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ABSTRACT 

 

Keypoint descriptor is a fundamental component in many computer vision applications. Considering both 

computational complexity and discriminative power, SURF descriptor among non-binary and BRISK 

among binary descriptors are the prominent techniques in the field. Although, these descriptors have shown 

remarkable performance, but they are still suffering weaknesses such as lack of robustness against image 

transformations and distortions, especially blur, JPEG compression and lightening variation. To address this 

matter, a new and robust keypoint descriptor is proposed in this research which is adapted from 

Tomographic-Image-Reconstruction technique. Convolution of associated image patch and predefined 

Gaussian smoothed sensitivity maps yield a matrix whose entities demonstrate the average intensity of the 

pixels at the convolved pixels in the image patch. The initial descriptor vector is built by calculating the 

absolute differences of all possible pairs of matrix. Then, the most discriminative features of this initial 

descriptor vector are detected by Heuristic Genetic Algorithm (GA). The Experimental result showed that 

proposed keypoint descriptor outperformed some existing techniques especially in blur, JPEG compression 

and illumination variation while it has reasonable performance in other image transformations. 

Keywords: Keypoint, Image Patch, Feature Descriptor, Tomography-Based Descriptor, Terminal Point, 

Genetic Algorithm, Sensitivity Map 

 

1. INTRODUCTION  

 

Many computer vision applications such as 

visual correspondence, stereo matching, image 

retrieval, visual recognition object tracking and 

many more rely on image representation with 

sparse number of keypoints. The existent challenge 

is to efficiently describe and represent the detected 

keypoints or image patches, with stable, robust and 

compact representations invariant to blur, rotation, 

noise, scale, and illumination or brightness change. 

Based on the descriptor performance evaluation for 

different geometric and photometric 

transformations [1][2][3][4] in numerous computer 

vision applications, considering both computational 

complexity and discriminative power, it can be 

observed that the Speeded up Robust Feature 

(SURF) descriptor proposed by Bay et al. [5] in 

non-binary descriptors  and BRISK proposed by [6] 

in binary descriptors have better overall 

performance compared to other exiting  techniques. 

However, these descriptors suffer from lack of 

robustness and reliability against image 

transformations and distortion, in particular to blur, 

JPEG compression and brightness change [2][4][7].  

Inspired by Tomographic-Image-Reconstruction 

technique, this research proposes an adapted 

keypoint descriptor. A set of predefined Gaussian 

smoothed sensitivity maps is convolved with 

associated image patch which produces a matrix. 

Each entity of this matrix indicates the average 

intensity of the pixels in image patch. The initial 

descriptor vector is built by calculating the absolute 

differences of all possible pairs of matrix. The 

Genetic Algorithm (GA) is used to optimize initial 

descriptor by finding the most discriminative 

features.  

Note that the notation interest-point, Keypoint, 

feature and corner refer to an anomaly point in 

image which could be possibly detected by feature 

detectors. For uniformity and consistency the 

notation keypoint is used throughout this paper.  

The rest of the paper is organized as follows. 

Section 2 presents a brief literature on keypoint 

detection and feature descriptor techniques. Section 
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3 presents the analogy of Tomography imaging 

method. The framework of the proposed technique 

is described in section 4. In section 5, experimental 

setup and evaluation of the proposed technique is 

presented. Finally, Section 6 concludes the paper.  

2.  LITERATURE REVIEW 

 

A keypoint could be defined as a visual 

characteristic of the content in image. It is located 

in a distinct place in image which image 

information is prominent. This property enables the 

keypoint detector to detect the same keypoints 

under different image transformations such as 

change in scale, viewpoint, brightness, rotation and 

blur. Combination of detector/descriptor pairs 

considerably affect the descriptor performance. The 

method used in initial keypoint detection rely 

heavily on gradient computation such as the Harris 

Corner Detection [8]. Mikolajczyk & Schmid [9] 

have made some improvement to the Harris 

detector and proposed scale invariant detector. 

Template-based detectors are another category of 

keypoint detectors such as SUSAN (Smallest 

Univalue Segment Assimilating Nucleus) which is 

an early work on this category [10]. A new 

generation of template-based detectors introduced 

by [11] adapts machine learning algorithms which 

their detector is called FAST (Features from 

Accelerated Segment Test). Mair et al [12] 

improved the performance of FAST detector and 

named it AGAST (Adaptive and Generic 

Accelerated Segment Test)  detector. Recently, the 

authors in binary descriptors BRISK[6]  and 

FREAK [13] used   multi-scale AGAST detector to 

detect keypoints. They search for maxima in scale-

space using FAST score as a measure of saliency. A 

number of comprehensive surveys on detectors 

could be found in [1], [14], [15],[4], [16], [17]. 

Once keypoints are located by detector, we are 

interested in describing the image patches centered 

by the detected points. Usually a feature descriptor 

represents either a subset of the total pixels in the 

neighborhood of the detected keypoints or other 

measures generated from the keypoints and deliver 

a robust feature vector. Based on the literature, 

descriptor techniques can be categorized into two 

types: 1) descriptors based on geometric relations, 

2) descriptors based on pixels of the interest region. 

In first group, the descriptors use the relationship 

between the keypoint locations such as the distance 

from, or angle of, the neighboring keypoints. Zhou 

et al. [18] proposed a descriptor in which a 

Delaunay triangle in  improved version of SUSAN 

[10] was constructed and then the interior angles as 

the properties of the descriptor were calculated. 

Since the interior angles of the Delaunay triangle do 

not change with scale or rotation transformations, 

their proposed descriptor is invariant to rotation and 

uniform scaling. Meanwhile, this descriptor is weak 

against non-uniform scale or affine transformations 

[19]. Awrangjeb and Lu [20] proposed a curvature 

descriptor for keypoint matching between two 

images. They used the information such as the 

keypoint location, absolute curvature values and the 

angle with its two neighborhood corners which is 

provided by their proposed CPDA [21] keypoint 

detector. Despite the low dimension and ease of 

constructing descriptors based on geometric 

relations, the research on this type of descriptor 

appears to be limited in the literature due to several 

weakness. First, the distinctiveness of the keypoint 

locations in such representation is relatively low 

which leads to either miss-matches or many false 

matches; second, this type of descriptor constantly 

uses the iterative process to look for the best 

possible matches; finally, the matching process is 

known to become too slow [22].  

The second type of descriptor uses the pixels of 

the interest region to represent the features. 

Independency between features and robustness to 

occlusion are the main advantages of these 

descriptors. One of the most well-known 

descriptors in the literature is the SIFT [23] 

descriptor. According to a survey by Mikolajczyk & 

Schmid [24] and recent survey by Khan et al. [3], 

robustness against illumination and viewpoint 

changes has ranked SIFT descriptor at the top of the 

list. However, the main weakness of SIFT 

descriptor is its high dimensional feature vector 

which reduces the speed of this descriptor. To 

counter this issue PCA-SIFT[25] is proposed to 

reduce the descriptor vector size from 128 to 36 

dimensions, however its distinctiveness and 

increased time for descriptor formation almost 

negates the increased speed of matching[26]. The 

other descriptor belonging to SIFT-like family 

method is GLOH [24] descriptor which is more 

distinctive but also more expensive to compute than 

SIFT [27]. According to [6], what is probably the 

most appealing feature descriptor at the moment is 

the SURF[5]  which is the fastest descriptor among 

the SIFT-like descriptors yet gives comparable 

performance similar to SIFT[28]. Similarly, SURF 

descriptor relies on local gradient histograms. A 64 

or 128-dimension feature vector is generated by 

efficiently computing Haar-wavelet responses with 

integral images. Meanwhile, for large-scale 

applications such as 3D reconstruction or image 

retrieval, the dimensionality of the feature vector is 
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too high. Hashing functions or Principal 

Component Analysis (PCA), are used to reduce the 

dimensionality of these feature descriptors [29]. 

Recently, progress in the computer vision 

community has shown that a simple pixel intensity 

comparison test can be efficient to generate a robust 

binary feature descriptor. Calonder et al. [30] 

proposed a binary feature descriptor using a simple 

intensity difference test which is called BRIEF. The 

advantage of BRIEF descriptor is high descriptive 

power with low computational complexity during 

feature construction and matching processes. To 

obtain descriptor vector, intensity of 512 pairs of 

pixels is used after applying a Gaussian smoothing 

to reduce noise sensitivity. The positions of the 

pixels are randomly pre-selected according to 

Gaussian distribution around the patch center. The 

high matching speed is achieved by replacing usual 

Euclidean distance with Hamming distance (bitwise 

XOR followed by a bit count). The proposed 

descriptor is not invariant to some transformation 

such as rotation and scale changes unless it is 

coupled with detector providing it. Calonder et al. 

also mentioned that unnecessary orientation 

invariant property should be avoided because it 

reduces the recognition rate. Rublee et al. [31] 

improved BRIEF descriptor and proposed Oriented 

Fast and Rotated BRIEF (ORB) descriptor which is 

invariant to rotation and robust to noise. Similarly, 

Leutenegger et al. [6] proposed a scale and rotation  

invariant binary descriptor which is named BRISK. 

To build the descriptor bit-stream using a specific 

sampling pattern, a limited number of points are 

selected and Gaussian smoothing is applied to avoid 

aliasing effects. To build the descriptor, pairs of 

smoothed points is used.  These pairs are divided 

into long-distance and short-distance subsets in 

which short-distance subset is used to build binary 

descriptor after rotating and scale normalization, the 

sampling pattern and the long-distance subset is 

used to estimate the direction of selected patch. 

Inspired by human visual system, Alahi et al.[13] 

proposed FREAK binary descriptor which uses 

learning strategy of ORB descriptor and DAISY-

like sampling pattern [32]. A number of 

comprehensive surveys on detectors can be found in 

[1], [3], [4], [24], [33]. Despite the advantages of 

binary descriptors such as high performance in 

constructing a descriptor vector, low memory 

consumption and suitability for real-time and 

mobile-based applications, they suffer from some 

image transformations in terms of accuracy. In 

addition, the accuracy of non-binary descriptors is a 

challenging and complex process and requires many 

adjustments and considerations. To address 

common descriptor problems we propose an 

adopted keypoint descriptor based on Tomographic 

image reconstruction technique. 

3. ANALOGY OF TOMOGRAPHY 

 

In this section the tomography method is briefly 

explained to provide the basic knowledge on 

proposed Tomography-Based-Descriptor. 

Tomography is a method of imaging a single plane, 

or slice, of an object resulting in a tomogram. In 

other words, it is the process of creating visual 

representations of human internal organs into image 

format for clinical analysis and medical intervention 

[34]. Conventional and computer-assisted 

tomography are two fundamental methods of 

obtaining such images. Conventional tomography 

employs mechanical devices to display an image 

directly onto X-ray film, while in computer-assisted 

tomography, a computer constructs a visual image 

of the structure which is scanned by radiation 

detectors. These visual images can be stored in 

digital format and displayed on a screen, or printed 

on paper or film. Imaging techniques using 

computer-assisted method are superior to 

conventional tomography. These methods are able 

to capture both soft and hard tissues while 

conventional tomography method is quite poor at 

imaging soft tissues[35]. 

Figures 1 to 3 show the principals of tomography 

method and explain how to obtain the Tomographic 

image. Basically, the tomography imaging method 

consists of several sensors (Si) in a region of 

interest (ROI) surrounding an object which is 

depicted in Figure 1. (a). An example of 

tomography method with 8 sensors structure and 

their connections are shown in Figure 1. (b). 

 

Figure 1. The Tomography Imaging Method. A) An 

Example Of Tomography Structure At B) Tomography 

Method With 8 Sensors Structure In Which The Sensors 

Are Interconnected Through The Beams. The Lines In 

This Image Resemble The Beams Presence Of An Object. 

Each sensor emits a radiation signal to the rest of 

the sensors. If these signals pass through an object,    

they have relatively different behavior on the 



Journal of Theoretical and Applied Information Technology 
 10

th
 April 2016. Vol.86. No.1 

© 2005 - 2016 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
162 

 

receiver side sensor (Figure1-a). These changes are 

subject to density, size and type of an object. The 

number of sensors in tomography is an important 

parameter and it has a significant role in the 

reconstruction of the object’s image. In other 

words, the quality of reconstructed image is directly 

correlated to the number of sensors implemented. 

As the number of sensors increases, the 

representation of the reconstructed image will be 

enhanced. Figure2 illustrate an example of 

tomography method implementation whose an 

object is reconstructed by 8 and 16 sensors 

structure. It can be observed that 16 sensor structure 

generates a better reconstructed image quality 

compared to 8 sensor structure tomography 

implementation.  

 

 

Figure2: Simple Demonstration Of Tomography 

Implementation A) Two Candidate Objects Inside The 

ROI, B) Reconstructed Objects Using 8 Sensors C) 

Reconstructed Objects Using 16 Sensors. 

Image reconstruction consists of two stages: 

forward problem and inverse problem [37]. In 

forward problem a simulation is used to find a 

sensitivity map which refers to the discretized line 

from the transmitter’s output to the receiver’s input. 

On the other hand, the inverse problem is to 

reconstruct an image from the measured data in the 

forward problem. This technique is usually used to 

find the distribution of materials in special object. A 

sensitivity map is a matrix with all zero elements 

except the elements which are a part of a line from 

transmitter to receiver. Figure3 (a) shows a simple 

example of a sensitivity map from transmitters to 

receivers. Accurate forward models help to improve 

image reconstruction but there is no exact model to 

be used as reference and usually an estimated 

method is used. We have identified that using 

Gaussian smoothed sensitivity map improves the 

accuracy of the proposed technique. Gaussian 

smoothing mitigates the crosstalk effect between 

neighboring sensitivity maps. An example of 

Gaussian smoothed sensitivity map is shown in 

Figure3-(b). In this paper the transmitter and 

receiver are termed “Terminal Point”. Section 5.3 

shows an example of 16 Terminal Point (TP) 

Structure and all possible connections between 

these TPs.  

 

Figure 3: A) Simple Sensitivity Map From Transmitter 

To Receiver In Tomography B) Sensitivity Map From 

Terminal Point I To Terminal Point J With Gaussian 

Smoothing 

 

4. METHODOLOGY 

 

The framework of the proposed descriptor 

technique is depicted in Figure 4. The proposed 

Tomography-Based descriptor consists of five 

consecutive steps including Dataset, Keypoint 

Detection, Descriptor Initialization (N=8), 

Orientation Estimation and Feature Selection. The 

following sections describes each step in more 

detail. 

4.1   Dataset 

The experimental evaluation of the proposed 

descriptor was performed on three different 

datasets. Complementary information alongside 

sample images of each dataset are provided: 

1) Mikolajczyk and Schmid (M&S): This 

dataset is widely used in several previous 

evaluation works such as [4], [6], [14]. 

Different photometric and geometric 

transformations including view-point change 

(Graffiti and Wall), blur (Bikes and Trees), 

zoom and rotation (Boat), JPEG 

compression (Ubc) as well as brightness 

changes (Leuven) are covered in the dataset. 

Sequence of six images are showing the 

increase in amount of transformation in each 

group. All image pairs are associated with a 

ground truth homography which indicates 

the corresponding keypoints in each image 

pair. The first image in each group is used as 

reference image in experiment [25]. Figure 5 

(a1-a8) illustrates some sample images from 

this dataset. This dataset is publicly 

availableat:  

http://www.robots.ox.ac.uk/~vgg/research/affine/. 
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Figure 4:  Framework of the proposed Tomography-Based Descriptor 

 

2) Caltech Campus buildings (CB): The images 

in Caltech Campus buildings dataset are 

taken from 50 buildings in Caltech 

university campus. For each building five 

different images were taken from five 

different angles and distances resulting in a 

dataset with 250 images [38]. Similar to 

M&S dataset, the first image in each group is 

used as reference image in experiment. 

Figure 5 (c1-c5) presents some sample 

images of this dataset. This dataset is 

publicly available at: 

http://vision.caltech.edu/malaa/datasets/calte

ch-buildings/ . 

3) David Nister (DN): This dataset includes a 

total of 2550 image groups taken from 

different scenes, object and individuals. Each 

image group consist of four images which 

were taken from different angles and 

distances. A subset of 100 randomly chosen 

image groups is utilized in our experiments. 

The first image in each group is used as 

reference image. Figure 5 (b1-b4) illustrates 

some sample images of this dataset [39]. 

Table 1 summarizes the datasets 

specifications including the photometric and 

geometric transformations as well as number 

of images in each dataset. Alongside the 

existing transformation in dataset, this 

research adds Gaussian noise transformation 

in order to compare the descriptors 

performance against image noise. To carry 

out image noise comparison, we have 

manually added Gaussian noise with 

variance 0.05 into dataset CB and dataset 

DN. This dataset can be accessed online 

through the following website: 

http://www.vis.uky.edu/~stewe/ukbench/. 

 

 

 

 

Table 1:  Photometric and Geometric Transformations As Well As the Number of Images In Each Dataset. Note That 

The Gaussian Noise Is Applied To The Images Manually.

 Viewpoint Rotation Scale Brightness Blur Noise JPEG 
Compression 

#Image 
Groups 

#Images 
per set 

#Used 
Images 

Dataset 

1(M&S) 

� � � � � × � 8 6 48 

Dataset 
2 (CB) 

� × � � × manually 
added 

× 50 5 250 

Dataset 

3 (DN) 

� � � � � manually 

added 

× 2550 4 400 
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Figure 5:  Sample images of Mikolajczyk and Schmid (M&S) dataset (a1-a8), David Nister (DN) dataset (b1-b4) and 

Caltech Campus buildings (CB) dataset (c1-c5). 

  

4.2   Keypoint Detection 

 

The primarily step in many computer vision 

applications is detecting distinct locations in the 

image where the image information is prominent. 

These locations are known as keypoint. Many 

keypoint detectors have been presented in the 

literature. This paper uses the popular keypoint 

detectors, SURF to identify the saliency in images.  

These detector use the Scale-Space technique which 

ensures that the detected keypoints are scale 

invariant. For fair comparison, the number of 

detected keypoints in each dataset are equal for all 

compared descriptors. 

 

4.3   Building Descriptor 

 

Once the keypoints are located in the image using 

detector, the next step is associating every keypoint 

with a unique identifier or a signature which can 

later be used in identifying the corresponding 

keypoints from another image. These signatures or 

identifiers which are used to describe keypoints are 

termed descriptors. A descriptor is usually an n-

dimensional vector which represents the image 

patch surrounding a special keypoint. In this section 

we describe a keypoint descriptor adapted from 

tomography image reconstruction technique. 

In order to build an initial descriptor, we need to 

locate TPs in image patches using sensitivity maps. 

As an example Figure 6 illustrates a simple 

implementation of a Tomography-Based Descriptor 

Technique with 16 TPs. Each TP is linked to its 

counterparts through a sensitivity map. The 

sensitivity map which we used in this research has 

relatively similar structure compared to sensitivity 

map in tomography method. The only difference is 

that the proposed sensitivity map uses Gaussian 

normal coefficient (Figure 3. (b)) which improves 

the discriminative power of feature descriptors. Eq. 

(1) shows the sensitivity map formula used in the 

proposed technique.  

 

 

where  is the sensitivity at position 

(x,y) from terminal point  to terminal point  , 

σ is standard deviation, x  and y  are the pixel 

center point coordinate. 

Convolution of these sensitivity maps and 

associated image patch produces a number that 

indicates the average intensity of the pixels at the 

convolved image patch. (Eq. 2). Figure 6 shows an 

example of applied sensitivity map on the image 

patch for each TP. 
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where  is the average pixel intensity matrix for 

all terminal points,  is the sensitivity map from 

initial terminal point i ( ) to terminal point j ( ), I 

is the pixel intensity, N is the number of terminal 

points and n is the number of pixels in the 

sensitivity map from  to . 

Since the average intensity calculated from TPi to 

TPj is same as the average intensity from TPj to TPi, 

the inverse direction average intensity calculation is 

not used to create the descriptor feature vectors.   

Figure 6 shows an example of 16 Terminal Point 

(TP) Structure and all possible connections between 

these TPs. Figure 6 (a) shows an example in which 

the terminal Point 9 (TP9) is linked to the rest of 

terminal points using a predefined sensitivity map. 

The pixel intensity average between TP9 and the 

rest of terminal points are calculated and recorded 

in a vector termed Mij where i indicates the #number 

of initial terminal point and j represents the 

destination terminal #number. This operation will 

be repeated until the sensitivity map M is fully 

populated and all terminal points are fully linked to 

one another. A fully linked TPs structure is shown 

in Figure 6. (b). 

In the next step, we construct the proposed 

descriptor by finding absolute differences between 

all possible pairs in matrix M and create 

Differentiate Features Vector ‘D’.  In other words, 

vector D includes the difference between all 

possible intensity averages from TPi to TPj in the 

image patch. The number of elements in the matrix 

M, can be computed using Eq. (3). 

Note that since the average intensity is 

bidirectional, the inverse direction average intensity 

is not used to construct the descriptor feature 

vectors, consequently the number of elements in 

matrix M is divided by 2. 

        

where K is the total number of elements in matrix M 

and N is the number of terminal points. The initial 

feature vector of this research can be established 

through mathematical combination of the number of 

elements in matrix M as presented in Eq. (4). 

 

 

 

Figure 6: Sample of Terminal Points in the propose 

technique which are linked by sensitivity map (a) linkage 

between one TP to the rest of TPs (b) A fully linked TPs 

structure 

As an example, if the number of terminal points 

TP in the sensitivity map is N=16, then the number 

of all possible intensity averages will be 120 

according to equation (3), therefore the length of 

the feature vector D will be 14280.  

In the next step, Genetic Algorithm (GA) 

optimization technique is used to remove 

redundant, correlated and noisy elements in feature 

vector D. 

 

4.4 Orientation Estimation and Matching 

Descriptors 

Non-adjacent terminal point’s (TP) location pairs 

which have been designated in the sensitivity map 

earlier are used to determine each patch orientation 

in an image. Sum of gradients of these pairs is used 

to estimate the orientation of patches. Similar to 

BRISK  [6] the Gaussian smoothing with standard 

deviation σ is applied to each terminal point to 

mitigate aliasing effect. Suppose T be a set of all TP 

pairs used to compute local gradient of local image 

patch, the orientation of this patch can be 

formulated as:  

 

where N is the number of pairs in T and  is 

the spatial coordinates of terminal point’s center 

which is a 2D vector. Once the rough orientation of 

patch has been identified, the sensitivity map can be 

rotated to align with patch orientation which it 

makes the feature descriptor relatively rotation 

invariant. After extracting local image patches and 

calculating the descriptors (feature vectors) for each 

patch, the Euclidean distance between two feature 

vectors, is used to find the best matched pairs in 

feature vector space. 
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4.5  Feature Vector Optimization Using Genetic 

Algorithm 

The presence of many highly correlated, 

redundant and noisy features in feature vector D 

degrade the accuracy of the proposed descriptor and 

slows down the descriptor performance. These 

issues need to be addressed by finding optimal 

feature vector subset which maximizes the 

discriminative power of the proposed descriptor. 

Considering the data type and initial feature vector 

dimension the Genetic Algorithm (GA) is selected 

to be used in this study because it shows relatively 

robust results compared to other optimization 

techniques such as greedy search, simulated 

annealing and evolutionary programming [39]. 

Genetic Algorithm (GA) is a technique for 

resolving constrained and unconstrained 

optimization problems according to a natural 

selection process that imitates the biological 

evolution. Figure 7 presents the block diagrams of 

finding optimal feature vector using Genetic 

Algorithm. 

To reduce the computational complexity, our 

experiment used 8 terminal points (TP) in the 

sensitivity map. Applying Eq. (3) and (4), the 8 

terminal points generated initial feature vector D 

with the size of 378 elements. 

Initial population size which is incrementally 

generated is comprised of feature vector subsets 

(candidate optimal solutions) each consisting of a 

random set of features (average intensity 

differences). Random generation of initial 

population allows the entire search space to 

contribute in the formation of an optimal solution. 

Proper population size is very dependent on the 

nature of the problem. In this experiment, we have 

measured the cost value of the Genetic Algorithm 

with different population sizes ranging from 10 to 

60 in order to determine the right population size. 

The experiment shows that population size of 40 is 

the best where GA solution delivers an optimum 

descriptor (Figure 8 (a)). The GA is frequently 

trapped in local maxima at population sizes smaller 

than 40, while population sizes larger than 40 only 

increase the computational complexity of the 

operations; however they nearly converged to the 

identical solution. Figure 8 (b) illustrates the cost of 

the candidate solutions across different feature 

vector sizes ranging from 5 to 375 features. 

According to Figure 8 (b) feature vector with size 

of 190 generates optimal results. Thus, the best 

proposed descriptor length in this experiment is 

190.  

 

 

 

Figure 7:  Block diagram of feature reduction using genetic algorithm for the proposed descriptor technique 
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Figure 8.  a) Average Cost value of the GA optimized 

feature vector under different population sizes ranging 

from 10 to 60 individuals b) Cost value of genetic 

algorithm optimal solution under different feature vector 

sizes ranging from 5 to 375 individuals. 

 

An appropriate cost function is vital for proper 

application of Genetic Algorithm. In this 

experiment the cost function is aimed at minimizing 

the ratio between feature vector distances which are 

wrongly matched to correctly matched feature 

vector distances. Eq. (6) shows the proposed cost 

function. 

1 21

1 21

/
  

/

N

F i F ii
N

C i C ii

D D N
Cost Function

D D N

=

=

−
=

−

∑

∑
   (6) 

where   and  are  i-th element in the two 

feature vector which are correctly matched ,  

and  are  i-th element in the two feature vector 

which are wrongly matched and N is the number of 

elements in the feature vector D. 

After each iteration, individuals with higher cost 

values will be selected to partially reproduce next 

generation's population. In order to generate the 

successive generations, Bayesian optimization 

algorithm (BOA) is applied. The GA iterates until a 

termination condition is met. The maximum 

number of iterations is experimentally fixed to 400 

generations. 

Crossover and mutation are two main Genetic 

Algorithm operations. Crossover indicates how the 

genetic algorithm forms a crossover child for the 

next generation by combining two individuals, or 

parents. The other GA operation is mutation which 

is responsible for making small random changes in 

the individuals in the population to create mutant 

children. Mutation enables the Genetic Algorithm 

to search for a broader space and provides genetic 

diversity. Mutation is also aimed to avoid the 

population of chromosomes from becoming too 

similar to other populations, and allows the GA to 

prevent local minima. 

 

5. EXPERIMENTAL SETUP AND 

EVALUATION 

 

This section presents qualitative and quantitative 

evaluation results of the proposed Tomography-

Based Descriptor technique. It also presents a 

comparison between the proposed technique and 

several state-of-the art image descriptors including 

the well-known SURF descriptor and several recent 

binary descriptors such as BRISK and FREAK 

descriptors. The proposed descriptor is created 

using only 8 terminal points. Increasing the number 

of terminal points can possibly result in higher 

discriminative power and performance. In GA 

parameter setting, based on assumptions in [40] the 

Mutation and crossover probabilities were set to 

0.025 and 0.4 respectively. Meanwhile, the 

population size is fixed to 40 which is obtained 

experimentally and maximum number of iterations 

is set to 400 generations. This section begins with a 

short description on evaluation metrics of this 

research and concludes with the experimental 

results and analysis.     

5.1   Evaluation Metrics 

The following evaluation metrics in Eq. (7) and 

Eq. (8) which are proposed by [24] are used in this 

work to evaluate and compare the performance of 

the proposed Tomography-Based descriptor 

technique with some representative state-of-the art 

techniques. These metrics are defined as follows: 

 

 

 

 

In order to detect the correct matches and false 

matches in each image pair, the method used in [3] 

was used in this experiment. The homography is 
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estimated by computing the feature 

correspondences between pairs of images followed 

by the state-of-the-art RANSAC implementation 

USAC  [41]. To compute feature correspondence, a 

brute force nearest neighbor algorithm is used to 

find the best potential matches in the second image 

for each feature in the first image.   

The other evaluation metrics used are Correct 

Matches Rate (CMR) which is the percentage of 

correct matches (CM) to total matches(TM) and 

False Matches Rate (FMR) which is the percentage 

of false matches (FM) to total matches(TM). These 

parameters which are similar to Precision and 

Recall are used in Caltech Campus and David 

Nister datasets. The difference is that here we 

compared the percentage of correct matches to total 

matches of whole dataset. CMR and FMR are 

formulated as follows:  

 

 

 

 

5.2   Result and Analysis 

The proposed descriptor has been evaluated using 

some established evaluation technique and datasets. 

In the first dataset which is proposed by [24],  

Precision-Recall curve using threshold-based 

similarity matching is used to evaluate the 

performance of the proposed descriptor. Unlike the 

nearest neighbor matching technique, which looks 

up for matches with the lowest descriptor distance 

in a dataset, the similarity matching technique pair 

of keypoints is assumed matched if the descriptor 

distance is below a certain threshold value. Figure 9 

shows the Precision-Recall curves of Mikolajczyk 

and Schmid datasets over transformations such as 

view point, blur, brightness, JPEG compression, 

rotation and scale change. SURF, BRISK and 

FREAK descriptors are used for comparison.  

Note that (SURF detector) was used for all 

descriptors in first experiment. For benchmarking 

purpose, we have used the same descriptor 

parameter used by many researchers [5], [6], [13]. 

In terms of blur transformation Figure 9 shows that 

proposed descriptor has relatively superior 

performance compared to other descriptors. In 

addition, the proposed method BRISK descriptor 

also shows relatively promising performance. 

Surprisingly, FREAK descriptor shows relatively 

poor performance in terms of blur transformation in 

this dataset. It seems that this descriptor is not 

suited to the threshold test which is reported in [3] 

as well. This is probably due to distribution of 

distances seen in practice. 

In terms of brightness transformation, in lower 

descriptor distance thresholds, BRISK and FREAK 

descriptors have better performance. However, as 

we increase the threshold value, these techniques 

left behind the proposed descriptor. Surf descriptor 

has the worst performance in brightness 

transformation. With regard to JPEG compression, 

in majority of threshold domain, the proposed 

descriptor has superior performance compared to 

other descriptors. BRISK descriptor also has 

relatively good performance in this experiment. 

Similar to blur transformation, FREAK descriptor 

delivers relatively poor performance. In terms of 

view point transformation, BRISK descriptor has 

the highest performance compared to other 

descriptors in this experiment.  

 

 

Figure 9: The Quantitative Evaluation Of Proposed 

Descriptor Compare To SURF, BRISK And FREAK 

Descriptors Over Dataset 1. 

The proposed descriptor also shows promising 

transformation results which in higher threshold 

values it outperforms other descriptors. In terms of 

rotation and scale transformation, BRISK and 



Journal of Theoretical and Applied Information Technology 
 10

th
 April 2016. Vol.86. No.1 

© 2005 - 2016 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
169 

 

FREAK descriptors have superior performance 

among the descriptors in the experiment. The 

results reported in [3] also support our experimental 

results. Generally, the performance of descriptor 

cannot be properly judged based on only a 

particular dataset, because the pair’s rank and rates 

might change considerably in different scenes and 

image types in the real word.     

The second evaluation environment is performed 

on dataset 2 and dataset 3. Table 2 and 3 show the 

average false match and correct match rates of 

different descriptors over all images in Caltech 

Campus Building Database (CB) and David Nister 

dataset (DN) respectively. In these experiments 

image one of each image group (reference image) is 

probed with other images in each image group to 

find the potential match descriptors. Unlike the 

experiments in Figure 9 these experiments use 

different detectors which are SURF and BRISK 

detectors to detect keypoints in image. For fair 

comparison the detectors are tuned such a way that 

number of detected features are almost equal for 

both detectors. 

Based on table 2, SURF-SURF detector/ 

descriptor pair with CMR=67.5% and CMR=64% 

in image pairs 1-2 and 1-3 respectively delivers 

better performance compared to other 

detector/descriptor pairs in this experiment. 

However, for image pair 1-5 the combination of 

SURF detector and the proposed descriptor with 

CMR=65.5% outperforms the other 

detector/descriptor pairs. Table 2 also shows that 

BRISK-FREAK pair has relatively poor 

performance in this dataset.  

Table 3 shows the average false matches and 

correct matches of David Nister Dataset. The table 

shows that BRISK-BRISK detector/descriptor pair 

with CMR=68% in image pairs 1-2 delivers better 

performance compared to other detector/descriptor 

pairs in this dataset. In image pair 1-3, the proposed 

descriptor with CMR=64.5% has superior 

performance compared to other descriptors. Finally, 

SURF-SURF pair which generates the CMR=64% 

has relatively better performance in image pair 1-4. 

According to Figure 9 and tables 1 and 2 we can 

conclude that the proposed Tomography-Based 

descriptor has the edge in blur, brightness and JPEG 

compression transformation. Meanwhile, it has 

reasonable performance in view point, rotation and 

scale transformations. Note that the performance of 

descriptors is very dependent on the combination of 

detector/descriptor pairs and the dataset.  

 

Table 2.  Detector/descriptor pair performance evaluation for Caltech Campus Building Database.    TM = the total 

number of matches over whole dataset, FMR = the percentage of False Matches and CMR = the percentage of Correct 

Matches. 

Detector Descriptor Image 1-2 Image 1-3 Image 1-5 

TM FMR CMR TM FMR CMR TM FMR CMR 

SURF SURF 510000 32.5% 67.5% 480000 36% 64% 450000 48% 52% 

BRISK BRISK 260000 55% 45% 210000 51.5% 48.5% 200000 45.5% 44.5% 

BRISK FREAK 248000 64.5% 35.5% 195000 58% 42% 180000 49% 51% 

SURF PROPOSED 445000 51% 49% 350000 39.5% 60.5% 290000 43.5% 56.5% 

 

Table 3. Detector/descriptor pair performance evaluation for David Nister Database. 

 

 

In order to demonstrate the proposed descriptor 

performance in addition to the quantitative 

evaluations provided above, qualitative evaluation 

of proposed descriptor is depicted in Figure10.  

Several image pair samples are randomly selected 

from datasets 2 and 3. These image pairs consist of 

various transformations mentioned in table 1. The 

yellow color lines which link the detected keypoints 

in each image pair shows the total descriptor 

matches in the proposed descriptor. However we 

can observe few false matches in some cases.   

Detector Descriptor Image 1-2 Image 1-3 Image 1-4 

T-M FMR CMR T-M FMR CMR T-M FMR CMR 

SURF SURF 680000 41% 59% 665000 42.5% 57.5% 670000 36% 64% 

BRISK BRISK 490000 32% 68% 475000 37.5% 62.5% 485000 41.5% 58.5% 

BRISK FREAK 465000 44% 56% 440000 41% 59% 448000 48% 52% 

SURF PROPOSED 650000 36% 64% 610000 35.5% 64.5% 595000 47% 53% 
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Figure 1: The qualitative evaluation of the proposed 

descriptor over datasets 2 and 3. 

 

6. CONCLUSION 

 

In this study we have proposed keypoint 

descriptor based on Tomographic Image 

Reconstruction using heuristic Genetic Algorithm. 

A predefined Gaussian smoothed sensitivity map 

together with Genetic Algorithm (GA) were used to 

generate the proposed descriptor. The proposed 

Tomography-Based descriptor was evaluated using 

three benchmark datasets in [24] [37] [38]. The 

main findings of this study demonstrate that the 

proposed Tomography-Based descriptor 

outperforms representative state-of-the art 

techniques in image distortions and transformations 

in particular blur, brightness and JPEG 

compression. Meanwhile, it has reasonable 

performance in view point, rotation and scale 

transformations. Note that the performance of 

descriptors heavily depends on the combination of 

detector/descriptor pairs and the dataset. The 

proposed descriptor can be applied in many 

different computer vision and image retrieval 

applications such as low quality medical images.    
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