
Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

258

IMPACT OF MULTI-OBJECTIVE GENETIC PROGRAMMING

TREE REPRESENTATIONS ON FEATURE EXTRACTION

AND CLASSIFICATION

KHALED M. BADRAN

E-mail: khaledBadran@hotmail.com

ABSTRACT

In this paper three different genetic programming tree representations are used for classification. Two of

them are employed as direct classifiers while the last one works as feature extractor before applying a

simple threshold classifier. Each type of representation is discussed with the needed modification required

for applying the evolutionary operators including tree generation, crossover and mutation. The three GP

methods are applied to real world five datasets from the UCI machine learning database to verify

approaches. The performance of the three approaches is compared to conclude the most suitable tree

representation for feature extraction and classification

Keywords: Genetic Programming, Feature Extraction, Classification, Tree Representation, Multi-

Objective.

1. INTRODUCTION

1.1. Feature Extraction

Many theoretical results have been obtained in

the classification domain. Nonetheless, feature

extraction retains a key position in the field since

the performance of a pattern classifier is well-

known to be enhanced by proper preprocessing of

the raw measurement data – this topic is the main

focus of this work. Fig. 1 shows a prototypical

pattern recognition system in which a vector of raw

measurements is mapped into a decision space. In

this paper focuses on comparing between using

Multi-objective Genetic Program (MOGP) as a

feature extractor and employing the same technique

of MOGP to directly generate classifiers.

Figure 1. Prototypical Pattern Recognition System.

Designing feature extraction stage of a

classifier usually requires deep domain-specific

knowledge. Ideally, it is required to have some

measure of class separability in the transformed

decision space to be maximized. Most importantly,

domain- independent feature extraction

methodology exists to create or search for good

feature extractors.

Often the focus here is on reducing the

dimensionality of the problem by projecting the

data down onto a sub-space which captures the

greatest amount of variability. Even within the

constraint of a fixed training set, optimality is hard

to guarantee with such methods.

For feature selection, wrappers methods are

used. Wrapper methods, as illustrated in Figure 2,

use a search strategy to iteratively navigate in

feature subset space until a stopping condition is

met, while evaluation of the subset selection uses

the feedback obtained from the classifier used in

order to optimize the performance of the

classifier. Wrapper methods use cross-validation

techniques or set performance bounds to validate

the performance of the classifier. Wrapper methods

can find the most useful features but are prone to

over-fitting.

Figure 2. Prototypical Wrapper Feature Selection

Approach[14].

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

259

In the sense that the feature extraction

preprocessing stage is a transformation or mapping

from input space to decision space, for a given

classification problem the mapping which

maximizes the separability of the classes in

decision space is investigated. Thus the feature

extraction can be regarded as finding an optimal

sequence of operations subject to some criterion

1.2. Genetic programming (GP)

It’s an evolutionary learning technique that

offers a great potential for classification. GP is a

very flexible heuristic technique that allows us

to use complex pattern representations such as

trees. For example, any kind of operation or

function can be used inside that representation and

domain knowledge can be used in the learning

process.

The application of GP to classification

offers some interesting advantages, the main

one being its flexibility, which allows the

technique to be adapted to the needs of each

particular problem. GP can be employed to

construct classifiers using different kinds of

representations (decision trees, classification rules

and discriminant functions). GP can be useful not

only for inducing classifiers, but also for other

preprocessing and post processing tasks aimed at

the enhancement of classifiers.

Indeed, GP has been used before to optimize

feature extraction and selection [2][3]. Sherrah et

al. [4] proposed an Evolutionary Pre-Processor

(EPrep) system which used GP to evolve a good

feature mapping by minimizing misclassification

error.

1.3. Bloat in Genetic Programming

The chromosomes in a genetic programming

(GP) population will ‘bloat’ – that is, grow without

limit without any accompanying improvement in

fitness. Research on the causes of bloat has been

recently summarized in [5]. Indeed, Langdon and

Poli [6, 7] have shown that any variable-length

representation suffers from bloating. They have

summarised the three main approaches to control

bloat in GP:

• Limiting the maximum permissible tree depth

(or size) to a pre-defined value.

• Tailoring the genetic operators.

• Employing parsimony to exert selective

pressure which favours smaller trees.

In this paper the parsimony pressure

approach is addressed. It use a multi-objective

method in which the (strictly) non-commensurable

objectives of problem-specific error and tree

complexity are handled in a Pareto optimisation

framework [8]. The results from the Pareto

framework is not a single unique solution but a set

of equivalent solutions which lie on a Pareto front

(or surface) in objective space and which delineate

the fundamental trade- offs in the problem. No

point on the Pareto front can be modified to

improve one objective without simultaneously

degrading another. Multi-objective GP

(MOGP) has a number of advantages: As well

as controlling bloat very effectively, it does not

require a pre-determined depth-limit parameter and

the tree depth is free to adjust to suit the problem at

hand.

This paper is organized as follows: a

generic framework to evolve optimal feature

extractors with multiple objectives is presented in

Section 2. Section 3 and section 4 represent GP

implementation and experimental results.

Comparison with three Genetic programming

classifiers is also introduced by other researchers is

presented in Section 5. Conclusion is given on

Section 6.

2. METHODOLOGY

2.1. Multiple Objectives

Within the multiobjective framework, a two-

dimensional fitness vector of objectives is used

comprising: Tree complexity and misclassification

error as follows:

2.1.1. Tree complexity measurement

As pointed-out above, there is a danger that

trees evolved by GP will become very large due to

tree bloat. The huge trees could produce an

extremely small error over the training set but a

very poor error estimated over an independent

validation set.Broadly, for a given training error,

the simpler individual is preferred. Thus node

count in the tree as a straightforward measure of

tree complexity is used as one of the fitness

vector elements driving the evolution. Thus a

selective pressure that favors small trees is

imposed, all other things being equal.

2.1.2. Misclassification error

The second element in the fitness vector is the

conventional one of the fraction of misclassified

patterns counted over the training set.

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

260

2.2. Multiple Objectives Genetic Programming

(MOGP)

In this work MOGP is employed in two ways.

The first one is to evolve the whole classifier. While

in the second it is employed to find optimal feature

extraction for pattern recognition system. Since the

input pattern is projected to a one- dimensional

decision space, a simple threshold classifier is used.

The threshold is adapted as part of the fitness value

to give the minimum error. This means its tried

to evolve a feature extractor which maps the

original pattern space into a new feature space

where thresholding is able to yield the smallest

possible misclassification.

 Kumar and Rockett [9] proposed the Pareto

Convergence Genetic Algorithm (PCGA) used an

elitist, steady-state strategy. In each generation,

only two individuals are generated and added to the

population to replace the worst two individuals. The

ranking mechanism of Fonseca and Fleming [10]

was used. Roulette wheel selection was employed

to select two individuals for crossover. Mutation

was always applied to the results of the crossover

operation. Their method improved the sampling on

the Pareto front to ensure convergence of the

evolution without the need for sharing/niching

techniques with significantly less computational

effort.

In this work non-destructive, depth-dependent

crossover [11] is used in order to avoid the breaking

of building blocks.. The sub-tree is chosen based on

its complexity (i.e. the number of nodes) using the

depth-fair operator . Thus one of the sub-trees at the

chosen depth will be picked by roulette wheel

selection, biased in its complexity. Having chosen

depth, d in a tree, there are N sub- trees, each

comprising M1, M2,…, MN nodes, respectively.

The probability of selecting the i-th sub-tree is

given

 1 (1)

The crossover operation is self-explanatory; in

mutation, the selected sub-tree is then replaced by a

new, randomly created sub-tree attached at the

original mutation point. Only those offspring which

dominate either of their parents are retained. In this

way, the algorithm was able to maintain diversity in

the population and avoid being trapped in local

minima in the early stages.

3. GENETIC PROGRAMMING

IMPLEMENTATION

As a basis for comparison with MOGP, three

model for extractions are used [15] (Decision trees,

Rule base and Discrimint Functions).

3.1. Decision tree

A decision tree contains zero or more internal

nodes and one or more leaf nodes. All internal

nodes have three children nodes. All internal nodes

contain splits, which test the value of an expression

of the attributes(X) as show in figure.4. Arcs

from an internal node t to its children are labeled

with distinct outcomes of the test at t.

Figure 3. Decision Tree representation.

3.2. Rule-Based

Rules are a simple and easily interpretable way to

representation. The rule has two parts, the

antecedent and the consequent. The rule antecedent

contains a combination of conditions for the

predicting attributes(X). Typically, conditions form

a conjunction by means of the AND logical

operators, but in general any logical operator can be

used to connect elemental conditions. The rule

consequent contains the value predicted for the

class. This way, a rule assigns a data instance to the

class pointed out by the consequent if the values of

the predicting attributes satisfy the conditions

expressed in the antecedent; hence a classifier is

represented as a rule set.

Figure 4. Rule Base Representation

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

261

3.3. Discriminant functions

Discriminant functions are mathematical

expressions in which different kinds of operators

are applied to the attributes(X) of a data instance

that must be classified. A single output value is

computed from the operations performed on

the values of the attributes. The value

computed by the function indicates the class

predicted. Usually, this is accomplished by means

of a threshold or set of thresholds. For binary

classification problems, a single function is enough;

if the output value is greater than a given threshold,

the example is assigned to a certain class,

otherwise it is assigned to the other one.

Figure 5. Discriminant Functions representation.

For Each of these representations there are a set

of constraints should be checked while generating

trees or sub-trees during the evolution process.

Also, a set of constraints should be taken in

consideration while applying cross-over and

mutations in order to keep the correct representation

of the tree.

• Generation Decision Tree representation:

has done with some rule where the tree

divided to three leaf

Left leaf : should be constant node

Middle leaf : Ternary Node or Class Node

Right leaf: Ternary Node(feature) or Class

Node

• Generation Rule Based representation: where

tree divided in to binary subtree (leafs) where

each leaf has logical function , for last sub

tree has comparative function with binary

terminal node which represented as feature

or constant node.

• Generation Discriminant Functions

representation: where tree divided in to

binary subtree (leafs) where each leaf has

mathematical function ,for last sub tree has

terminal node which represented as feature

or constant node.

• Crossover Decision Tree representation:

depends on selected leaf if

Left leaf : the crossover is performed only

within corresponding constant node

Middle leaf : the crossover is performed only

within TernaryNode or ClassNode

Right leaf: the crossover is performed

within TernaryNode or ClassNode

• Crossover Rule Based representation:The

crossover that performed within constant node

should be to corresponding constant node.

The crossover that performed within feature

node should be to corresponding feature node

author wise performed crossover sub tree to

sub tree (comparative or logical function node).

• Crossover Discriminant Functions

representation:The crossover that performed

within constant node or feature node should

be to corresponding constant or feature node.

The crossover performed sub tree should

be to sub tree (mathematical function node).

• Mutation Decision Tree representation:

depends on selected leaf if :

Left leaf : the mutation is performed only

within corresponding constant node

Middle leaf : the mutation is performed only

within Ternary Node or Class Node

Right leaf: the mutation is performed

within Ternary Node or Class Node

• Mutation Rule Based representation: depends

on selected leaf if :

Right leaf :if constant node the

mutation is performed only within constant

node.

Left leaf: if feature node the mutation is

performed within feature Node

For any leaf :if comparative or logical

operation node the mutation is

performed only within comparative or

logical node.

• Mutation Discriminant Functions

representation: The mutation that performed

within constant node or feature node should

be to constant or feature node. The mutation

performed sub tree to sub tree (mathematical

function node).

4. EXPERIMENTAL RESULTS

In this section the three techniques

performance is examined across a representative

range of two-class classification problems from

the UCI Machine Learning database [1].

The work presented here considers an

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

262

Features Size and Distributions Name
9 153 = 87 (float) + 76 (non-float) Glass
6 345 = 200 (Benign) + 145 (Malignant) BUPA

30 569 = 357 (Benign) + 212 (Malignant) AUS
7 532 = 355 + 177 (Diabetic) PID

10 699 = 458 (Benign) + 241 (Malignant) WBC

Classifiers

Dataset RB_DF RB_DT DF_DT

87.4 216.1 1.7 Glass

32.66 9.73 2.57 BUPA

30.4 62.71 4.361 PID

597.4 135.93 2.539935 WBC

16.9 1.557 3.16 AUS

extensive set of comparisons across five datasets

with two-class learning problems. For each

dataset a statistical comparison of the

classification performance between the three

MOGP tree representations and a range of

established classifiers is presented.

4.1. The UCI Datasets

The five datasets used in the current work are

from the UCI Machine Learning database [1]:

Table 1. UCI Dataset

4.2. Ten-Fold Cross Validation

This estimation will depend on the dataset

partitioning method applied. TEN-fold cross-

validation is commonly used to obtain a more

accurate estimate of the empirical risk. In Ten-fold

cross-validation the dataset is divided into ten

disjoint subsets. One of the subsets is used as the

test set and the training dataset is formed using the

other N-1 subsets. The cross-validation process is

then repeated ten times and the average of the errors

estimated over these ten folds is computed. This

method reduces the sensitivity of the estimation to

how the data gets divided as eventually every

example in the dataset is used both for training and

testing, but this increase the computational effort

needed to make an evaluation. Another variation of

this method can be done by splitting the dataset into

two folds and repeating this for n different splitting.

For each splitting, one of the datasets is used as a

training set and the other as the test data. Then the

experiment is repeated interchanging the roles of the

datasets.

4.3. Statistic

The mean of the test errors for three

classification algorithms across the five datasets are

summarized in Table 2. The counted number of the

node in the trees and the calculated average of the

errors over each test fold of the dataset for every

classifier is shown. Reassuringly, the MOGP

algorithms return the lowest mean error for each

dataset with number of nodes. Overall results show

that the Discriminant Functions algorithm are better

than of the other algorithms. Although this result

needs to be treated -with some caution to be sure

the statistical significance of these differences is

clear.

Table 2. Mean Error Comparisons Of Classifiers On

Each Dataset

Dataset

Classifiers

RB node DF node DT node

Glass 0.385 7 0.134 55 0.172 34

BUPA 0.276 59 0.213 65 0.234 40

PID 0.265 55 0.190 65 0.211 43

WBC 0.086 13 0.015 15 0.019 25

AUS 0.129 33 0.132 22 0.115 25

In order to quantitatively compare statistical

significance of the cross-validation experiments the

Alpaydin F-statistic is computed for the three

MOGP algorithms compared with each other. The

comparisons are summarized in Table3 where

MOGP_DF represents superiority over the other

algorithms.

Table 3. F-Statistic Comparisons Of Classifiers On Each

Dataset

5. COMPARISONS WITH

INTERPRETATION

The mean error rates from these earlier studies

are summarized, in Table 4. Typically, error rates

were estimated using ten-fold cross-validation. The

results of Bot & Langdon [6] are the mean validation

error of the best individual of 30 runs. Table shows

that MOGP has best result over all datasets.

Table 4. Reported Error Rates For Other Evolutionary

Feature Detection / Classification Algorithm [14]

Dataset Training
Algorithem Glass BUPA PID WBC

N/K 0.3007 N/K 0.0281 Muni
0.48 0.416 0.305 N/K Bot

0.368 N/K 0.25 N/K Bot &
Langdon

0.3361 N/K 0.2359 N/K Krawiec
N/K 0.308 0.242 0.032 Loveard
N/K 0.29 0.22 0.03 Lim MIN

0.2271 0.2644 0.2057 0.02634 MOGP

Although tree size is one of the multiple

objectives that has been used to suppress tree

bloat, a number of the trees are not of the

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

263

absolute minimum size and contain a few

redundant sub-trees. Figs. 6 – 10 show the trees

which have been generated by the evolutionary

algorithms.

It is clear, however, that these are not

completely optimal in that the identical

classification performance could be obtained in

some cases with slightly smaller trees.

Nonetheless, the work presented here

produces near- optimal trees which are

reasonable for a stochastic search method such

as genetic programming and an advance on

previous work on feature extraction. In

practice, any redundant sub-trees could be easily

removed by hand from the final solution.

6. CONCLUSION AND FUTURE WORK

This paper a demonstrate using of multi-

objective genetic programming (MOGP) to

evolve an “optimal” feature extractor which

transforms input patterns into a decision space

such that class separability is maximized.

In comparison with a number of other

representative classifier paradigms, the

performance of MOGP method turns out to be

better. The use of multiple objectives,

particularly classification error objective has been

shown to be effective in guiding and speeding the

optimization.

The node number objective employed penalizes

an individual according to its complexity. This

appears to be essential in order to prevent tree

bloat as well suppressing over-fitting of the

training set leading to poor generalization.

The three MOGP algorithms were applied to

machine learning datasets from the UCI database.

The MOGP_DT has less error classification than

MOGP_RB and it is shown that MOGP_DF has

better result than others in multi objectives

technique.

Finally, developmental GP has the potential to

contribute to the discovery and exploitation of

knowledge in databases in significant ways [9].

Although only binary classification problems are

treated in this paper, extension to multiple classes

is a logical development and is currently

underway.

REFERENCES

[1] C.L.Blake and C.J.Merz, UCI Repository of

machine learning database Irvine, CA:

University of California, Department of

Information and Computer Science (1998)

.[http://www.ics.uci.edu/~mlearn/MLReposit

ory.html].

[2] Z.J.Huang,M.Pei, E.Goodman, Y.Huang, and

L.Gaoping. “Genetic algorithm optimized

feature transformation– A comparison with

different classifiers,” In GECCO 2003,

LNCS 2724, June. 2003, pp.2121–2133.

[3] M. Kotani, M. Nakai, and K. Akazawa, “Feature

extraction using evolutionary computation,”

In Proceedings of the Congress of

Evolutionary Computation, IEEE Press, July

1999, pp. 1230-1236.

 [4] J.R. Sherrah, R.E. Bogner, and A. Bouzerdoum,

“The evolutionary pre-processor: Automatic

feature extraction for supervised

classification using genetic programming,”

Genetic Programming 1997 : Proceedings of

the Second Annual Conference. Stanford

University, CA, USA. pp. 304-312, 1997

[5] W. B. Langdon, "The Evolution of Size in

Variable Length Representations " IEEE

International Conference on Evolutionary

Computation pp. 633-638, 1998.

[6] M.C.J. Bot and W.B. Langdon, “Application of

genetic programming to induction of linear

classification trees,” in Proceedings of the

Eleventh Belgium/Netherlands Conference

on Artificial Intelligence (BNAIC99), 1999,

pp.107-114.

[7] W. B. Langdon and R. Poli, "Fitness Causes

Bloat: Mutation " 1st European Workshop on

Genetic Programming, Paris, pp. 37-48,

1998B.

[8] R. Poli, W. B. Langdon, and N. F. McPhee, A

Field Guide to Genetic Programming:

http://www.gp-field-guide.org.uk, 2008.

[9] R. Kumar and P. I. Rockett, "Improved

Sampling of the Pareto-Front in

Multiobjective Genetic Optimizations by

Steady-State Evolution: A Pareto Converging

Genetic Algorithm," Evolutionary

Computation, vol. 10, no. 3, pp. 283-314,

2002.

[10] C. M. Fonseca and P. J. Fleming, "Genetic

Algorithms for Multiobjective Optimization:

Formulation, Discussion and

Generalization," 5th International Conference

of Genetic Algorithms, San Mateo, CA, pp.

416-423, 1993.

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

264

[11] T. Helmuth, And L. Spector , "Genetic

programming Theory and Practice ", New

York: Springer ,2012.

 [12] Y. Zhang and P. I. Rockett, "Edge Detector

Evolution Using Multidimensional

Multiobjective Genetic Programming,",

University of Sheffield, Sheffield, UK

Technical Report No. VIE 2006/003,2006.

[13] Khaled Badran, “Multi-Objective

Programming with an Application to

Intrusion Detection in Computer,” PHD

thesis , University of Sheffield, June 2009.

[14] P. Espejo, S. Ventura and F. Herrera, “Survey

On The Application Of Genetic

Programming To Classification,” IEEE

Transaction on System, MAN, and

Cybernetics VOL. 40, No.2, March 2010.

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

265

MOGP_RB MOGP_DF MOGP_DT

Figure 6. MOGP transformation evolved for the PID dataset

MOGP_RB MOGP_DF MOGP_DT

Figure 7. MOGP transformation evolved for the GLASS dataset

MOGP_RB MOGP_DF MOGP_DT

Figure 8. MOGP transformation evolved for the PUBA dataset

MOGP_RB MOGP_DF MOGP_DT

Figure 9. MOGP transformation evolved for the WBC dataset

MOGP_RB MOGP_DF MOGP_DT

Figure 10. MOGP transformation evolved for the AUS dataset

