
Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

469

 TRANSFORMING XML SCHEMA CONSTRAINING FACETS
AND XML QUERIES TO OBJECT CONSTRAINT LANGUAGE

(OCL)

1
TOUFIK FOUAD,

 2
BAHAJ

MOHAMED

1
 PhD, LITEN Laboratory, University Hassan I, FSTS Settat, Morocco

2
 Professor, LITEN Laboratory, University Hassan I, FSTS Settat, Morocco

E-mail: 1toufik.fouad@gmail.com, 2mohamedbahaj@gmail.com

ABSTRACT

Unified Modeling Language UML became the main part of software development including web
applications that use XML for exchanging structured data. That’s why there is a need for modeling XML
elements with UML.

Design Recovery or Reverse Engineering allows us to get conceptual schema which helps developers to
understand systems and to ease its maintenance.

A lot of XML Schema mapping methods focus only on getting the structural part (elements, complex types
and attributes …) without giving importance to constraints and restrictions and also XML Queries. In this
sense our goal is to represent the mapping and the transformations rules from XML elements and queries to
UML/OCL.

Keywords: UML, OCL, XML Schema, XQuery, Transformation.

1. INTRODUCTION

UML(Unified Modeling Language) has become

the standard language for designing and
representing object oriented system, it provide a
graphical notation and elements to construct an
application model which describe the different
components of the system, there structure and
behavior. Furthermore UML contains various
diagrams to model the static aspect of the system
(use case, class diagrams,) and also the dynamic
aspect (sequence, state diagrams,)

At the same time with the evolution of the use of
web applications, XML (eXtensible Markup
Language) play an importance role in exchanging
structured data and transporting information over
the web. XML is a text-based format that provides a
mechanism for describing document structures
using markup. XML has Document Type Definition
(DTD) which defines the document structure using
a set of rules for describing elements and other
markup components. But DTD has some limitation
when we describe high structured data, in DTD
there are no constraints imposed on the kind of
character data allowed, so data typing is not
possible, there is no support for namespaces, that’s
why the World Wide Web Consortium (W3C)

propose other solutions. The best alternative is
XML Schema; XML Schemas are themselves XML
document. They include most basic programming
type such as Integer, String and floating point
number, and also provide an object oriented
approach to define the format of an XML
documents. XML Schema present the static part of
XML so the UML diagram which has the same
properties, and static in the same time, is the Class
diagram, here we can map and transform XML
elements and attributes, to classes and properties
with the same characteristics (data type,
relationship, generalization, …), in conceptual
level, it is necessary to generate conceptual models
to illustrate data structure and relationships in XML
Schema [1,2]. Here much work has been done to
represent different approach and methods for
mapping between XML Schema and UML. [3,4]
present a formalization of transformation rules from
XML Schema to UML Class Diagram, the authors
in [5] propose a method of reverse engineering from
XML to generate Software Requirement
Specification (SRS) in a document manner. In [6]
the author extends UML and adds some stereotypes
to describe SOX Schema used by commerceOne
elements. In [7] Bird, Goodchild and Halpin have
proposed an approach that uses a conceptual

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

470

language of role object model to generate XML
Schema. In [8] the authors presented a solution for
mapping UML object-oriented model to XML
Schema, and then to relational database table
schema, [9] provide an evolution framework by
which the xml schema and documents are
incrementally updated according to the changes in
the conceptual model (expressed as a UML class
models), in [10] the authors present a set of rules
using XSLT styleSheets that transform the UML
class diagram into an adequate document type
definition (DTD), in [11] the authors present
correspondence rules for generating DTDs from
UML diagrams. From the other side the authors in
[12] developed an algorithm for constructing UML
class diagram from XML Schema, [13] provides a
comparison of several approaches which
automatically create a platform specific model for
XML Schemas, based on a comprehensive set of
transformation patterns supporting creation of UML
model that is as concise and semantically
expressive without losing XML Schema
information, the authors in [14] present method
transformation from textual XML Schema to
graphical UML to facilitate understanding of XML
Schema.

Since XML document are considered as source
of information or a database, it is necessary to get
data from this source. XQuery is to XML what SQL
is to database. XQuery is W3C standard language
for retrieving data from XML document.

All the previous work focuses only on the
structural part without transform restriction
component or what we call in XML Schema the
Facets. The same thing for transforming and
mapping XML queries, most research dismiss this
part.

In this paper we focus on the restriction and
facets component, to transform this component we
use OCL Object Constraint Language, after that we
will transform constraining
generalization/specialization(partition and mutual
exclusion constrains) and finally we will catch the
part of XML queries transformation, using OCL
collections.

2. MAPPING BETWEEN CONSTRAINING

FACETS AND OCL

Many works have been done to represent
XML Schema in UML. In detail, researchers
convert different elements and attributes to classes,
properties and relationships (Generalization,
Composition, Aggregation …), but the
representation of constraining facets has not been

done yet, UML diagram does not provide all
relevant aspects of a specification, that’s why it is
necessary to describe additional constraints about
the object in the model. Constraint specify invariant
conditions that must hold for the system being
modeled, constraint are often described in natural
language and this always result in ambiguities, then
we need to use a formal language to express
constraints, easy to read and write, this language is
OCL (Object Constraint Language) [15].
OCL contains 12 constraining facets; we present
here some constraint with the correspondent OCL
clause.

2.1 Length

We use this restriction to limit the length
of a value in an element. The example above
defines an element called password with a
restriction, the value must be exactly eight
characters.

<xs:element name=”password”>
 <xs:simpleType>
 <xs:restriction base=”xs:string”>

<xs:length value=”8” />
 <xs:restriction/>
 <xs:simpleType>
</xs:element>

We suppose that the account element is the parent
node of password element, our context here is the
account class, the OCL invariant correspondent is:

context Account inv:

 self.password.size()=8

2.2 minLength and maxLength

We use this restriction to define the
minimum and the maximum length. The example
above defines an element called password with a
restriction, the value must be minimum five
characters and maximum eight characters.

<xs:element name=”password”>
 <xs:simpleType>
 <xs:restriction base=”xs:string”>
 <xs:minLength value=”5”/>
 <xs:maxLength value=”8”/>
 <xs:restriction/>
 <xs:simpleType>
</xs:element>

The Account class is the context, here we use the
operator AND for type Boolean to combine the two
conditions, and the OCL invariant is as follow:

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

471

context Account inv: self.password.size()>=5
and self.password.size()<=8

2.3 Pattern

We use this restriction to limit the content
of an XML element to define a series of numbers or
letters that can be used. The example above
defines an element called name with a restriction.
The acceptable value is zero or more occurrences of
lowercase letters from (a to z).

<xs:element name=”name”>
 <xs:simpleType>
 <xs:restriction base=”xs:string”>
 <xs:pattern value=”([a-z])*” />
 <xs:restriction/>
 <xs:simpleType>
</xs:element>

We suppose that the Person element is the parent
node of name element, we suggest also adding a
method “pattern (…)” to OCL String type, the
returned value of this method is a Boolean type,
equals TRUE if the attribute respect the pattern
parameter. The correspondent OCL clause is:

context Person inv:
 self.name.pattern(“[a-z]*”) ==TRUE

2.4 Enumeration

We use this restriction to limit the content
of an XML element to a set of acceptable values.
The example below defines an element called
"country" with a restriction. The only acceptable
values are: Morocco, Algeria, and Tunisia.

<xs:element name=”name”>
 <xs:simpleType>
 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”Morocco” />
 <xs:enumeration value=”Algeria” />

<xs:enumeration value=”Tunisia” />
 <xs:restriction/>
 <xs:simpleType>
</xs:element>

We suppose that the parent node of country element
is address element, the correspondent OCL
invariant is:

 context Address inv:

self.country = Country::Morocco Or
self.country = Country::Algeria Or
self.country = Country::Tunisia

2.5 minInclusive and maxInclusive

We use this restriction to control the value
of an element; the follow example defines an
element called age. The value of age cannot be
lower than 0 or greater than 120.

<xs:element name=”password”>
 <xs:simpleType>
 <xs:restriction base=”xs:string”>
 <xs:minInclusive value=”18”/>
 <xs:maxInclusive value=”120”/>
 <xs:restriction/>
 <xs:simpleType>
</xs:element>

We suppose that the parent node of age element is
person element, then the context is the class Person,
the correspondent OCL invariant is as follow:

 context Person inv:

self.age >= 18 and self.age <= 120

3. IMPLEMENTATION AND VALIDATION

To demonstrate the validity of our
approach, a tool has been developed (figure 2). This
tool take as input an XML Schema file, then we
normalize the xml file to have good structure of
different nodes and elements. After that we
transform all constraining facets to OCL clause.

To develop our prototype, we used java as

a programming language, and to parse the XML file
we used DOM XML Parser. DOM parser parses the
entire XML document and loads it into memory;
then models it in a TREE structure for easy
traversal and manipulation.

After loading the XML file, we search and

store all constraining facets (restrictions).the second
step is getting the attribute and the object context,
finally we transform the constraining facet
(restriction) to OCL clause. In (Figure 1) we
present the tested XML Schema file.

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

472

Figure 1: XML Schema File, Restrictions Example

Figure 2: Constraining Facets Transformation Program

4. XML SCHEMA GENERALIZATION/

SPECIALIZATION TRANSFORMATION

The author in [16] introduces different
mechanism to present generalization specialization
in XML Schema:

4.1 Derived types which contains tow xml

element construct

• A simple type or a complex type can be
derived from a base type by using Restriction.
The transformation of Restrictions or
constraining facets has been done in the
previous section.

• The second element extends an existing
simpleType or complexType element by using
Extension. The example above shows us an
extension of address element to USAddress
element.

<xs :complexType name=”address”>
 <xs :sequence>
 <xs :element name=”street” type=”xs:string” />
 <xs :element name=”city” type=”xs:string” />
 </xs :sequence>
</xs :complexType>

<xs :complexType name=”USAddress”>
 <xs:complexContent>
 <xs:extension base=”address”>
 <xs:sequence>
 <xs :element name=”state” type=”xs:string” />
 </xs:sequence>
 </xs:extension>
 <xs:complexContent>
</xs :complexType>

4.2 Substitution groups & abstract elements and

types

We focus on two cases of
generalization/specialization constraints, we begin
with the partition constraint which can be
represented in the figure above using c- xml [17].

Figure 3: Generalization/Specialization Partition

Constraint in C-XML

C-XML is a conceptual model consisting of object
sets, relationship sets, and constraints over these
object and relationship sets. In the notation of c-
xml, boxes represent object sets dashed if lexical
and not dashed if nonlexical, in figure 1 the set of
objects in professor and student is a subset of the
set of objects in person, c-xml give us the
possibility to add constraint to generalization by
writing a symbol inside the triangle of
generalization/specialization, in our case we
represent the partition constraint by adding the

symbol in the triangle, we transform our c-
xml example to xml schema(figure 4) by following
the mechanism in [16].

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

473

Figure 4 XML Schema Translation of C-XML in Figure 3

In set terminology, we say that Student U
Professor = Person and Student ∩ Professor =
{}. Student and Professor are mutually exclusive, to
ensure that the sets are disjoint, we use a unique
identifier OID for each element, which is defined in
the parent abstract element Person, the OID play
the same role of primary key in RDB. To transform
the uniqueness of OID and to ensure that the sets of
Student and professor are disjoint, we present the
equivalent OCL clause.

Context Student inv
 Student.allInstances()->forAll(s1,s2 | s1 <> s2

Implies
 s1.oid <> s2.oid);

 Let professorColl : Set = Professor.allInstances();
Student
 .allInstances()->forAll(Student s |

 profColl->forAll(Professor p | s<>p
implies

 s.oid <> p.oid))

The second case is mutual-exclusion

constraint, in c-xml we replace symbol with +
(figure 5), by following the mechanism of
transformation from c-xml to xml schema in, we
keep the same previous xml schema code and we
change abstract value to false of Person element,
we still have Student ∩ Professor = {}, but no
longer Student U Professor = Person, we have

Student U Professor Person. Now we have the
possibility to create instance of Person and add
some invariants to present our OCL clause.

Figure 5: Generalization/Specialization Mutual

Exclusion Constraint in C-XML

context Person inv
 Person.allInstances()->forAll(Person p1,Person p2

 | p1 <> p2 implies
 p1.oid <> p2.oid)

Person.allInstances() allow us to get all instances of
Person, Student and Professor and check the
uniqueness of OID quickly, unlike in partition
constraint when we use nested collections (Student,
Professor) to verify the differences between
subsets.

In this part we have presented the

transformation of two straightforward cases of
generalization/specialization constraints (partition
and mutual exclusion) using the notion of
substitution group.

The transformation process is not entirely
satisfactory for some cases, like unconstrained
generalization/specialization and
generalization/specialization with only a union
constraint. This tow cases are more difficult to
handle.

In the previous examples we presented
simple generalization/specialization using the
substitution groups. We can’t transform multiple
generalization/specialization because we have no
way to specify in XML schema that an element is a
member of two substitution groups.

5. MAPPING BETWEEN XML QUERIES

AND OCL

XQuery provide query mechanisms for
data extraction from web based document, it is a
query and programming language for processing
XML documents and data, it is a language to select
subsets and substructures from a large set of XML
files.

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

474

In XQuery, path expression are used to
locate nodes, such as element, attributes and text
nodes, in XML data, the result of path expression is
an ordered list of unique nodes. A path expression
consists of a series of steps. Each step represents
movement through a document in a particular
direction, and each step can apply one or more
predicates to eliminate nodes that fail to satisfy a
given condition. The result of each step is a list of
nodes that serves as a starting point for the next
step [15].

Object Constraint Language (OCL)
provides a mechanism of navigation so we can
navigate an association on the class diagram to
refer to other objects and their properties. To do so,
we navigate the association by using the opposite
association-end: object.roleName.

Both language, OCL and XQuery have the

movement mechanism which help us to retrieve
data, from this point we suggest to transform XML
Queries to OCL clauses.

To understand our mapping between XML

Queries and OCL, we represent in Figure 6 an
example of an XML Schema definition, and the
correspondent UML Class Diagram in Figure 7.

Figure 6 XML Schema File Example

Figure 7 UML Class Diagram Example

5.1 Path Expression

Xquery Path expressions are used to locate
nodes, such as element, attribute, and text nodes, in
XML data. A path expression consist of a series of
one or more steps, separated by slash “/” or double
slash “//”. Every step evaluates to a sequence of
nodes. We take the example of listing all Books
title of all Authors:

(“books.xml”)/catalog/author/book/title.

Using the mechanism of navigation
between Objects in OCL, we can retrieve all Books
title of all Authors. In our UML Class Diagram, we
have One to Many association between Author
class and Book class, and also One To Many
association between Catalog and Author class, so
the Catalog class contains collection of Authors and
the class Author contains collection of books. The
OCL expression is as follow:

Catalog.getAuthors().getBooks().getTitle().

5.2 Predicates

Predicates are used in a path expressions to
filter the result by applying a specified test, it retain
some items and discard others. XQuery uses
predicates to limit the extracted data from XML
document. The following predicate is used to select
all the book elements that have a price element with
a value less than 50:

(“books.xml”)/catalog/authors/book[price<50]

The equivalent OCL clause is:

Context Book inv :
Book.allInstances()->select(b Book |

 b.price<50)

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

475

The Book.allInstances() is the set of all
books and is of type Set(Book). It is the set of all
books that exist in the system at the time that the
expression is evaluated.

We use select() method to specify a subset
of a collection, the result is a list that contains all
the elements from collection for which the
condition on the price evaluates to true

5.3 Let and Sequence Expressions

The Let expression allow us to define a
variable and use it more than one time. To use a list
of items which may be very similar to each other or
they may be of different type, XQuery provide
Sequences. XQuery support operators to construct,
filter, and combine sequences of items. Sequences
are never nested.

The example above gets all books with a

price less than 100 of the last author in our catalog.

Let $maxPrice :=100
Let $firstAuthor=
(“books.xml”)/catalog/author[fn:last()]

Let $books=$firstAuthor/book[price<$maxPrice]

The equivalent OCL clause is:

Context Catalog Inv:
 Let maxPrice : Integer =100
 Let firstAuthor : Author = self.getAuthors()

->first()
 Let books : Sequence : firstAuthor.getBooks()

->select(b : Book | b.price <
maxPrice).asSequence()

5.4 Arithmetic Expressions

Arithmetic expressions perform operations
that involve addition, subtraction, multiplication,
division and modulus (+,-,*, /), the result of an
arithmetic expression is a numeric value, an empty
sequence, or an error.

The example above shows a simple

arithmetic operation in Xquery.

 Let $somme=5+9

The equivalent OCL clause is:

Let somme: Integer=5+9

5.5 Comparison Expression

Comparison expressions are used to
compare values; there are three kinds of
comparison expressions: general, value and node.

5.5.1 General Comparison

General comparison are used for comparing atomic
value or nodes that contain atomic value, and also
can operate on sequences of more than one item, as
well as empty sequences. The general comparison
operators are (=, !=, <, <=, >, >=). The result of a
general comparison that does not raise an error is
always true or false.

The comparison expression above returns true if at
least the price of one book is less than 150.

(“books.xml”)/catalog/authors/book/price < 50

The equivalent OCL clause is:

Context Book inv:
Book.allInstances()->exists(b Book | b.price <50)

The exist() method check if there is at least one
element in a collection for which a constraint holds.

5.5.2 Value Comparison

Value comparison differs fundamentally from
general comparison in that they can only operate on
single atomic value. They use eq (equal to), ne (not
equal to), lt (less than), le (less than or equal to), gt
(greater than), and ge (greater than or equal to). The
example above return true if there is only a single
element “author” which “last_name” value equal to
“Hugo”.

 (“books.xml”)/catalog/authors/last_name

 eq“Hugo”

The equivalent OCL clause is:

Context Author inv:
Author.allInstances()->exists(a Author|

 a.getLastName()->size()=1

and a.lastName = “Hugo”)

5.6 Logical Expression

A logical expression is either an and-
expression or an or-expression. If a logical
expression does not raise an error, its value is
always one of the boolean values true or false. The
example above gets all books of category
“technology” or “Science Fiction”.

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

476

(“books.xml”)/catalog/authors/book[category_name
 eq “Technology”

 or
category_name eq “Science Fiction”]

The equivalent OCL clause is:

Context Book inv:

Book.allInstances()->select(b Book |
b.getCategoryName().equals(“Technology”)

or
b.getCategoryName().equals(“Science Fiction”))

5.7 FLWOR Expressions

XQuery provides a feature called a
FLWOR expression that supports iteration and
binding of variables to intermediate results. This
kind of expression is often useful for computing
joins between two or more documents and for
restructuring data. FLWOR stands for “for, let,
where, order by, return”.

The “for” and “let” clauses in a FLWOR expression
generate an ordered sequence of tuples of bound
variables, called the tuple stream. The
optional “where” clause serves to filter the tuple
stream, retaining some tuples and discarding others.
The optional “order by” clause can be used to
reorder the tuple stream. The “return” clause
constructs the result of the FLWOR expression.
The example above gets the title of all books which
have price greater than 200:

 For $b in (“books.xml”)/catalog/authors/book
 Where $b/price>200
 Order by price
 return $b/title

The equivalent OCL clause is:

Context Book inv

Book.allInstance()->select(b Book | b.price>200)
 ->collect(title)->asSequence()

When we want to specify a collection
which is derived from some other collection, but
which contains different objects from the original
collection, we can use a “collect” operation.

5.8 Constructors

XQuery provide constructors that can
create dynamically new XML node (elements,
attributes, text …) within a query, and include
theme in our result. The example above adds new

element “additionalInfo”, which contains elements
(“rating” and “priceCategory”).

For $b in (“books.xml”)/catalog/authors/book
Where $b/price>200
 Return <additionalInfo>
 <rating>1</rating>
 <priceCategory>Expensive</priceCategory>

 </additionalInfo>

The equivalent OCL clause is:

Context Book
 Def additionalInfo: Set(TupleType(rating: Integer,
 priceCategory: String))=

Book.allInstnaces()->select(b Book |
b.price>200)->Tuple{
b.rating=1, b.priceCategory=”Expensive”}

“Def” expression enables the definition and the
reuse of variables/operations over multiple OCL
expressions.

“TupleType” combines different types into a single
aggregate type; the parts of a TupleType are
described by its attributes, each having a name and
a type.

5.9 Conditional Expressions

XQuery supports a conditional expression
based on the keywords if, then, and else. The value
of a conditional expression is defined as follows: If
the effective boolean value of the test expression
is true, the value of the then-expression is returned.
If the effective boolean value of the test expression
is false, the value of the else-expression is returned.

Let $technologyBook= count(

 (“books.xml”)/catalog/authors/book[
category_name=’Technology’])

If $ technologyBook >0 then
 Return $technologyBook
Else
Return “Technology Book List Empty”

The equivalent OCL clause is:

Let result : String
Let technologyBook: Integer=
 Book.allIsntance()

->count(“Technolgy”)
If technologyBook then
 Result = technologyBook
Else
 Result=“Technology Book List Empty”

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

477

End if

5.10 Quantified Expressions

A quantified expression determines
whether some or all of the items in a sequence meet
a particular condition. The value of a quantified
expression is always true or false. A quantified
expression begins with a quantifier, which is the
keyword some or every, followed by one or more
in-clauses that are used to bind variables, followed
by the keyword satisfy and a test expression.

The first xquery expression return true if there is at
least one book of the category “Math”.

Some $book in (“books.xml”)/catalog/authors/book

 Satisfy $book/category_name = “Math”

The equivalent OCL clause is:

Context Book inv
Book.allInstances()->exists(b Book

 | b.getCategory()
.getCategory_name= “Math”)

The exists() operation in OCL allows specifying a
Boolean expression that must hold for at least one
object in a collection.

The second example return true if all book category
is “Math”

Every $book in (“books.xml”)/catalog/authors/book
 Satisfy $book/category_name = “Math”

The equivalent OCL clause is:

Context Book inv
Book.allInstances()->forAll(b Book |
 b.getCategory().getCategory_name()=”Math”)

The forAll() operation in OCL allows specifying a
Boolean expression, which must hold for all objects
in a collection.

5.11 Instance of and Cast Expressions

To determine whether a sequence of one or
more items matches a particular sequence type, we
use an instance of expression. The instance of
expression does not cast a value to the specified
sequence type. It simply returns true or false,

indicating whether the value matches that sequence
type.

Let $book =(“books.xml”)/catalog/authors

/book[fn:last()]
$book instance of xs:Integer

The equivalent OCL clause is:

Context Book inv
Let book : Book = Book.allIsntances()

->asSequence()->last()
Book.ocllsTypeOf(Integer)

Casting is the process of changing a value from one
type to another. The cast expression can be used to
cast a value to another type. XQuery provides
a cast expression that creates a new value of a
specific type based on an existing value.
A cast expression takes two operands: an input
expression and a target type.

Let $price = (“books.xml”)/catalog/authors/
book[fn:last()]/price

$price cast as xs:String

The equivalent OCL clause is:

Context Book inv
Let price : Integer= Book.allIsntances()

->asSequence()
->last().getPrice()
.oclAsType(String)

6. CONCLUSION

In this paper we presented in the first step
a set of rules of transformation, from XML Schema
constraining facets to OCL (Object Constraint
Language) expressions. To validate our approach,
we provide a tool developed in java which take an
XML Schema file as input, after extracting
different restrictions using Java and DOM XML
Parser, we transform theme to OCL expressions,
after that we presented the transformation from
constraining generalization(partition and mutual
exclusion constraints to OCL clauses.

In the second step we catch XQuery

expressions, the query language for XML
documents, we have shown the equivalent OCL
clauses for different XQuery Expressions. Our next
goal will be focused on implementing a complete
reverse engineering tool, which takes a XML
Schema file and XQuery file as input to generate

Journal of Theoretical and Applied Information Technology
 31

st
 May 2016. Vol.87. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

478

after that UML conceptual diagram enriched with
OCL clauses.

REFRENCES:

[1] C. Haitao, “A Survey to Conceptual Modeling
for XML”, Proc, 2010 3rd International
Conference on Computer Science and
Information Technology, Volume 8, 2010, pp
473-477.

[2] M. Necasky, “Reverse Engineering of XML
Schemas to Conceptual Diagrams”, Proceedins
6th Asia Pacific Conference on Conceptual
Modeling, Volume 96, 2009, pp 117-128.

[3] Aman, H., Ibrahim, R XML Schema Reverse
Transformation: A Case Study, in D. Taniar, C.
Torre, computational Science and Its
Application – ICCSA 2015, Volume 9158 of
Lecture Note in Computer Science , Springer
2015, pp 575-586.

[4] Aman, H., Ibrahim, R.: Formalization of
transformation rules from XML schema to
UML class diagram. International Journal
Software Engineering and it Application 8(12),
75–90 (2014)

[5] Aman, H., Ibrahim, R.: Reverse engineering:
from XML to Uml for generation of software
requirement specification. In: 2013 8th
International Conference on Information
Technology in Asia - Smart Devices Trend:
Technologising Future Lifestyle, Proceedings
Of CITA 2013 (2013)

[6] Grady Booch, Magnus Christerson, Mathew
Fuchs, Jari Koistinen; “UML for XML Schema
Mapping Specification”; Rational Software
Corp. and CommerceOne

Inc., December 1999.

[7] BIRD, L., GOODCHILD, A. and HALPIN, T.
(2000): Object Role Modeling and XML
Schema. Proc. International Conceptual
Modeling Conference, Salt Lake City, USA,
309-322, Springer.

[8] I-Chen Wu, Shang-Hsien Hsieh; An UML-
XML-RDB Model Mapping Solution for
Facilitating Information Standardization and
Sharing in Construction Industry Proceedings.
National Institute of Standards and
Technology, Gaithersburg, Maryland.
September 23-25, 2002, pp. 317-321

[9] Evolution of XML schemas and documents
from stereotyped UML class models: A
traceable approach Information and Software
Technology, Volume 53, Issue 1, January
2011, Pages 34-50

[10] Thomas Kudrass, Tobias Krumbein, Rule-
Based Generation of XML DTDs from UML
Class Diagrams in L. Kalinichenko,R. Manthey
,B. Thalheim,U. Wloka, Advances in
Databases and Information Systems, Volume
2798 of Lecture Notes in Computer Science,
Springer,2003, pp. 339-354

[11] E. Kuikka, A. Eerola, A Correspondence
between UML Diagrams and SGML/XML
DTDs in P. King, E. V. Munson, Digital
Documents: Systems and Principles, volume
2023 of Lecture Notes in Computer Science;
Springer, 2004, pp. 161-175

[12] Mikael R. Jensen, Thomas H. Moller, Torben
Bach Pedersen. Converting XML Data to UML
Diagrams for Conceptual Data Integration.
DIWeb'2001. pp.17~31

[13] M. Bernauer, G. Kappel, G. Kramler,
Representing XML Schema in UML - A
Comparison of Approaches, in: N. Koch, P.
Fra-ternali, M. Wirsing (Eds.), Web
Engineering, Vol. 3140 of Lecture Notes in
Computer Science, Springer, 2004, pp. 440-
444.

[14] F.Salim, R. Price, M. Indrawan, S.
Krishnaswamy, Graphical Representation of
XML Schema, in Xuemin Lin, Hongjun Lu,
Yanchun Zhang, Advanced Web Technologies
and Applications, volume 3007 of Lecture
Notes in Computer Science, Springer, 2004,
pp. 234-245

[15] Object Constraint Language Specification v 2.4
OCL.2.4

URL:http://www.omg.org/spec/OCL/2.4/PDF/

[16] R. Al-Kamha, D. W. Embley, and S. W.
Liddle. Representing
Generalization/Specialization in XML Schema.
In EMISA, 2005

[17] David W. Embley, Stephen W. Liddle, and
Reema Al-Kamha. Enterprise Modeling with
Conceptual XML. In Proceedings of the 23rd
International Conference on Conceptual
Modeling (ER2004), pages 150–165,
Shanghai, China, November 2004.

