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ABSTRACT 

 

In this paper three different genetic programming tree representations are used for classification. Two of 

them are employed as direct classifiers while the last one works as feature extractor before applying a 

simple threshold classifier. Each type of representation is discussed with the needed modification required 

for applying the evolutionary operators including tree generation, crossover and mutation. The three GP 

methods are applied to real world five datasets from the UCI machine learning database to verify 

approaches. The performance of the three approaches is compared to conclude the most suitable tree 

representation for feature extraction and classification 
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1. INTRODUCTION  

1.1.   Feature Extraction 

Many theoretical results have been obtained in 

the classification domain. Nonetheless, feature 

extraction retains a key position in the field since 

the performance of a pattern classifier is well-

known to be enhanced by proper preprocessing of 

the raw measurement data – this topic is the main 

focus of this work. Fig. 1 shows a prototypical 

pattern recognition system in which a vector of raw 

measurements is mapped into a decision space. In 

this paper focuses on comparing between using 

Multi-objective Genetic Program (MOGP) as a 

feature extractor and employing the same technique 

of MOGP to directly generate classifiers. 

 

Figure 1. Prototypical Pattern Recognition System. 

 

Designing feature extraction stage of a 

classifier usually requires deep domain-specific 

knowledge. Ideally, it is required to have some 

measure of class separability in the transformed 

decision space to be maximized. Most importantly, 

domain- independent feature extraction 

methodology exists to create or search for good 

feature extractors. 

Often the focus here is on reducing the 

dimensionality of the problem by projecting the 

data down onto a sub-space which captures the 

greatest amount of variability.  Even within the 

constraint of a fixed training set, optimality is hard 

to guarantee with such methods. 

For feature selection, wrappers methods are 

used. Wrapper methods, as illustrated in Figure 2, 

use a search strategy to iteratively navigate in 

feature subset space until a stopping condition is 

met, while evaluation of the subset selection uses 

the feedback obtained from the classifier used in 

order to optimize the performance of the 

classifier. Wrapper methods use cross-validation 

techniques or set performance bounds to validate 

the performance of the classifier. Wrapper methods 

can find the most useful features but are prone to 

over-fitting. 

 

 

 
 

Figure 2. Prototypical Wrapper Feature Selection 

Approach[14]. 
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In the sense that the feature extraction 

preprocessing stage is a transformation or mapping 

from input space to decision space, for a given 

classification problem the mapping which 

maximizes the separability of the classes in 

decision space is investigated. Thus the feature 

extraction can be regarded as finding an optimal 

sequence of operations subject to some criterion 

 

1.2. Genetic programming (GP) 

It’s an evolutionary learning technique that 

offers a great potential for classification. GP is a 

very flexible heuristic technique   that   allows   us   

to   use   complex   pattern representations such as 

trees.  For example, any kind of operation or 

function can be used inside that representation and 

domain knowledge can be used in the learning 

process. 

The  application  of  GP  to  classification  

offers  some interesting  advantages,  the  main  

one  being  its  flexibility, which allows the 

technique to be adapted to the needs of each 

particular   problem.   GP   can   be   employed   to   

construct classifiers using different kinds of 

representations (decision trees, classification rules 

and discriminant functions). GP can be useful not 

only for inducing classifiers, but also for other 

preprocessing and post processing tasks aimed at 

the enhancement of classifiers. 

Indeed, GP has been used before to optimize  

feature extraction and selection [2][3]. Sherrah et 

al. [4] proposed an Evolutionary Pre-Processor 

(EPrep) system which used GP to evolve a good 

feature mapping  by minimizing misclassification 

error. 
 
1.3. Bloat in Genetic Programming 

The chromosomes in a genetic programming 

(GP) population will ‘bloat’ – that is, grow without 

limit without any accompanying improvement in 

fitness. Research on the causes of bloat has been 

recently summarized in [5]. Indeed, Langdon and 

Poli [6, 7] have shown that any variable-length 

representation suffers from bloating. They have 

summarised the three main approaches to control 

bloat in GP: 

•  Limiting the maximum permissible tree depth 

(or size)  to a pre-defined value. 

•  Tailoring the genetic operators. 

•  Employing  parsimony  to  exert  selective  

pressure which favours smaller trees. 

 

In this paper  the  parsimony  pressure 

approach is addressed. It use a multi-objective 

method in which the (strictly) non-commensurable 

objectives of problem-specific error and tree 

complexity are  handled  in  a  Pareto optimisation 

framework [8]. The results from the Pareto 

framework is not a single unique solution but a set 

of equivalent solutions which lie on a Pareto front 

(or surface) in objective space and which delineate 

the fundamental trade- offs in the problem. No 

point on the Pareto front can be modified to 

improve one objective without simultaneously 

degrading   another.   Multi-objective   GP   

(MOGP)   has   a number of advantages: As well 

as controlling bloat very effectively, it does not 

require a pre-determined depth-limit parameter and 

the tree depth is free to adjust to suit the problem at 

hand. 

This  paper  is  organized  as  follows:  a  

generic framework to evolve optimal feature 

extractors with multiple objectives is presented  in 

Section 2.  Section 3 and section 4 represent GP 

implementation and experimental results. 

Comparison with three Genetic programming 

classifiers is also introduced by other researchers is 

presented in Section 5. Conclusion is given on 

Section 6. 

 
2. METHODOLOGY 
 

2.1.   Multiple Objectives 

Within  the  multiobjective  framework,  a two-

dimensional  fitness  vector  of  objectives is used 

comprising: Tree complexity and misclassification 

error as follows: 

2.1.1.   Tree complexity measurement 

As pointed-out above, there is a danger that 

trees evolved by GP will become very large due to 

tree bloat. The   huge trees could produce an 

extremely small error over the training set but a 

very poor error estimated over an independent 

validation set.Broadly, for a given training error, 

the simpler individual is preferred. Thus node 

count in the tree as a straightforward measure of 

tree complexity is used as  one of the fitness  

vector  elements  driving  the  evolution.  Thus  a 

selective pressure that favors small trees is 

imposed, all other things being equal. 

2.1.2.    Misclassification error 

The second element in the fitness vector is the 

conventional one of the fraction of misclassified 

patterns counted over the training set. 
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2.2. Multiple Objectives Genetic Programming 

(MOGP) 

 

In this work MOGP is employed in two ways. 

The first one is to evolve the whole classifier. While 

in the second it is employed to find optimal feature 

extraction for pattern recognition system. Since the 

input pattern is projected to a one- dimensional 

decision space, a simple threshold classifier is used. 

The threshold is adapted as part of the fitness value 

to  give  the  minimum  error.  This means  its tried   

to evolve a feature extractor which maps the 

original pattern space into a new feature space 

where thresholding is able to yield the smallest 

possible misclassification. 

 Kumar and Rockett [9] proposed the Pareto 

Convergence Genetic Algorithm (PCGA) used an 

elitist, steady-state strategy.  In each generation, 

only two individuals are generated and added to the 

population to replace the worst two individuals. The 

ranking mechanism of Fonseca and Fleming [10] 

was used. Roulette wheel selection was employed 

to select two individuals for crossover. Mutation 

was always applied to the results of the crossover 

operation. Their method improved the sampling on 

the Pareto front to ensure convergence of the 

evolution without the need  for  sharing/niching  

techniques with significantly less computational 

effort. 

In this work non-destructive, depth-dependent 

crossover [11] is used in order to avoid the breaking 

of building blocks.. The sub-tree is chosen based on 

its complexity (i.e. the number of nodes) using the 

depth-fair operator . Thus one of the sub-trees at the 

chosen depth will be picked by roulette wheel 

selection, biased in its complexity. Having chosen 

depth, d in a tree, there are N sub- trees, each 

comprising M1, M2,…, MN  nodes, respectively. 

The probability of selecting the i-th sub-tree is 

given 

 

   1                  (1)  

The crossover operation is self-explanatory; in 

mutation, the selected sub-tree is then replaced by a 

new, randomly created sub-tree attached at the 

original mutation point. Only those offspring which 

dominate either of their parents are retained. In this 

way, the algorithm was able to maintain diversity in 

the population and avoid being trapped in local 

minima in the early stages. 

 

3. GENETIC PROGRAMMING 

IMPLEMENTATION 

 

As a basis for comparison with MOGP, three 

model for extractions are used  [15] (Decision trees, 

Rule base and Discrimint Functions). 

 

3.1. Decision tree 

A decision tree contains zero or more internal 

nodes and one or more leaf nodes. All internal 

nodes have three children nodes. All internal nodes 

contain splits, which test the value of an expression  

of  the  attributes(X)  as  show  in figure.4. Arcs 

from an internal node t to its children are labeled 

with distinct outcomes of the test at t.  

 

 
Figure 3. Decision Tree representation. 

 
3.2.   Rule-Based 

Rules are a simple and easily interpretable way to 

representation. The rule has two parts, the 

antecedent and the consequent. The rule antecedent 

contains a combination of conditions for the 

predicting attributes(X). Typically, conditions form 

a conjunction by means of the AND logical 

operators, but in general any logical operator can be 

used to connect elemental conditions. The rule 

consequent contains the value predicted for the 

class. This way, a rule assigns a data instance to the 

class pointed out by the consequent if the values of 

the predicting attributes satisfy the conditions 

expressed in the antecedent; hence a classifier is 

represented as a rule set. 

 
 

Figure 4. Rule Base Representation 
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3.3.  Discriminant functions 

Discriminant functions are mathematical 

expressions in which different kinds of operators 

are applied to the attributes(X) of a data instance 

that must be classified. A single   output   value   is   

computed   from   the   operations performed   on   

the   values   of   the   attributes.   The   value 

computed by the function indicates the class 

predicted. Usually, this is accomplished by means 

of a threshold or set of thresholds. For binary 

classification problems, a single function is enough; 

if the output value is greater than a given threshold,  

the  example  is   assigned  to  a  certain  class, 

otherwise it is assigned to the other one. 

 

 
 

Figure 5. Discriminant Functions representation. 

 

For Each of these representations there are a set 

of constraints should be checked while generating 

trees or sub-trees during the evolution process. 

Also, a set of constraints should be taken in 

consideration while applying cross-over and 

mutations in order to keep the correct representation 

of the tree. 

•  Generation   Decision Tree representation: 

has done with some  rule where the tree 

divided to three  leaf 

Left leaf  : should be constant node 

Middle leaf : Ternary Node or Class Node 

Right leaf: Ternary Node(feature) or Class 

Node 

•  Generation Rule Based representation:   where 

tree divided in   to binary subtree (leafs) where 

each leaf has logical   function , for   last   sub  

tree has comparative  function  with  binary     

terminal  node which  represented  as  feature 

or constant node. 

• Generation   Discriminant   Functions   

representation: where tree divided in  to 

binary subtree (leafs) where each leaf has  

mathematical  function  ,for last sub tree has  

terminal node  which  represented  as  feature 

or constant node. 

• Crossover Decision Tree representation: 

depends  on selected leaf  if 

Left leaf  : the  crossover is performed only 

within corresponding constant node 

Middle leaf : the  crossover is performed only 

within TernaryNode or ClassNode 

Right  leaf:  the crossover  is  performed  

within TernaryNode or ClassNode 

•  Crossover  Rule  Based  representation:The  

crossover that performed within constant node 

should be to corresponding constant   node. 

The crossover that performed within feature 

node should be to corresponding feature node 

author wise performed crossover sub tree to 

sub tree (comparative or logical function node). 

• Crossover Discriminant Functions 

representation:The crossover that performed 

within constant node or feature node  should 

be  to  corresponding constant or feature node. 

The crossover     performed    sub tree should 

be to sub tree (mathematical function node ). 

 

•  Mutation Decision Tree representation: 

depends  on selected leaf  if : 

Left leaf   : the   mutation is performed only 

within corresponding constant node 

Middle leaf : the  mutation is performed only 

within Ternary Node or Class Node 

Right  leaf:  the mutation  is  performed  

within Ternary Node or Class Node 

•  Mutation   Rule Based representation: depends 

on selected leaf  if : 

Right  leaf :if  constant  node the 

mutation  is performed only within  constant 

node. 

Left leaf: if feature node the  mutation is 

performed within  feature Node   

For any leaf   :if comparative or logical 

operation node   the   mutation   is   

performed   only   within comparative or 

logical node. 

• Mutation Discriminant Functions 

representation: The mutation  that  performed  

within  constant  node  or feature node  should 

be  to  constant or feature node. The mutation 

performed sub tree to sub tree (mathematical  

function node ). 

 

4. EXPERIMENTAL RESULTS 

In this section the three techniques 

performance is examined across a representative 

range of two-class classification problems from 

the UCI Machine Learning database [1]. 

The work presented here considers an 
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Features Size and Distributions Name 
9 153 = 87 (float) + 76 (non-float) Glass 
6 345 = 200 (Benign) + 145 (Malignant) BUPA 

30 569 = 357 (Benign) + 212 (Malignant) AUS 
7 532 = 355 + 177 (Diabetic) PID 

10 699 = 458 (Benign) + 241 (Malignant) WBC 

 

Classifiers 

Dataset RB_DF RB_DT DF_DT 

87.4 216.1 1.7 Glass 

32.66 9.73 2.57 BUPA 

30.4 62.71 4.361 PID 

597.4 135.93 2.539935 WBC 

16.9 1.557 3.16 AUS 

 

extensive set of comparisons across five datasets 

with two-class learning problems. For each 

dataset a statistical comparison of the 

classification performance between the three 

MOGP tree representations and a range of 

established classifiers is presented. 
 

4.1.  The UCI Datasets 

The five datasets used in the current work are 

from the UCI Machine Learning database [1]: 
 

Table 1. UCI Dataset 

 

 

 

 

 

4.2.  Ten-Fold Cross Validation 

This estimation will depend on the dataset 

partitioning method applied. TEN-fold cross-

validation is commonly used to obtain a more 

accurate estimate of the empirical risk. In Ten-fold 

cross-validation the dataset is divided into ten 

disjoint subsets. One of the subsets is used as the 

test set and the training dataset is formed using the 

other N-1 subsets. The cross-validation process is 

then repeated ten times and the average of the errors 

estimated over these ten folds is computed. This 

method reduces the sensitivity of the estimation to 

how the data gets divided as eventually every 

example in the dataset is used both for training and 

testing, but this increase the computational effort 

needed to make an evaluation. Another variation of 

this method can be done by splitting the dataset into 

two folds and repeating this for n different splitting. 

For each splitting, one of the datasets is used as a 

training set and the other as the test data. Then the 

experiment is repeated interchanging the roles of the 

datasets. 
 

4.3.  Statistic 

The mean of the test errors for three 

classification algorithms across the five datasets are 

summarized in Table 2. The  counted number of the 

node in the trees and   the calculated average of the 

errors over each test fold of the dataset for every 

classifier is shown. Reassuringly, the MOGP 

algorithms return the lowest mean error for each 

dataset with number of nodes.  Overall results show 

that the Discriminant Functions algorithm are better 

than of the other algorithms. Although this result 

needs to be treated -with some caution to be  sure  

the  statistical  significance  of  these  differences  is 

clear. 

 

Table 2. Mean Error Comparisons Of Classifiers On 

Each Dataset 
 

Dataset 

Classifiers 

RB node DF node DT node 

Glass 0.385 7 0.134 55 0.172 34 

BUPA 0.276 59 0.213 65 0.234 40 

PID 0.265 55 0.190 65 0.211 43 

WBC 0.086 13 0.015 15 0.019 25 

AUS 0.129 33 0.132 22 0.115 25 

 

In order to quantitatively compare statistical 

significance of the cross-validation experiments  the 

Alpaydin  F-statistic  is computed for  the  three  

MOGP  algorithms compared with each other. The 

comparisons are summarized in Table3 where 

MOGP_DF represents superiority over the other 

algorithms. 

 
Table 3. F-Statistic Comparisons Of Classifiers On Each 

Dataset 

 

 

 

 

 

5. COMPARISONS WITH 

INTERPRETATION 

The mean error rates from these earlier studies 

are summarized, in Table 4. Typically, error rates 

were estimated using ten-fold cross-validation. The 

results of Bot & Langdon [6] are the mean validation 

error of the best individual of 30 runs.  Table  shows  

that  MOGP  has  best  result  over  all datasets. 

 
Table 4. Reported Error Rates For Other Evolutionary 

Feature Detection / Classification Algorithm [14] 
 

Dataset Training 
Algorithem Glass BUPA PID WBC 

N/K 0.3007 N/K 0.0281 Muni 
0.48 0.416 0.305 N/K Bot 

0.368 N/K 0.25 N/K Bot & 
Langdon 

0.3361 N/K 0.2359 N/K Krawiec 
N/K 0.308 0.242 0.032 Loveard 
N/K 0.29 0.22 0.03 Lim MIN 

0.2271 0.2644 0.2057 0.02634 MOGP 
 

Although tree size is one of the multiple 

objectives that has been used to suppress tree 

bloat, a number of the trees are not of the 
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absolute minimum size and contain a few 

redundant sub-trees. Figs. 6 – 10 show the trees 

which have been generated by the evolutionary 

algorithms. 

It is clear, however, that these are not 

completely optimal in that the identical 

classification performance could be obtained in 

some cases with slightly smaller trees. 

Nonetheless,  the  work  presented  here  

produces  near- optimal trees which are 

reasonable for a stochastic search method  such  

as  genetic  programming  and  an  advance  on 

previous   work   on   feature   extraction.   In   

practice,   any redundant sub-trees could be easily 

removed by hand from the final solution. 

 

6. CONCLUSION AND FUTURE WORK 

This paper a demonstrate using of multi- 

objective genetic programming (MOGP) to 

evolve an “optimal” feature extractor which 

transforms input patterns into a decision space 

such that class separability is maximized. 

In comparison with a number of other 

representative classifier paradigms, the 

performance of MOGP method turns out to be 

better.   The use of multiple objectives, 

particularly classification error objective has been 

shown to be effective in guiding and speeding the 

optimization. 

The node number objective employed penalizes 

an individual according to its complexity. This 

appears to be essential in order to prevent tree 

bloat as well suppressing over-fitting of the 

training set leading to poor generalization. 

The three MOGP algorithms were applied to 

machine learning datasets from the UCI database. 

The MOGP_DT has less error classification than 

MOGP_RB and it is shown that MOGP_DF has 

better result than others in multi objectives 

technique. 

Finally, developmental GP has the potential to 

contribute to the discovery and exploitation of 

knowledge in databases in significant ways [9]. 

Although only binary classification problems are 

treated in this paper, extension to multiple classes 

is a logical development and is currently 

underway. 
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MOGP_RB MOGP_DF MOGP_DT 

Figure 6. MOGP transformation evolved for the PID dataset 
 

   
MOGP_RB MOGP_DF MOGP_DT 

Figure 7. MOGP transformation evolved for the GLASS dataset 

 

   
MOGP_RB MOGP_DF MOGP_DT 

Figure 8. MOGP transformation evolved for the PUBA dataset 

 

   
MOGP_RB MOGP_DF MOGP_DT 

Figure 9. MOGP transformation evolved for the WBC dataset 

 

 
  

 
MOGP_RB MOGP_DF MOGP_DT 

Figure 10. MOGP transformation evolved for the AUS dataset 

 


