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ABSTRACT 

 

The computational power of a Graphics Processing Unit (GPU), relative to a single CPU, presents a 

promising alternative to write parallel codes in an efficient and economical way. Differential Evolution 

(DE) algorithm is a global optimization based on bio-inspired heuristic. DE has a good performance, low 

computational complexity and need few parameters. This article presents parallel implementation of this 

population-based heuristic, implemented on a NVIDIA GPU device with multi-thread support and using 

CUDA as the model of parallel programming for these case. Our goal is to give some insights about GPU’s 

parallel programming by a simple and almost straightforward parallel code, and compare the performance 

of DE algorithm running on a multithreading GPU. This work shows that with a parallel code and a 

NVIDIA GPU not only the execution time is reduced but also the convergence behavior to the global 

optimum may be changed in a significant manner with respect the original sequential code. 

Keywords: Multithreading, Parallel Programming, GPU, Differential Evolution And Fine Grain. 
 

1. INTRODUCTION  
 

Today, the idea of exploiting the computational 

power available in the PC’s graphic cards in order 

to solve general purpose problems [1] and the 

general-purpose GPU (GPGPU) processing concept 

are current topics. Both manufacturers and 

developers have considered this new computing 

application as a promising research area, 

considering the wide range of possible applications 

that can take advantage of the parallelism available 

in the current low price GPUs. 

Since parallelization of some bio-inspired 

algorithms is viewed as a natural consequence of 

their population-based feature, recently it was 

shown in [2] that it is possible to reach a significant 

speedup for Particle Swarm Optimization (PSO) 

algorithm when it is parallelized and executed on a 

multithreading GPU, after a simple and almost 

straightforward parallel programming style 

supported by the CUDA programming tool [3]. In 

[2] the authors showed that the best performance 

was reached when the execution of the whole PSO 

algorithm was delegated to the GPU following an 

approach similar to that known as diffusion within 

the parallel programming community [4]. In that 

work the authors called their parallel 

implementation embedded because in the diffusion 

approach there is one processor per individual but 

in the proposed model there is one thread instead of 

one processor per individual. 

Bio-inspired techniques such as Evolutionary 

Computing [5], Ant Colony Optimization [6] and 

Differential Evolution (DE) [3] were proposed as 

alternatives to solve difficult optimization problems 

obtaining acceptable solutions in a reasonable time. 

Since these techniques work with a population of 

individuals, they simultaneously test different 

solutions based on specific rules and underlying 

stochastic processes. These heuristic techniques 

have been applied in practically all fields of 

knowledge, obtaining a good performance, even 

running on common personal computers. 

In this paper a parallel version DE algorithm for 

a multi-threading GPU is presented and the 

performance of such parallelized version are 

compared and reported as a continuation of the 

earlier research work in [2]. The DE algorithm was 

chosen since it is very popular for optimization 

purposes and new versions are emerging 

continuously as microDE [7] [8], 
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Adaptive DE [9] and DE with Thresheld 

Convergence [10] among many others. The 

computational power provided by the GPU results 

in a natural speedup but shows that, additionally, 

the proposed parallel implantation have different 

behavior, compared to sequential one, as a result of 

the specific way in which the random numbers are 

generated within GPU. 

This work is organized as follows. Section II 

presents a brief overview of related work. Section 

III presents an introduction to GPU architecture. 

Section IV offers a brief description of the DE 

algorithm. Section V presents practical 

considerations of our parallel implementation. 

Section VI reports experimental results. Finally, in 

Section VII we draw our conclusions.  

2. RELATED WORK 

Parallel programming usually involves 

migration of an existing sequential code towards 

concurrent, parallel or distributed architectures. 

Concerning population-based algorithms (like 

Genetic algorithms, PSO, DE, etc.), once they were 

presented, there were attempts to take advantage of 

its natural parallelism, or example, the works of 

Cantú-Paz [4] and J.F. Schutte [11]. In specialized 

literature we can find proposals based on traditional 

concurrent processes, running in just one processor, 

but most parallel implementations are usually 

designed to be executed in distributed systems (i.e. 

several processors in a network). In all these 

distributed systems, the communication overhead 

among different processors is a factor that consider 

ably affects the performance of the parallel 

implementation. So far, interest in parallelization of 

population-based algorithms is still topical, which 

is shown by some recent research works that 

propose diverse parallel implementations of these 

kind of bio-inspired heuristics in order to solve very 

complex optimization problems (see [12] and [5]). 

 

Regarding parallelization of population-

based algorithms on GPUs, the first proposals were 

focused on Genetic Programming (see [13]) and in 

some cases the resulting experiences were applied 

later to parallelization of other population-based 

algorithms, like in [14]. Recently, in [2] the authors 

proposed exploiting the advantages of a NVIDIA 

multithreading GPU and CUDA programming tool 

for parallelization of a PSO algorithm in a simple 

and straightforward way. This work presents a first 

empirical study comparing sequential DE algorithm 

against they parallel variant running on a 

multithreading GPU. 

 

3.  INTRODUCTION TO GPUS AND 
MULTITHREADING 
ARCHITECTURE 

 The modern GPUs have their foundation 

on the vectorial processor architecture, which 

supports the execution of mathematical operations 

on multiple data in a simultaneous way. In contrast, 

the original CPU processors cannot handle more 

than one operation at the same time. Originally, the 

vectorial processors were commonly used in 

scientific computers [15], but later they were 

displaced by multi-nucleus architectures. 

Nevertheless, the vectorial processors were not 

completely eliminated, since many computer 

graphics architectures and the modern GPUs are 

essentially inspired by them. 

3.1 CUDA architecture 

CUDA programming tool is modeled by a single 

instruction multiple thread (SIMT) approach where 

multiple threads are executed on many data 

elements. CUDA allows programmers to write 

parallel code using standard C language with 

NVIDIA extensions. CUDA organizes parallelism 

in a hierarchal system of three levels: grid, block, 

and thread. The process begins when the host 

(CPU) invokes a GPU device function called 

kernel, then a grid of multiple thread blocks is 

created in order to be distributed to available 

multiprocessors. CUDA programs launch parallel 

kernels with the following extend function-call 

syntax: 

kernel<<<dimGrid,dimBlock>>> (parameter list); 

where dimGrid and dimBlock are specialized 

parameters that specify the dimensions of the 

parallel processing grid, in blocks, and the 

dimensions of the blocks, in threads, respectively. 

During kernel execution, threads have access to 

five types of GPU memories, depending on a 

defined hierarchy or access levels (see Fig. 1): 

• Global memory, a read/write memory located on 

GPU board. 

• Constant memory, a read cached memory located 

on GPU board. 

• Local memory, a per-thread read/write memory 

located  on GPU board. 

• Shared memory, a per-block read/write memory 

located on GPU chip. 

• Register memory, the fastest per-thread read/write 

memory located on GPU chip. 



Journal of Theoretical and Applied Information Technology 
 20

th
 April 2016. Vol.86. No.2 

© 2005 - 2016 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 

186 

 

Fig. 1. Memory Hierarchy Of NVIDIA GPU [3] 

Shared memory and registers are the fastest but 

limited in size because they are on-chip memory. 

On the other hand, device memory (Local, Global 

and Constant are on-board memory) are large but 

are accessed with high latency compared with on-

chip memory. Since the multiprocessor executes 

threads in 32 parallel thread groups, called warps, 

the global memory can be efficiently accessed by 

threads in half-warp by simultaneous memory 

read/write coalesced into a single memory 

transaction of 32, 64, or 128 bytes [3]. 

 

4. OVERVIEW OF DIFFERENTIAL  
EVOLUTION ALGORITHM 

DE algorithm is a population-based algorithm that 

have attracted the attention of many researchers. 

Although DE general structure is very similar to 

other population based algorithms(initialization, 

fitness evaluation, comparison and updating 

blocks), DE uses a unique rules for offspring 

generation, comparison and updating. In a general 

sense in DE strategy the individuals form teams of 

just three individuals in order to create a new 

individual (using a kind of recombination and 

mutations operators) that tries to improve the 

current population’s best individual. From the No 

Free Lunch Theorem [16] we know that using a 

limited set of benchmark functions does not 

guarantee that an algorithm that performs well on 

them will be well comported in a different set of 

problems. In fact it is known that each heuristic is 

competitive in specific kinds of problems. So our 

goal is to give some insights about DE algorithm 

exploit potential regards the GPU to potentiality 

reduce the convergence time, based on the type of 

problem and the dependence of execution time as a 

function of the individuals or iterations number. 

 

4.1. Differential Evolution Algorithm (DE) 

 The main idea emerged when Price and Storm [17] 

proposed to use vector differences to disturb 

population vectors to fit  parameters for Chevichev 

polynomials. Differential Evolution  (DE) is a bio-

inspired optimization heuristic and population-

based algorithm that uses mutation, crossover, and 

selection operators, to evolve individuals. DE basic 

idea relies on generation of test and trial vectors. In 

DE is found a vector: 

                 xi,G = 0, 1, 2, ..., Np                        (1) 

 as a tentative solution to the problem. Where Np 

does not change during the algorithm execution. 

The population is constructed with all xi,G vectors 

from 1 to n: 

      PG = {x(1,G), ...x(n,G)}       n ∈ [1, Np]         (2) 

Storn and Price highlighted variants for the DE 

algorithm. 

 The different schemes for naming DE variants, 

DE/x/y/z where: 

 1) DE denotes a Differential Evolution Algorithm. 

 2) x is the mechanism to select a vector Xr1 . 

 3) y is the number of weighted difference vectors F 

(Xr2− Xr3 ) used to perturb Xr1. 

 4) z is the crossover scheme. 

For this work it uses DE/rand/1/bin, this refers to a 

Differential Evolution with a random selected 

vector (rand) using one weighted difference vector 

and a binomial crossover scheme. The crossover 

operator works by mixing components of the 

current and mutated elements to construct an 

offspring. 

DE has two main crossover variants, binomial and 

exponential. DE can have different mutation 

probabilities depending of the crossover variant 

implemented; this will be reflected on the DE 

behavior [18]. 
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DE population evolves by using three operators: 

mutation, crossover and selection. 

 The mutation operator used was as follows: 

        vG = xr0,G + F × (xr1 ,G − xr2,G),                (3) 

with r0, r1 , r2 ∈ [1, Np],        r0 = r1 = r2 

were r0, r1, r2 are random selected individuals, and 

r2 is used for the base vector xr2,G. F is a used as a 

factor that controls the difference between vectors. 

This means that for each xi,G in the population, a 

noisy vector v is generated. 

 The crossover operator is applied on the noisy 

vector vG and the population vectors, obtaining a 

trial vector ui,G , for i ∈ [1, Np]. The vector 

            u = (u0 , u1, ..., uD−1 )                                 

(4) 

 with    

where CR ∈ [0, 1] is a crossover constant for the 

new vector ui,G generation; j = 1, 2, ..., n; Rj is a 

random number of a uniform random number 

generator in [0,1]. Samples were renewed for every 

component of the trial vector v, while rk ∈  [1, Np] 

is the random uniform individual index, and xi,G ∈ 

[1, Np] is a population selected individual. 

 In the selection step, the trial vector ui,G is 

compared with the actual xi,G selected parent. The 

one with the best fitness passes to the next 

generation, see Eq. 6: 

 From Eq. 3 can be seen that, in order to allow the 

application of the mutation operator, a DE 

algorithm must have at least 4 individuals. Finally, 

it is important to remark that for different kinds of 

problems, in order to obtain better results, it is 

convenient to have specific and fixed algorithm’s 

parameters [19]. 

 5. PARALLEL IMPLEMENTATION WITH 
CUDA 

Concerning parallelization models for population-

based algorithms, the parallel classification 

suggested for Evolutionary Algorithms in [20] as 

global approach, migratory approach,and diffusion 

approach was firstly considered as starting point 

reference at the beginning of the research [2]. In 

that work was shown that a convenient and 

straightforward way for parallelization of 

population-based algorithms, in a multi-threading 

GPU, is a kind of diffusion implementation where 

there is a GPU thread by each individual, in such a 

way that single individual’s fitness evaluation and 

individual’s update are executed by a single GPU 

thread while the comparisons among the 

individuals are carried out within GPU after a 

convenient threads synchronization. Such 

implementation is called Embedded by the authors, 

since most of functional blocks, except 

initialization one, are delegated to GPU. Thus, 

embedded approach was chosen as programming 

model for the parallel implementation of DE 

algorithm on the NVIDIA GeForce 8600GT GPU. 

 DE heuristic described in Algorithm 1 were 

parallelized by mean of a programming strategy 

that consists in the creation of one thread for each 

individual and a kernel call in order to execute the 

code’s body of a given population-based 

 

Fig. 2. Structure Of DE Sequential Algorithm 

 

algorithm. Thus, while in the sequential code each 

particle movement is updated particle by particle, 



Journal of Theoretical and Applied Information Technology 
 20

th
 April 2016. Vol.86. No.2 

© 2005 - 2016 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 

188 

 

within GPU all particles updating is executed in a 

concurrent way. CUDA programming tool allows 

programmer to launch a kernel and creating a block 

of independent threads that represent the population 

and individuals, respectively. Specifically, a CUDA 

program includes the following steps: 

1) Allocate memory on the GPU device. 

2) Copy data from host (CPU) into GPU 

memory. 

3) Host invokes kernel function. 

4) GPU executes the code. 

5) Copy the output results back from GPU 

memory into host memory. 

 The following functional blocks can be observed in 

such metaheuristic: 

• Population initialization. It initializes 

population’s individuals in a random form. 

 •     Fitness function evaluation. 

 •   Comparison. It determines if an individual 

has better fitness that the best registered. 

 •   Updating. Every individual updates its 

fitness following the specific algorithm rules. 

 Fig. 3 Depicts The General Structure Of Sequential DE 

Algorithm. 

 Intentionally, in order to illustrate the 

straightforward parallelization of the code, the 

sequential functional blocks have been reorganized 

highlighting the loops that are in terms of the 

individuals number. Note that in the sequential 

implementation (see Fig. 2) all the functional 

blocks are necessarily executed on the host 

processor. By contrast, in our parallel 

implementation, called embedded, only the 

initialization module remains running on the host 

processor (see Fig. 3), since the kernel callis 

associated with the whole optimizing process that 

include fitness evaluation, comparison, and 

updating modules, all of them running on the GPU 

by mean of multiple threads (one by each 

individual), until a termination condition is reached. 

Concerning the initialization module, the 

initialization of each of the individual’s seeds (one 

seed per thread), used for generation of random 

numbers, is carried out on the host and remained 

out of the GPU. The above condition guarantees a 

good quality generation of random numbers into 

GPU for each thread and results, as is shown in the 

experimental results, in a different convergence 

behavior relative to the sequential algorithms. At 

this point, we must remark that the generation of 

random numbers was implemented in a different 

way for sequential and parallel codes, because it 

was particularly difficult to generate different 

random numbers within GPU when a single seed is 

used. Then, sequential codes kept the traditional 

way to generate random numbers based on a single 

seed, while the parallel codes used too many seeds 

as individuals in population as will be described 

further. 

In Fig. 3  we can see that the 

device_xx_eval_comp_upd<<>>() kernel is invoked, where 

xx can be DE, depending on the implemented 

algorithm. For example, for our DE parallel 

implementation, firstly we declare an application 

Class that represents DE population. Then the 

principal optimization function is defined. 

 As is showed, the host can invoke the kernel 

function by mean of the wrapping function 

wrap_GPU_DE_Optimization(), that is defined 

within a CUDA file (in our case 

pde_emb_kernel.cu). 

 The kernel function is defined in the same CUDA 

file. Note that this code is parallelized in multiple 

threads, as many as individuals, which are 

distinguished by mean of a thread’sunique ID 

defined by blockId and threadId global structures 

assigned at runtime by the system [3]. In this code 

the fitness evaluation process is directly related to 

the objective function evaluation, for example for 

Generalized Griewank’s (F03). 

We must remark some practical considerations that 

should be taken into account to achieve functional 

implementation in parallelization of population-

based algorithms on a multi-threading GPU: 

 • Overhead. The GPU presents an overhead due to 

latency in memory transferences between the host 

and GPU device. Because these transferences are 
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relatively slow, any parallel implementation on a 

GPU must minimize their employment. 

 • Synchronization. Before any decision is taken, 

for example during the comparison and updating 

process, all the running threads must be 

synchronized in that point in order to obtain reliable 

information. Since in population based heuristics 

the individuals share information. 

• Contention. This problem may occur if global 

variables are simultaneously revised by several 

threads. Appropriate precautions must be 

incorporated to deal with this problem. Specifically 

in the DE algorithm, this situation happens with the 

variable that contains the index to the global best. 

• Generation of random numbers. This process 

may become a problem if the random numbers are 

generated within the GPU without an adequate 

strategy for the initialization of the seeds. Any call 

to the rand() function running on the GPU must 

generate different numbers for each thread and in 

any call. If the above condition is not provided, it 

could result in a no converging algorithm because 

of the poor diversity. In our parallel implementation 

one seed per individual (i.e. one seed per thread) is 

created and initialized by the host, and later each 

thread itself generates random number and updates 

its seed by mean (defined in pde_emb_kernel.cu, in 

our case file) but updates the seed after each call. 

6. EXPERIMENTS AND RESULTS 

The experiments were conduced on a PC with 

processor Intel Core Duo with Linux operating 

system, which is called host processor. The GPU is 

a graphic card NVIDIA GeForce 8600GT, with 256 

Mbytes of work memory and 4 multiprocessors, 

each one integrated by 8 cores, which represents a 

total of 32 processing cores. These processing cores 

were programmed by means of the CUDA 

environment that allowed us to write parallel code 

fort he NVIDIA GPU in an almost straightforward 

way, as was described in the above section. 

6.1 Experimental procedure 

 The goal of our experiments is assessing the 

performance of our parallel implementation for DE 

, comparing it against the sequential DE version. 

The performance of DE algorithm was measured 

for a set of four well-known benchmark functions 

[17], varying both iterations and individuals 

number during the optimization of each objective 

function. Four multimodal functions were selected 

since they present significant optimization 

complexity [15]: 

 

All of these objective functions are multimodal, but 

F01 and F03 are separable functions while F02 and 

F04 are non separable ones, understanding that 

separable functions can be written as linear 

combinations of functions of individual variables. 

 The following two experiments were carried out to 

measure the performance of the parallel 

implementation: 

 •Experiment 1. For DE parallel implementation, 

performance measurements varying the iterations 

number. While the iterations number was variable 

(1000 to 31000, in steps of 2000 iterations), and the 

individuals were fixed to 128. The goal of this 

experiment is to compare the convergence curve 

and consumed time of the parallel algorithm against 

the sequential one in terms of the iterations number. 

• Experiment 2. For DE parallel implementation, 

performance measurements varying the individuals 

number. While the individuals number was variable 

(64, 128 to 1024, in steps of 128 individuals), and 

the iterations were fixed to 15000. The goal of this 

experiment is to compare the convergence curve 



Journal of Theoretical and Applied Information Technology 
 20

th
 April 2016. Vol.86. No.2 

© 2005 - 2016 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 

190 

 

and consumed time of the parallel algorithm against 

the sequential version in terms of the individuals 

number. Note that in this experiment, individuals 

number was increased in multiples of 64, which 

results in the fact that our parallel implementations 

one in thread is created by each individual and 

because NVIDIA recommends the construction of 

threads blocks with size been multiple of 64, in 

order to better exploit the GPU resources [3]. 

For Algorithm 1, a DE/rand/1/bin algorithm was 

selected, parameter F was fixed at 0.6 for all the 

tested functions, while parameter CR was fixed 

depending on the function, as is recommended in 

[17]: 0.9 for F01 and F03 (non separable functions), 

but 0.0 for F02 and F04 (separable functions). 

 Each experiment was repeated 30 times for each 

benchmark function. Thus the average solution 

(specifically, the function valuation), its standard 

deviation, and the averaged consumed time in 

seconds was registered for each of the tested 

functions. 

 

6.2 Performance metrics for parallel processing 

Traditionally, to assess the performance of parallel 

implementations, the following metrics are defined: 

• Computational cost and 

• Speedup. 

Computational cost C is defined as the processing 

time (in seconds) that a given algorithm consumes. 

Then computational throughput T is defined as the 

inverse of the computational cost: 

         T =  1/C 

Speedup S measures the reached execution time 

improvement and express how fast the parallel 

implementation is, compared with the 

implementation of reference: 

         S=  Ttarg / Tref 

where Ttarg is the throughput of parallel 

implementation under study, and Tref is the 

throughput of the sequential implementation in our 

case. 

6.3 Experimental results 

Because the goal is to compare the performance of 

DE parallel implementations running on the GPU 

the experimental results were registered for both 

algorithms (sequential and parallel) and for each 

tested function. In this section the observed 

behaviors for DE implementation, after varying 

iterations and individuals number, are commented. 

Since it is well known that the convergence quality 

of a given population-based algorithm, during an 

optimization process, typically is very sensitive to 

its specific parameters (either CR and F for DE) 

and on the problem itself (i.e. objective function), 

determining were DE algorithm has a better 

convergence for each kind of problem is out of the 

scope of this work. Regardless DE convergence 

respect to a particular function, it is more 

interesting in determinate the effect of code 

parallelization itself and also the effect of varying 

individuals and iterations number on both the cost 

(i.e. consumed time) and the general shape of 

convergence curve. 

All tested functions have an optimum value at zero 

except for F04. In order to have comparable plots, 

the plot of F04 was adjusted by just adding the 

optimum value (12569.4866 with 30 dimensions) to 

show a convergence curve referred to zero value. 

6.3.1 Results of experiment 1: Experimental 

results varying iterations number, fixing individuals 

to 128, are plotted in Figures 4 to 9. In Fig. 4 we 

can see that, during F01 optimization, sequential 

(abbreviated as seq.) Parallel implementation of DE 

algorithm (emb. as short for embedded) has the best 

convergence compared with sequential one. The 

parallel DE algorithm converge first to the optimum 

around 3000 iterations, followed by sequential DE. 

 

Fig. 4. Convergence For F01 Optimization Fixing 

Individuals To 128 And Varying Iterations 

During F02 optimization, parallel implementation 

of DE algorithm has the best convergence, see Fig. 

5. For this case, sequential implementation have a 

worse convergence compared with the parallel one. 
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Fig. 5. Convergence For F02 Optimization Fixing 

Individuals To 128 And Varying Iterations 

In Fig. 6 we can see that, during F03 optimization, 

parallel implementation of DE were trapped in a 

better local optimum than sequential 

implementation that is trapped in local optimums 

far from the global optimum.   

Fig. 6. Convergence For F03 Optimization Fixing 

Individuals To 128 And Varying Iterations 

In Fig. 7 we can see that, during F04 optimization, 

parallel implementation of DE algorithm is trapped 

in a local optimum closer to the global optimum 

compared with the other sequential one, that are 

trapped in local optimums far from the global one. 

Specifically, F04 proved to be a hard optimization 

problem for all tested algorithms. 

Fig. 7. Convergence For F04 Optimization Fixing 

Individuals To 128 And Varying Iterations 

Concerning consumed time and reached speedup 

varying the iterations number, the experimental 

results are very similar for all the tested functions. 

For example, in Fig. 8 and Fig. 9 we can see the 

consumed time and speedup for F03 optimization. 

Fig. 8. Cost For F03 Optimization Fixing Individuals To 

128 And Varying Iterations 

Fig. 9. Speedup For F03 Optimization Fixing Individuals 

To 128 And Varying Iterations 

We can see a natural speedup introduced by the 

GPU that is almost invariant to variations in 

iterations number. The reached speedups with 128 

individuals are very modest (2 for emb. DE), firstly 

because we fixed the population to allow value of 

128 (it was observed that, in the proposed parallel 

implementations, the GPU improves the speedup 

when increasing the individuals number [2]) and, 

secondly, because in the proposed implementations 

are not exploited shared memory, coalesced 

memory instructions neither parallelizing arithmetic 

operations. 

 

6.3.2 Results of experiment 2: Experimental 

results varying individuals number and fixing 

iterations to 15000 (after observing the 

convergence curves of Experiment 1 and observing 

that 15000 iterations gives the opportunity to reach 

a stable solution, either local or global optimum) 

are plotted in Figures 10 to 15. In Fig. 10, again, we 
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can see that during F01 optimization parallel DE 

has the best convergence. On the other hand, 

sequential DE algorithm show an impoverishment 

as individuals are increased. In this case it is very 

interesting to note the opposite behaviors of parallel 

DE algorithm. 

Fig. 10. Convergence For F01 Optimization Fixing 

Iterations To 15000 And Varying Individuals 

In Fig. 11 again we can see that, during F02 

optimization, parallel implementation of DE 

algorithm has the best convergence. 

In this case, also sequential implementation has a 

worse convergence compared with the parallel one, 

but sequential DE has the slowest convergence. In 

Fig. 12 we can see that, during F03 optimization, 

parallel implementation of DE algorithm is trapped 

in a better local optimum than sequential 

implementation that is trapped in local optimums 

far from the global optimum. In Fig. 13 again we 

can note that, during F04 optimization, parallel 

implementation of DE algorithm is trapped in a 

local optimum closer to the global optimum 

compared with the other sequential and parallel 

ones, that are trapped in local optimums far from 

the global one. 

Fig. 11. Convergence For F02 Optimization Fixing 

Iterations To 15000 And Varying Individuals 

Fig. 12. Convergence For F03 Optimization Fixing 

Iterations To 15000 And Varying Individuals 

 

Fig. 13. Convergence For F04 Optimization Fixing 

Iterations To 15000 And Varying Individuals 

Concerning consumed time and reached speedup 

varying the individuals number, the experimental 

results are very similar for all the tested functions. 

For example, in Fig. 14 and Fig. 15 we can see the 

consumed time and speedup for F03 optimization. 

In the proposed parallel implementation, at the 

beginning the GPU improves the speedup when the 

individuals are increased, but after a given point the 

speedup become almost constant. In fact, as the 

individuals are increased, the speedups are 

stabilized around five for DE algorithm, but these 

value can be improved as was described above. 

6.4 Discussion of results 

The above experiments confirmed that in the 

proposed parallel implementation the reached 

speedup is increased specifically when the 

individuals number is increased. According to the 

proposed implementation, this behavior is justified 

by the fact that increasing the individuals results in 

increasing the executed threads, and that give more 

chance to the GPU to make a better resource 

administration [3]. On the other hand, increasing 

the iterations simply forces the GPU to repeat more 
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times the same processes. Thus, it is more useful to 

analyze the convergence curve and consumed time  

of the parallel implementations while the 

individuals number is varied than when the 

iterations number is varied. Concerning speedup, 

within the considered range, it must be clarified that 

the relatively modest values reported here may be 

improved with a more efficient code (by intensive 

use of shared memory, exploiting coalesced 

memory instructions and parallelizing arithmetic 

operations). 

Fig. 14. Cost For F03 Optimization Fixing Iterations To 

15000 And Varying Individuals 

 

Fig. 15. Speedup For F03 Optimization Fixing Iterations 

To 15000 And Varying Individuals 

 

Based on the fact that the proposed parallel 

algorithms are essentially the sequential ones after 

being migrated to GPU in a straightforward form, 

we can say that parallel algorithms and sequential 

ones are practically identical in all their functional 

modules with exception of the generation of the 

random numbers. In this sense, it is very interesting 

to note that the effect after a parallelization of a 

given heuristic on a GPU results in a natural 

speedup but additionally affects the convergence 

behavior in a significant manner. In our case this 

change in the convergence behavior is mainly 

because the different ways in which the random 

numbers are generated in parallel implementation 

with respect sequential ones. Since in the proposed 

parallelization the generation of random numbers 

into GPU is carried out in a truly and independently 

parallel way, individual by individual, the intrinsic 

behavior of the parallel implementation is different 

to the sequential one. 

In general, the best performance was reached by the 

parallel DE algorithm during the optimization of all 

the tested functions. It is very interesting to note the 

change of convergence behavior between the 

sequential and parallel implementation of (i.e. DE). 

These experimental results show that with a parallel 

code and a NVIDIA GPU not only the execution 

time is reduced but also the convergence behavior 

to the global optimum may be changed in a 

significant manner with respect the original 

sequential code. Specifically, it imply that having a 

sequential algorithm that performs well on a given 

benchmark function does not guarantee that the 

same algorithm within a parallelized variant will be 

well behaved in the same problem and also imply, 

in counterpart, that having a sequential algorithm 

that performs badly on a given benchmark function 

does not guarantee that the same algorithm within a 

parallelized variant will be badly behaved in the 

same problem (as is clear in Fig. 11 and Fig. 12 for 

DE when optimizes F02 and F03). 

7.  CONCLUSION AND FUTURE WORK 

In this paper, a parallel version of DE algorithm, is 

implemented on a multithreading GPU using 

CUDA as the model of parallel programming, were 

presented. Some insights about the proposed 

parallel implementation for population-based 

algorithms on a GPU were given. Specifically, an 

approach called embedded, where there is one 

thread per individual, was used. It must be noted 

that the proposed approach is not strictly any of the 

well known parallel models (global, island, nor 

diffusion) traditionally used in these cases, but is 

similar to the diffusion one but there is one thread 

instead of one processor per individual. Regardless 

the natural speedup introduced by the GPU, it is 

shown that the proposed parallel implantations may 

have different behavior, compared to sequential 

ones, as a result of the specific way in which the 

random numbers are generated within GPU. 

The experimental results showed that parallel DE 

algorithm has a better behavior optimizing the most 

of our set of well know benchmark functions, with 

significant dimensionality of 30 and algorithm’s 
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parameters specified. It is notable that DE, using 

the appropriate values for CR and F parameters that 

depend on the problem, may converge to the global 

optimum with few particles as 64 and few iterations 

as 3000. 

Future research may be focused on the following 

three points:  

(1) Apply the whole multithreading GPU 

capacities, including intensive use of shared 

memory, exploiting coalesced memory instructions 

and parallelizing arithmetic operations, to get a 

powerful high parallelized DE algorithm. 

(2) Test more fitness functions with bigger 

dimensionality. 

(3) Employ these parallel problem Algorithms to a 

complex real world optimization. 
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