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ABSTRACT 
 

In this article we present Gelisp, a new library to represent musical Constraint Satisfaction Problems and 

search strategies intuitively. Gelisp has two interfaces, a command-line one for Common Lisp and a 

graphical one for OpenMusic. Using Gelisp, we solved a problem of automatic music generation proposed 

by composer Michael Jarrell and we found solutions for the All-interval series. 
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1. INTRODUCTION  
 

A Constraint Satisfaction Problem (CSP) is a 

formalism to represent combinatorial problems. To 

solve a CSP we need to find objects that satisfy a 

number of constraints (i.e., criteria over those 

variables). CSPs provide a declarative way to 

represent combinatorial problems, specifying cons-

traints instead of a sequence of steps to find the 

solution (as used in imperative programming). 

Additionally, it is possible to specify strategies to 

choo-se between branches during search. CSPs in 

computer music can be used to solve harmonic, 

rhythmic or melodic problems. In addition, they can 

be used for automatic generation of musical 

structures satisfying a set of rules. For instance, we 

can find solutions for the All-interval series [6], 

where we need to find a sequence of 12 different 

pitches with 12 different intervals. 

In order to solve a CSP, we can use constraint 

programming languages such as Prolog or Mozart-

Oz [30]. In order to solve a CSP, those languages 

use a Constraint Solving Library (CSL) such as 

Gecode [12]. CLSs are usually written in C++. 

 

1.1  The problem 

Using traditional CSL’s or programming languages 

to solve CSPs is time-demanding and it is intended 

for specialized users because they usually require 

deep knowledge on C++ or logic programming. 

This makes these tools often unpractical to specify 

musical CSPs. Furthermore, these tools do not 

provide a representation for musical data structures. 

1.2  Our solution 

Gelisp
1
 is a wrapper for Gecode to Common Lisp. 

Gelisp was originally developed by Rueda in 2006 

and we modified it to work with current version of 

Gecode. Furthermore, we added support to model 

CSPs and search strategies graphically on 

OpenMusic (OM) [1]. In addition, Gelisp can take 

advantage of the musical data structures and 

functions defined for OM. 

The novelty of Gelisp is to provide a graphical 

representation for search strategies (e.g., Depth 

First Search) and global constraints (e.g., “all the 

intervals of a sequence must be different”), based 

on an efficient CSL.  

1.2  Related work 

Several graphical CSLs for OM have been 

developed in the last decade. Situation [10] 

generates music based on constraints, OmRc [11] 

finds structures corresponding to rhythmical 

constraints, OmClouds [29] finds approximated 

solutions to a CSP, and OMBacktrack 

                                                 
1  http://gelisp.sourceforge.net/ 
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(http://www.ircam.fr/equipes/repmus/) is a wrapper 

for the CSL Screamer [13] (a CSL written on Lisp). 

A graphical CSL to solve musical CSPs should 

be able to setup search strategies in a graphical 

way, post multiple kinds of constraints graphically 

without declaring explicitly loops and recursion, 

and solve the problem using state-of-art algorithms. 

Unfortunately, OmRC and OmSituation are 

designed to solve specific problems. OmBacktrack 

is no longer available for current versions of OM. 

Finally, OmClouds does not guarantee a solution 

satisfying all the constraints (i.e., a complete 

solution). 
 
2. GECODE  
 

Gecode is a Constraint Solving Library (CSL) 

written in C++. Gecode provides a propagator for 

each type of constraint. Propagators translate a 

constraint into basic constraints supplying the same 

information. Basic (finite domain) constraints have 

the form x∈[a..b]. For instance, in a store (i.e., a set 

with all the constraints asserted) containing  and , a 

propagator for the constraint  would add constraints  

and . 

As described in the above example, the action 

of propagators ends up narrowing down the set of 

possible values for each variable. This, however, 

does not guarantee that it will eventually be 

inferred a single value for each variable. Gecode 

thus include search engines. The purpose of a 

search engine is to choose additional basic 

constraints to add into the store until all variables 

have reduced their domain to a single value. Using 

them we can find one, many, or all the solutions for 

a CSP. 

Gecode works on different operating systems 

and it will be used as the CSL for Mozart-Oz, 

therefore it is very likely to be maintained for a 

long time. Furthermore, it provides an extensible 

API, allowing the user to create new propagators 

and user-defined search engines. For instance, we 

can extend Gecode to reason about trees and 

graphs, which are useful in musical CSPs.  

3. GELISP  

Gelisp provides an interface for Common Lisp and 

another for OM. In Gelisp, sequences of variables 

are represented by lists, as opposed to Gecode, 

where they are represented by arrays. This makes 

the power of list processing (provided by Lisp and 

OM) available for Gelisp users. 

3.1  Interface for Common Lisp 

To solve a problem using this interface, we need to 

write a script. A script is a function to define the 

problem variables and their domains (the possible 

values that a variable can take), post constraints 

over the variables, and setup a search strategy. 

This interface allows the user to call most of 

Gecode propagators for both, Finite Domain (FD) 

and Finite Set (FS) constraints. Basic FD 

constraints deal with expressions of the form x∈R, 

where R is a range or a set of ranges of integers. On 

the other hand, FS constraints deal with expressions 

among sets of FD variables. In what follows, we 

present some propagators that Gelisp provides for 

FD and FS. 

Gelisp provides FD propagators for defining 

domains (e.g., Domain(X)=[2,5]), equalities and 

inequalities (e.g., X+Y<Z), cardinality (e.g., 1 

occurs two times in [XYZ]), boolean constraints, 

regular expression constraints and the all-distinct 

constraint. The all-distinct constraint makes the 

elements of a sequence pairwise different. On the 

other hand, for FS we provide constraints for 

defining domains (e.g., V∈{1,2,3}) and set 

relations (e.g., X∈A∪ B). 

In addition, Gelisp includes two search engines, 

Depth Search First (DSF) and Branch-and-bound 

(BAB). The DFS engine works by choosing some 

variable, then a value for that variable, if this does 

not succeed (a constraint does not hold) then choo-

ses another value. If the value succeed, then choo-

ses another variable, then a value for it, etc.  

The BAB engine works in a similar way, but 

solutions are computed in such a way that each 

subsequent solution increases or decreases the 

value of some user specified FD variable. Both 

engines can be used for both FS and FD. In 

addition, we can define search heuristics for value 

(i.e., the order to assign a value to a variable) and 

variable order (i.e., the order to choose a variable). 

These heuristics are parameters for the search 

engines. 

3.2  Graphical Interface for OpenMusic 

Instead of writing a script, in the graphical interface 

we represent a program with a special patch, called 

CSP patch. A patch is a visual algorithm, in which 

boxes represent functional calls, and connections 

are functional compositions. Inside a CSP patch, 

we can place special boxes to define a constraint in 

the CSP, variable and value heuristics, the variable 

to be optimized during the search, and a time limit 

in the search. 

For instance, we provide a variety of boxes to 

represent simple constraints (e.g., a=2) and global 
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constraints (e.g., “all the intervals from a sequence 

must be different”). 

Using the graphical interface we can express a 

variety of problems declaratively with global 

constraints. Global constraints have parameters. For 

instance, the graphical box to find the intervals of a 

list has a parameter to choose among absolute, non-

absolute, or modulo n intervals (calculated as ). 

Additionally, it has a parameter to post an all-

distinct constraint over the intervals. 

Moreover, the output of a CSP patch can be 

connected to a box to find one solution or a box to 

find n the solutions 

 

4. CASE STUDIES  

 

In this section, we describe both, an intuitive and 

formal definition of two CSPs and we explain how 

to solve them with Gelisp. Formally, a CSP is triple 

<X,D,C>, where X is a set of variables, D is the 

domain for each variable, and C is a set of 

constraints (read as conjunction) over the variables. 

4.1  All-interval series 

In this problem, we need to find a sequence of 12 

different pitches with 12 different intervals (fig. 1). 

This problem can be generalized to find n different 

pitches with n different intervals equivalent under 

inversion 
2
. For instance, a value of n=24 represents 

the all-interval series for microtones. 

   

Figure 1: An all-interval serie for n=12 

Therefore, a solution to this CSP is a sequence 

of n pairwise different variables with domain [1..n], 

where all modulo n intervals of the sequence are 

pairwise different. We give bellow a formalization 

of this problem  

 

Variables:  V1...Vn 
Domains: [1..n] ... [1..n]  
Constraints:  

•  alldiff(V)  

•  alldiff ((Vi+1 – Vi)%n, i <= n-1) 

 

There is not a constraint over the interval ) 

because that interval is always six, according to the 

literature. Furthermore, it is enough to calculate the 

                                                 
2  For instance, an interval C-E is equivalent 

to E-C. 

series where  because the other ones can be 

obtained from that one using transposition. In 

addition, we know that if  is an all-interval serie,  is 

also one. For those reasons, we include these two 

constraints to avoid symmetrical solutions:  

•   C3  V0 = 0 

•   C4  V0 < Vn 

We represent graphically this CSP (fig. 2) with 

a box to create n all-different variables with domain 

[1..n], an  box for  with an all-different parameter , 

an equality box for , and an inequality box for . 

   

Figure 2: All-interval Series CSP on OM 

4.2  Jarrell's CSP 

Composer Michael Jarrell proposed an idea for 

automatic music generation [4]. The goal is to 

generate a sequence of n notes. There is a fix 

number of occurrences ... for each sequences of 

intervals (called motives) ... over the sequence of 

non-absolute intervals of the output sequence. In 

addition, each note of the output sequence belongs 

to a Chord Ch. Moreover, the first  and the last note  

of the output sequence are fixed. We give bellow a 

formalization of this problem  

 

Inputs:  

• Motives [...], Limits  and , 

Occurrences [...], Chord Ch  

Variables:  ...  
Domains: [0..127] ... [0..127] 
Constraints:  
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We represent graphically (Fig.3) the constraint . 

We use the x→dx and motives-occurs= boxes to fix 

the number of occurrences of each motive over the 

intervals of the output sequence.  

   

Figure 3: Constraint  for Jarrell’s CSP on OM 

Jarrell also proposes in [4] to consider absolute 

intervals and octaviation for the chords, the limits 

and the motives. For instance, using absolute 

intervals, an interval  is equal to  and using 

octaviation, a pitch G4 is equivalent to G1,G2,G5, 

etc. Finally, he also proposes to have specific 

motives and chords for each segment of the output 

sequence, according to a user-defined 

segmentation. For simplicity, we do not present 

those constraints in this paper. However, a 

complete model of this problem can be found at 

Gelisp website. 
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