
Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

327

GELISP: A FRAMEWORK TO REPRESENT MUSICAL

CONSTRAINT SATISFACTION PROBLEMS AND SEARCH

STRATEGIES

1MAURICIO TORO, 2CAMILO RUEDA, 3CARLOS AGÓN, 4GÉRARD ASSAYAG

1
Asstt Prof., Department of Informatics and Systems, UNIVERSIDAD EAFIT, Colombia

2
Prof., Department of Computer Science, PONTIFICIA UNIVERSIDAD JAVERIANA CALI, Colombia

3
Prof., Music Modeling Team, IRCAM, UMR 9912 CNRS, France

4
Dr., Music Modeling Team, IRCAM, UMR 9912 CNRS, France

E-mail:

1
mtorobe@eafit.edu.co,

2
crueda@cic.puj.edu.co,

3
carlos.agon@ircam.fr,

4
assayag@ircam.fr,

ABSTRACT

In this article we present Gelisp, a new library to represent musical Constraint Satisfaction Problems and

search strategies intuitively. Gelisp has two interfaces, a command-line one for Common Lisp and a

graphical one for OpenMusic. Using Gelisp, we solved a problem of automatic music generation proposed

by composer Michael Jarrell and we found solutions for the All-interval series.

Keywords: Constraint satisfaction problems, openmusic, automatic music generation, search strategies,

visual programming.

1. INTRODUCTION

A Constraint Satisfaction Problem (CSP) is a

formalism to represent combinatorial problems. To

solve a CSP we need to find objects that satisfy a

number of constraints (i.e., criteria over those

variables). CSPs provide a declarative way to

represent combinatorial problems, specifying cons-

traints instead of a sequence of steps to find the

solution (as used in imperative programming).

Additionally, it is possible to specify strategies to

choo-se between branches during search. CSPs in

computer music can be used to solve harmonic,

rhythmic or melodic problems. In addition, they can

be used for automatic generation of musical

structures satisfying a set of rules. For instance, we

can find solutions for the All-interval series [6],

where we need to find a sequence of 12 different

pitches with 12 different intervals.

In order to solve a CSP, we can use constraint

programming languages such as Prolog or Mozart-

Oz [30]. In order to solve a CSP, those languages

use a Constraint Solving Library (CSL) such as

Gecode [12]. CLSs are usually written in C++.

1.1 The problem

Using traditional CSL’s or programming languages

to solve CSPs is time-demanding and it is intended

for specialized users because they usually require

deep knowledge on C++ or logic programming.

This makes these tools often unpractical to specify

musical CSPs. Furthermore, these tools do not

provide a representation for musical data structures.

1.2 Our solution

Gelisp
1
 is a wrapper for Gecode to Common Lisp.

Gelisp was originally developed by Rueda in 2006

and we modified it to work with current version of

Gecode. Furthermore, we added support to model

CSPs and search strategies graphically on

OpenMusic (OM) [1]. In addition, Gelisp can take

advantage of the musical data structures and

functions defined for OM.

The novelty of Gelisp is to provide a graphical

representation for search strategies (e.g., Depth

First Search) and global constraints (e.g., “all the

intervals of a sequence must be different”), based

on an efficient CSL.

1.2 Related work

Several graphical CSLs for OM have been

developed in the last decade. Situation [10]

generates music based on constraints, OmRc [11]

finds structures corresponding to rhythmical

constraints, OmClouds [29] finds approximated

solutions to a CSP, and OMBacktrack

1 http://gelisp.sourceforge.net/

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

328

(http://www.ircam.fr/equipes/repmus/) is a wrapper

for the CSL Screamer [13] (a CSL written on Lisp).

A graphical CSL to solve musical CSPs should

be able to setup search strategies in a graphical

way, post multiple kinds of constraints graphically

without declaring explicitly loops and recursion,

and solve the problem using state-of-art algorithms.

Unfortunately, OmRC and OmSituation are

designed to solve specific problems. OmBacktrack

is no longer available for current versions of OM.

Finally, OmClouds does not guarantee a solution

satisfying all the constraints (i.e., a complete

solution).

2. GECODE

Gecode is a Constraint Solving Library (CSL)

written in C++. Gecode provides a propagator for

each type of constraint. Propagators translate a

constraint into basic constraints supplying the same

information. Basic (finite domain) constraints have

the form x∈[a..b]. For instance, in a store (i.e., a set

with all the constraints asserted) containing and , a

propagator for the constraint would add constraints

and .

As described in the above example, the action

of propagators ends up narrowing down the set of

possible values for each variable. This, however,

does not guarantee that it will eventually be

inferred a single value for each variable. Gecode

thus include search engines. The purpose of a

search engine is to choose additional basic

constraints to add into the store until all variables

have reduced their domain to a single value. Using

them we can find one, many, or all the solutions for

a CSP.

Gecode works on different operating systems

and it will be used as the CSL for Mozart-Oz,

therefore it is very likely to be maintained for a

long time. Furthermore, it provides an extensible

API, allowing the user to create new propagators

and user-defined search engines. For instance, we

can extend Gecode to reason about trees and

graphs, which are useful in musical CSPs.

3. GELISP

Gelisp provides an interface for Common Lisp and

another for OM. In Gelisp, sequences of variables

are represented by lists, as opposed to Gecode,

where they are represented by arrays. This makes

the power of list processing (provided by Lisp and

OM) available for Gelisp users.

3.1 Interface for Common Lisp

To solve a problem using this interface, we need to

write a script. A script is a function to define the

problem variables and their domains (the possible

values that a variable can take), post constraints

over the variables, and setup a search strategy.

This interface allows the user to call most of

Gecode propagators for both, Finite Domain (FD)

and Finite Set (FS) constraints. Basic FD

constraints deal with expressions of the form x∈R,

where R is a range or a set of ranges of integers. On

the other hand, FS constraints deal with expressions

among sets of FD variables. In what follows, we

present some propagators that Gelisp provides for

FD and FS.

Gelisp provides FD propagators for defining

domains (e.g., Domain(X)=[2,5]), equalities and

inequalities (e.g., X+Y<Z), cardinality (e.g., 1

occurs two times in [XYZ]), boolean constraints,

regular expression constraints and the all-distinct

constraint. The all-distinct constraint makes the

elements of a sequence pairwise different. On the

other hand, for FS we provide constraints for

defining domains (e.g., V∈{1,2,3}) and set

relations (e.g., X∈A∪ B).

In addition, Gelisp includes two search engines,

Depth Search First (DSF) and Branch-and-bound

(BAB). The DFS engine works by choosing some

variable, then a value for that variable, if this does

not succeed (a constraint does not hold) then choo-

ses another value. If the value succeed, then choo-

ses another variable, then a value for it, etc.

The BAB engine works in a similar way, but

solutions are computed in such a way that each

subsequent solution increases or decreases the

value of some user specified FD variable. Both

engines can be used for both FS and FD. In

addition, we can define search heuristics for value

(i.e., the order to assign a value to a variable) and

variable order (i.e., the order to choose a variable).

These heuristics are parameters for the search

engines.

3.2 Graphical Interface for OpenMusic

Instead of writing a script, in the graphical interface

we represent a program with a special patch, called

CSP patch. A patch is a visual algorithm, in which

boxes represent functional calls, and connections

are functional compositions. Inside a CSP patch,

we can place special boxes to define a constraint in

the CSP, variable and value heuristics, the variable

to be optimized during the search, and a time limit

in the search.

For instance, we provide a variety of boxes to

represent simple constraints (e.g., a=2) and global

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

329

constraints (e.g., “all the intervals from a sequence

must be different”).

Using the graphical interface we can express a

variety of problems declaratively with global

constraints. Global constraints have parameters. For

instance, the graphical box to find the intervals of a

list has a parameter to choose among absolute, non-

absolute, or modulo n intervals (calculated as).

Additionally, it has a parameter to post an all-

distinct constraint over the intervals.

Moreover, the output of a CSP patch can be

connected to a box to find one solution or a box to

find n the solutions

4. CASE STUDIES

In this section, we describe both, an intuitive and

formal definition of two CSPs and we explain how

to solve them with Gelisp. Formally, a CSP is triple

<X,D,C>, where X is a set of variables, D is the

domain for each variable, and C is a set of

constraints (read as conjunction) over the variables.

4.1 All-interval series

In this problem, we need to find a sequence of 12

different pitches with 12 different intervals (fig. 1).

This problem can be generalized to find n different

pitches with n different intervals equivalent under

inversion
2
. For instance, a value of n=24 represents

the all-interval series for microtones.

Figure 1: An all-interval serie for n=12

Therefore, a solution to this CSP is a sequence

of n pairwise different variables with domain [1..n],

where all modulo n intervals of the sequence are

pairwise different. We give bellow a formalization

of this problem

Variables: V1...Vn
Domains: [1..n] ... [1..n]
Constraints:

• alldiff(V)

• alldiff ((Vi+1 – Vi)%n, i <= n-1)

There is not a constraint over the interval)

because that interval is always six, according to the

literature. Furthermore, it is enough to calculate the

2 For instance, an interval C-E is equivalent

to E-C.

series where because the other ones can be

obtained from that one using transposition. In

addition, we know that if is an all-interval serie, is

also one. For those reasons, we include these two

constraints to avoid symmetrical solutions:

• C3 V0 = 0

• C4 V0 < Vn

We represent graphically this CSP (fig. 2) with

a box to create n all-different variables with domain

[1..n], an box for with an all-different parameter ,

an equality box for , and an inequality box for .

Figure 2: All-interval Series CSP on OM

4.2 Jarrell's CSP

Composer Michael Jarrell proposed an idea for

automatic music generation [4]. The goal is to

generate a sequence of n notes. There is a fix

number of occurrences ... for each sequences of

intervals (called motives) ... over the sequence of

non-absolute intervals of the output sequence. In

addition, each note of the output sequence belongs

to a Chord Ch. Moreover, the first and the last note

of the output sequence are fixed. We give bellow a

formalization of this problem

Inputs:

• Motives [...], Limits and ,

Occurrences [...], Chord Ch

Variables: ...
Domains: [0..127] ... [0..127]
Constraints:

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

330

We represent graphically (Fig.3) the constraint .

We use the x→dx and motives-occurs= boxes to fix

the number of occurrences of each motive over the

intervals of the output sequence.

Figure 3: Constraint for Jarrell’s CSP on OM

Jarrell also proposes in [4] to consider absolute

intervals and octaviation for the chords, the limits

and the motives. For instance, using absolute

intervals, an interval is equal to and using

octaviation, a pitch G4 is equivalent to G1,G2,G5,

etc. Finally, he also proposes to have specific

motives and chords for each segment of the output

sequence, according to a user-defined

segmentation. For simplicity, we do not present

those constraints in this paper. However, a

complete model of this problem can be found at

Gelisp website.

REFERENCES:
[1] C. Agón, G. Assayag, O. Delerue, and

C. Rueda. Objects, Time and Constraints in

OpenMusic. In Proceedings of the

International Computer Music Conference

(ICMC), Ann Arbor, Michigan, October 1998.

[2] A. Allombert, M. Desainte-Catherine, and

M. Toro. Modeling temporal constrains for a

system of interactive score. In G. Assayag and

C. Truchet, editors, Constraint Programming

in Music, chapter 1, pages 1–23. Wiley, 2011.

[3] J. Aranda, G. Assayag, C. Olarte, J. A. Pérez,

C. Rueda, M. Toro, and F. D. Valencia. An

overview of FORCES: an INRIA project on

declarative formalisms for emergent systems.

In P. M. Hill and D. S. Warren, editors, Logic

Programming, 25th International Conference,

ICLP 2009, Pasadena, CA, USA, July 14-17,

2009. Proceedings, volume 5649 of Lecture

Notes in Computer Science, pages 509–513.

Springer, 2009.

[4] F. Courtot and M. Jarrell. L’utilisation de la

CAO dans Congruences. Cahiers

d’exploitation Ircam, 1990.

[5] F. Fages and J. Martin. From rules to constraint

programs with the rules2cp modelling

language. 13th Worshop on Constraint Solving

and Constraint Logic Programming,

CSCLP’08, 2008.

[6] R. Morris and D. Starr. The structure of the all-

interval series. Journal of Music Theory, 2(13),

1974.

[7] C. Olarte, C. Rueda, G. Sarria, M. Toro, and

F. Valencia. Concurrent Constraints Models of

Music Interaction. In G. Assayag and

C. Truchet, editors, Constraint Programming

in Music, chapter 6, pages 133–153. Wiley,

Hoboken, NJ, USA., 2011.

[8] A. Philippou and M. Toro. Process Ordering in

a Process Calculus for Spatially-Explicit

Ecological Models. In Proceedings of

MOKMASD’13, LNCS 8368, pages 345–361.

Springer, 2013.

[9] A. Philippou, M. Toro, and M. Antonaki.

Simulation and Verification for a Process

Calculus for Spatially-Explicit Ecological

Models. Scientific Annals of Computer Science,

23(1):119–167, 2013.

[10] C. Rueda, M. Lindberg, M. Laurson, G. Block,

and G. Assayag. Integrating constraint

programming in visual musical composition

languages. In ECAI 98 Workshop on

Constraints for Artistic Applications, Brighton,

1998.

[11] O. Sandred. Searching for a rhythmical

language. In PRISMA 01 Review.

EuresisEdizioni, Milano, 2003.

[12] C. Schulte and P. J. Stuckey. Efficient

constraint propagation engines. CoRR,

abs/cs/0611009, 2006.

[13] J. M. Siskind and D. A. Mcallester.

Nondeterministic lisp as a substrate for

constraint logic programming. In proceedings

of AAAI-93, pages 133–138. AAAI Press,

1993.

[14] M. Toro. Probabilistic Extension to the Factor

Oracle Model for Music Improvisation.

Master’s thesis, Pontificia Universidad

Javeriana Cali, Colombia, 2009.

[15] M. Toro. Towards a correct and efficient

implementation of simulation and verification

Journal of Theoretical and Applied Information Technology
 20

th
 April 2016. Vol.86. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

331

tools for probabilistic ntcc. Technical report,

Pontificia Universidad Javeriana, May 2009.

[16] M. Toro. Structured interactive musical scores.

In M. V. Hermenegildo and T. Schaub, editors,

Technical Communications of the 26th

International Conference on Logic

Programming, ICLP 2010, July 16-19, 2010,

Edinburgh, Scotland, UK, volume 7 of LIPIcs,

pages 300–302. Schloss Dagstuhl - Leibniz-

Zentrum fuer Informatik, 2010.

[17] M. Toro. Structured Interactive Scores: From

a simple structural description of a multimedia

scenario to a real-time capable implementation

with formal semantics . PhD thesis, Univeristé

de Bordeaux 1, France, 2012.

[18] M. Toro. Structured interactive music scores.

CoRR, abs/1508.05559, 2015.

[19] M. Toro. Probabilistic Extension to the

Concurrent Constraint Factor Oracle Model for

Music Improvisation. ArXiv e-prints, Feb.

2016.

[20] M. Toro and M. Desainte-Catherine.

Concurrent constraint conditional branching

interactive scores. In Proc. of SMC ’10,

Barcelona, Spain, 2010.

[21] M. Toro, M. Desainte-Catherine, and

P. Baltazar. A model for interactive scores with

temporal constraints and conditional branching.

In Proc. of Journées d’Informatique Musical

(JIM) ’10, May 2010.

[22] M. Toro, M. Desainte-Catherine, and J. Castet.

An extension of interactive scores for

multimedia scenarios with temporal relations

for micro and macro controls. In Proc. of

Sound and Music Computing (SMC) ’12,

Copenhagen, Denmark, July 2012.

[23] M. Toro, M. Desainte-Catherine, and

C. Rueda. Formal semantics for interactive

music scores: a framework to design, specify

properties and execute interactive scenarios.

Journal of Mathematics and Music, 8(1):93–

112, 2014.

[24] M. Toro, A. Philippou, S. Arboleda, C. Vélez,

and M. Puerta. Mean-field semantics for a

Process Calculus for Spatially-Explicit

Ecological Models. Technical report,

Department of Informatics and Systems,

Universidad Eafit, 2015. Available at

http://blogs.eafit.edu.co/giditic-

software/2015/10/01/mean-field/.X

[25] M. Toro, A. Philippou, C. Kassara, and

S. Sfenthourakis. Synchronous parallel

composition in a process calculus for

ecological models. In G. Ciobanu and D. Méry,

editors, Proceedings of the 11th International

Colloquium on Theoretical Aspects of

Computing - ICTAC 2014, Bucharest,

Romania, September 17-19, volume 8687 of

Lecture Notes in Computer Science, pages

424–441. Springer, 2014.

[26] M.Toro, C.Rueda, C.Agón, and G.Assayag.

Ntccrt: A concurrent constraint framework for

soft real-time music interaction. Journal of

Theoretical & Applied Information

Technology, 82(1), 2015.

[27] M. Toro-Bermúdez. ntccrt: A ntcc generic real-

time interpreter. more information available at

https://sourceforge.net/projects/ntccrt . Internet,

2008.

[28] M. Toro-Bermúdez. Towards non-threaded

concurrent constraint programming for

implementing multimedia interaction systems,

July 2008.

[29] C. Truchet, G. Assayag, and P. Codognet.

Omclouds, a heuristic solver for musical

constraints. In MIC03, Metaheuristics

International Conference, Kyoto, 2003.

[30] P. Van Roy and S. Haridi. Concepts,

Techniques, and Models of Computer

Programming. MIT Press, Mar. 2004.

