link_type � ‘NN’

 record.linked_object � hNN.object;

 record.processing_step � ‘I’;

 insert record in ODB_OBJECT_PROPERTIES;

 end foreach;

 foreach hRc in hRc_i do

 record.linked_subject � hRc.subject;

 record.link_type � ‘R’

 record.linked_object � hRc.object;

 record.processing_step � ‘I’;

 insert record in ODB_OBJECT_PROPERTIES;

 end foreach;

 foreach hcol in hcol _d do

 record.linked_subject � hcol.subject;

 record.link_type � ‘TAB’

 record.linked_object � hcol.object;

 record.processing_step � ‘D’;

 Update record in

ODB_OBJECT_PROPERTIES;

 end foreach;

foreach hIdx in hIdx_d do

record.linked_subject � hIdx.subject;

 record.link_type � ‘IDX’

 record.linked_object � hIdx.object;

 record.processing_step � ‘D’;

Update record in ODB_OBJECT_PROPERTIES;

 end foreach;

 foreach hPk in hPk_d do

 record.linked_subject � hPk.subject;

 record.link_type � ‘PK’

 record.linked_object � hPk.object;

 record.processing_step � ‘D’;

Update record in ODB_OBJECT_PROPERTIES;

 end foreach;

 foreach hFk in hFk_d do

 record.linked_subject � hFk.subject;

 record.link_type � ‘FK’

 record.linked_object � hFk.object;

 record.processing_step � ‘D’;

 Update record in ODB_OBJECT_PROPERTIES;

 end foreach;

foreach hU in hU_d do

 record.linked_subject � hU.subject;

 record.link_type � ‘U’

 record.linked_object � hU.object;

 record.processing_step � ‘D’;

 Update record in ODB_OBJECT_PROPERTIES;

 end foreach;

foreach hNN in hNN_d do

 record.linked_subject � hNN.subject;

 record.link_type � ‘NN’

 record.linked_object � hNN.object;

 record.processing_step � ‘D’;

 Update record in ODB_OBJECT_PROPERTIES;

 end foreach;

foreach hRc in hRc_d do

 record.linked_subject � hRc.subject;

 record.link_type � ‘R’

 record.linked_object � hRc.object;

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

497

 record.processing_step � ‘D’;

Update record in ODB_OBJECT_PROPERTIES;

 end foreach;

end;

5.3 RDB Interface

After updating the framework database, there

remains only the update of RDB to complete the

synchronization of the entire system. The issue

encountered is that how to manage the SQL queries

built by the framework.

All framework tables except

ODB_TRIPLETS_DF contain the processing_step

column to know if the record in the table is

processed by the synchronization program or not

yet. Each change occurred in the table is reflected at

the column processing_step by the value 'X' to

inform the program that the record was changed in

the table. After the processing operation, the value

of the column processing_step will be updated to

'Y'.

Using the table ODB OBJECT PROPERTIES,

the program can gather all object of table (columns,

indexes and contraints) and translate the binding of

these objects together.

Example:

Build SQL queries to be executed in the RDB

where there is one changed table in the OBDB.

The program will select the record of the table

changed from the table ODB_TABLE where the

column processing_step=’X’, then all columns,

indexes and constraints will be selected from the

table ODB_OBJECT_PROPERTIES. With the

table ODB_DATATYPE, the program can select

the types and the length of all columns. If the

program detect modification in column object on

the table ODB_COLUMNS, the program will select

the name of the table where the column is belong

through the table ODB_OBJECT_PROPERTIES,

then begin the process of building the SQL queries

like diagram in the figure 7 shows. The same

diagram describes all cases and steps should be

followed to ensure the update of RDB.

Figure 7: RDB Synchronization process

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

498

6. CONCLUSION

In this paper, we show that our matching

approach of RDB schema with OBDB keeps certain

semantic characteristics of the RDB, reduce

ambiguity problems causing obstacles in the case of

recovering the ontology data. We also set up a

design of a framework to ensure synchronization

between RDB schema and OBDB on any change of

ontology. The study of synchronization includes also

the data of RDB is missing in this approach. the next

future work will be focused on this goal.

REFERENCES:

[1] A. El Orche, M. Bahaj “A Method for Updating

RDB of Ontology while keeping the

Synchronization between the OWL and RDB”,

ARPN Journal of Systems and Software, Vol. 4,

No4 July 2014, pp. 101-107.

[2] N. Alexander, S. Ravada “RDF Object Type

and Reification in Oracle”, Oracle Corporation

1 Oracle Drive Nashua, NH 03062 USA

[3] J. Bakkas, M. Bahaj, A. Marzouk “Direct

Migration Method of RDB to Ontology while

Keeping Semantics”, International Journal of

Computer Applications (0975 – 8887), Volume

65– No.3, March 2013.

[4] “Relationalizing RDF Stores for Tools

Reusability” DOI: 10.1145/1526709.1526855

Conference: Proceedings of the 18th

International Conference on World Wide Web,

WWW 2009, Madrid, Spain, April 20-24, 2009

[5] Sunitha Ramanujam, Vaibhav Khadilkar,

Latifur Khan, Steven Seida, Murat Kantarcioglu

and Bhavani Thuraisingham “Bi-directional

Translation of Relational Data into Virtual RDF

Stores”, IEEE Fourth International Conference

on Semantic Computing, 2010.

[6] Ramanujam, S. “R2D: A Bridge between the

Semantic Web and Relational Visualization

Tools”, IEEE International Conference on

Semantic Computing, 2009, pp. 303-311.

[7] Angelina A. Tzacheva, Tyrone S. Toland,

Peyton H. Poole, Daniel J. Barnes ”Ontology

Database System and Triggers” Advances in

Intelligent Data Analysis XII Volume 8207 of

the series Lecture Notes in Computer

Science pp 416-426

[8] Carmen Martinez-Cruz, Ignacio J. Blanco,

M. Amparo Vila “Ontologies versus relational

databases: are they so different? A comparison”

Artificial Intelligence Review December

2012, Volume 38, Issue 4, pp 271-290

[9] Anuradha Gali , Cindy X. Chen , Kajal T.

Claypoo1 and Rosario Uceda-Sosa, “From

Ontology to Relational Databases”,

http://www.cs.uml.edu/~cchen/ontology/comwi

m_04.pdf

[10] Guntars Bumans “Mapping between Relational

Databases and OWL Ontologies: an Example”

Scientific Papers, University of Latvia, 2010.

Vol. 756 Computer Science and Information

Technologies

[11] Vishal Jain, Dr. S. V. A. V. Prasad “Mapping

Between RDBMS And Ontology: A Review”

INTERNATIONAL JOURNAL OF SCIENTIFIC

& TECHNOLOGY RESEARCH, VOLUME 3,

ISSUE 11, NOVEMBER 2014 ISSN 2277-8

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

499

ANNEXURE

Figure 8: RDB Ontology Structure

Figure 9: Graph Of Data Model - 1

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

500

Figure 10: Data Model Triplets

Figure 11: Framework Database

