
Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

321

PARALLEL IMPLEMENTATION OF APRIORI ALGORITHMS

ON THE HADOOP-MAPREDUCE PLATFORM- AN

EVALUATION OF LITERATURE

A.L.SAYETH SAABITH

1
, ELANKOVAN SUNDARARAJAN

2
, AND AZURALIZA ABU BAKAR

3

1,2
Centre for Software Technology and Management,

3
Center for Artificial Intelligence and Technology,

Faculty of Information.

Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor-DE, Malaysia.

A B S T R A C T

Data mining is the extraction of useful, prognostic, interesting, and unknown information from massive

transaction databases and other repositories. Data mining tools predict potential trends and actions,

allowing various fields to make proactive, knowledge-driven decisions. Recently, with the rapid growth of

information technology, the amount of data has exponentially increased in various fields. Big data mostly

comes from people’s day-to-day activities and Internet-based companies. Mining frequent itemsets and

association rule mining (ARM) are well-analysed techniques for revealing attractive correlations among

variables in huge datasets. The Apriori algorithm is one of the most broadly used algorithms in ARM, and

it collects the itemsets that frequently occur in order to discover association rules in massive datasets. The

original Apriori algorithm is for sequential (single node or computer) environments. This Apriori algorithm

has many drawbacks for processing huge datasets, such as that a single machine’s memory, CPU and

storage capacity are insufficient. Parallel and distributed computing is the better solution to overcome the

above problems. Many researchers have parallelized the Apriori algorithm. This study performs a survey

on several well-enhanced and revised techniques for the parallel Apriori algorithm in the Hadoop-

MapReduce environment. The Hadoop-MapReduce framework is a programming model that efficiently

and effectively processes enormous databases in parallel. It can handle large clusters of commodity

hardware in a reliable and fault-tolerant manner. This survey will provide an overall view of the parallel

Apriori algorithm implementation in the Hadoop-MapReduce environment and briefly discuss the

challenges and open issues of big data in the cloud and Hadoop-MapReduce. Moreover, this survey will not

only give overall existing improved Apriori algorithm methods on Hadoop-MapReduce but also provide

future research direction for upcoming researchers.

Keywords: Data mining big data ARM Hadoop-MapReduce Cloud Apriori

1 INTRODUCTION

Data mining is the process of extracting

useful, potential, novel, understandable, and

concealed information from databases that are

huge, noisy, and ambiguous[40,97]. Data mining

plays a vital role in various applications in the

modern world, such as market analysis, credit

assessment, fraud detection, medical and pharma

discovery, fault diagnosis in production systems,

insurance and healthcare, banking and finance,

hazard forecasting, customer relationship

management (CRM), and exploration of science

[6,47,69,71,87,95]. Many view data mining as

synonymous to Knowledge Discovery from Data

(KDD), while others consider data mining as an

essential stage in the KDD process [25,47,128].

The outline of the KDD process is shown in

Figure 1.

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

322

The first step is to define a problem from a

particular domain that contains appropriate

previous knowledge and particular application

goals. The second process is choosing an

appropriate dataset, which consists of a dataset or

concentrates on a subset of variables or data

samples on which discovery is to be

accomplished. Pre-processing is the third step of

the KDD process, which consists of data

collecting, data cleaning, and data selection. It is

the key step in the KDD process, and it removes

noise, outliers, and redundant or irrelevant

information, handles missing data fields, and

determines DBMS issues, such as types of data,

schema, and the managing of missing and

unknown values.

The fourth step is data transformation,

which may refer to data reduction and projection;

this process helps to discover the most valuable

features of the data that is depending on the task

and applies dimensionality reduction, such as

reducing the number of attributes, attribute

values, and tuples, or transformation methods,

such as normalization, aggregation,

generalization, and attribute construction, to

reduce the effective number of variables under

consideration or to find invariant representations

for the data. The fifth step is one of the most

important processes for selecting the appropriate

function of data mining; it constructs a suitable

model derived by the particular data mining

algorithms (e.g. association rule mining,

classification, summarization, clustering, and

regression).

The sixth step is choosing the proper data

mining algorithm(s), which includes selecting

technique(s) to be used to find the patterns of the

data, such as deciding which models may be

proper and matching a particular data mining

technique with the KDD process. The seventh key

step is data mining, which includes discovery of

the interesting patterns in the particular assigned

dataset, including classification rules, decision

trees, regression, clustering, sequence modelling,

dependency, and line analysis. The eighth step is

interpretation, which consists of data mining

techniques and finding out whether a good

clustering or classifying approach must interpret

the result of such an approach. If a result cannot

be explained properly, it is useless for further

application. The last step is utilizing the

discovered knowledge, i.e. using a newly

discovered set of knowledge for future analysis

and the prediction of new models [128].

Business intelligence has become an integral

part of many successful organisations. Analysing

data and making decisions based upon the

analysis is very important for an organisation’s

growth. Data mining techniques help analyse the

substantial data available to assist in decision-

making. Association Rule Mining (ARM) or

Frequent Itemset Mining (FIM) is one of the key

areas of the data-mining paradigm. It is intended

to extract interesting relationships, patterns, and

associations among sets of items in the

transaction database or other data repositories

[12,20,43,128]. The most typical application of

ARM is in market basket analysis, which analyses

Figure. 1. Knowledge discovery of KDD process [32,63]

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

323

the purchasing behaviour of customers by finding

items that are frequently purchased together. In

addition to the many business application, it is

also applicable to telecommunication networks,

web log mining, market and risk management,

inventory control, bio-informatics, medical

diagnosis and text mining [34,47].

The Apriori algorithm is one of the best

classical algorithms for discovering frequent

itemsets from a transactional database, but it has

some drawbacks, such as that it scans the dataset

many times to generate frequent itemsets and that

it generates many candidate itemsets. When data

mining mainly deals with large volumes of data,

both memory usage and computational cost can

be very high; also, a single processor’s memory

and central processing unit resources are

restricted, which impacts the inefficient

performance of the algorithm [5,74]. One way to

improve the performance and efficiency of the

Apriori algorithm is parallelizing and distributing

the process of generating frequent itemsets and

association rules. These versions of parallel and

distributed Apriori algorithms improve the mining

performance but also have some overheads, such

as workload balancing, partitioning of input data,

reduction of the communication costs and

aggregation of information at local nodes to form

the global information [5,60,115,124,125].

The problems with most distributed

framework are the overheads of managing the

distributed system and the lack of a high-level

parallel programming language. Working with a

large number of computing nodes in a cluster or

grid, there is always the potential of node failures,

which cause multiple re-executions of tasks. All

of these pitfalls can be overcome by the Hadoop-

MapReduce framework introduced by Google

[26,27,44,99]. The Hadoop-MapReduce model is

a Java-based programming model for readily and

efficiently developing applications that process

massive datasets in parallel on large clusters of

commodity hardware in a trustworthy failure-

resilient manner [57,91,110].

In this study, we give a detailed review of

several improved Apriori algorithms in the

Hadoop-MapReduce environment and the

challenges and open issues of big data in the

cloud and for Hadoop-MapReduce. The rest of

this paper is organized as follows. Section 2

explains big data and cloud computing. Section 3

elaborates data mining techniques, the basic

concept of ARM, and the Apriori algorithm.

Section 4 provides an overview of the parallel

discovery of the Apriori algorithm and related

challenges. Section 5 describes the concepts of

Hadoop, MapReduce, and HDFS and how the

Apriori algorithm is implemented for the Hadoop-

MapReduce model with an example. Section 6

presents analysis of several improved Apriori

algorithms in the Hadoop-MapReduce

environment. Section 7 briefly discusses the

challenges and open issues of big data in the

cloud and for Hadoop-MapReduce. Section 8

presents the discussion and conclusion.

2 BIG DATA AND CLOUD COMPUTING

Big data is the science of analyzing high volumes

of diverse data in near-real time (volume,

velocity, variety, veracity). Massive amount of

data generated are generated daily due to

technological growth, digitalization and by a

variety of sources, including business application

transactions, web pages, videos, images, e-mails,

and social media. Typically it involves using

NoSQL technology and a distributed architecture

to analyze the data. The analysis can be done in

the public cloud or on private infrastructure.

Cloud computing provides IT resources such as

Infrastructure, Platform, Software, Database, and

Storage as service. It provides many features like:

on-demand self-service, resource pooling, rapid

elasticity, flexible scaling and high availability.

Big data represents content and cloud

computing is an environment that can be used to

perform tasks on big data. Nonetheless, the two

concepts are connected. In fact, big data can be

processed, analyzed, and managed on cloud.

2.1 Big Data

Big data is the term used to delineate massive

amounts of information of both structured and

unstructured data types [113, 131]. Traditional

database techniques and software applications are

not suitable to process big data analytics. Big data

is often characterized using four important

aspects, namely data volume, data variety, data

veracity and data velocity, sometimes referred to

as the 4 V’s of big data (volume, variety, veracity,

and velocity) [45]. In addition, each of the four

V’s has its own consequences for analytics.

Figure 2 shows the 4 V’s characteristics of big

data.

2.1.1 Volume

Volume refers to the generation and collection of

different types of massive data. Most of the

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

324

datasets are too large to store and analyse using

traditional database technology. Distributed

systems are a new type of technology to

overcome the above drawbacks. For instance, 40

zetabytes (43 trillion GB) of data will have been

created by the year 2020, 6 billion people have

mobile devices (85.7% of the total world

population), and 2.5 quintillion bytes (2.3 trillion

GB) of data are produced each day [45,50].

2.1.2 Velocity

Velocity represents the speed at which new data

are generated, stored, analysed, and visualized. In

the big data era, data are produced in real-time, or

near real-time. Currently, the big data production

speed from various perspectives is almost

unbelievable. For instance, every minute, email

users send 204 million messages, Facebook users

share 2.46 million pieces of content, Google

receives over 4 million search queries, and

YouTube users upload 100 hours of video [45,

50].

2.1.3 Variety

Variety represents the various types of data users

can now utilize. Previously, all data fell under

categories of structured data. It was neatly stored

in tables and relational databases. Currently, most

of the world’s data produced by many

organisations and Internet service companies is

unstructured data. Data can be categorized into

four formats: structured data, semi-structured

data, unstructured data, and complex structured

data, such as audio, video, web pages, text,

images, 3D models, simulations, and sensor data

[50]. Big data requires different approaches and

techniques to analyse and manage all of the raw

data.

2.1.4 Veracity

Veracity refers to the uncertainty of data [18].

Different volumes of data come with different

variety at high velocity from different sources.

Organisations need to ensure the veracity of data,

i.e., its accuracy, fidelity, and truthfulness,

because improper data may cause significant

problems for organisations as well as customers.

2.2 Cloud Computing

Cloud computing is a paradigm that is evolved

from distributed processing, parallel computing,

and grid computing. Cloud computing refers to

“Outsourcing” and provides ubiquitous,

expedient, and elastic services over the Internet or

similar networks or both with access to a shared

pool of computing resources, such as storage,

memory, servers, network, applications, and

services [33,52,65] The main features of cloud

computing are resource pooling, rapid elasticity,

self-service and on-demand capabilities, broad

network access, virtualization, accessibility and

scalability, and measured service [65]. Cloud

computing delivers infrastructure, platform, and

software as services via a cloud and delivers them

over the Internet or a private network [29]. These

cloud computing services can be generally

categorized into three different service models:

Infrastructure as a Service (IaaS), Platform as a

Service (PaaS), and Software as a Service (SaaS)

[48,65,109].

2.2.1 Infrastructure as a Service (IaaS)

IaaS is one of three pillars of the cloud-computing

model. This service model allows cloud users to

use virtualized information technology resources

for computing, storage, networking, and other

infrastructure components on behalf of its cloud

users [7,64,65,96]. The user can deploy and run

his applications over his chosen operating system

environment. The user does not have privilege to

manage or control the underlying cloud

infrastructure, but the user can control the

operating system, computing storage, deployed

applications and networking components [96].

Figure. 2. 4 V's Characteristics of Big Data

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

325

Popular IaaS implementations include Amazon

Web Service (AWS), GoGrid, Rackspace Cloud,

Windows Azure, IBM Smart Cloud, and Google

Compute Engine [28].

2.2.2 Platform as a Service (PaaS)

PaaS is the second pillar of the cloud-

computing model. The platform cloud is an

integrated computer system consisting of both

hardware and software infrastructure. The user

application can be deployed on this virtualized

cloud platform using various software tools and

programming languages supported by the cloud
service provider. The cloud user cannot manage

the underlying cloud infrastructure [101,106,

109]. The cloud provider supports user

application development and testing on a well-

defined service platform. This PaaS model

permits a collaborated software platform for users

from all over the world. This model also

motivates third parties to provide software

management, integration, and monitoring

solutions. Common PaaS vendors include Google

App Engine, Salesforce.com (CRM), Microsoft

Azure, Amazon Elastic MapReduce, and Aneka

[28].

Advantages Disadvantages

Cost efficiency
Security and privacy in the cloud due to multi-

tenancy

Convenience and high availability
Performance problems due to the reliance on the

Internet

Backup and recovery

Quick deployment and ease of integration

Resiliency and redundancy

Device diversity and location independence

Scalability and performance

Increased storage capacity

Automatic software integration

Figure. 3. Cloud computing service models with

examples

Table 1: Advantages And Disadvantages Of Cloud

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

326

2.2.3 Software as a Service (SaaS)

The third pillar of the cloud model is SaaS.

SaaS is a way of delivering and managing

software applications over the Internet by one or

more cloud providers. SaaS application software

(s/w) sometimes may refer to web-based s/w, on-

demand s/w or hosted s/w. The providers have

privileged access to the application, including

security controls, availability, and performance.

Suitable examples of SaaS services include

Google Gmail and Docs, Microsoft SharePoint,

and CRM software from Salesforce.com [28].

Figure 3 illustrates three cloud models at

different service levels of the cloud. SaaS is

applied at the application end using interfaces by

users or clients, such as monitoring,

communication, content management, finance,

and collaboration. At the PaaS layer, the cloud

platform must perform object storage, user

identity, runtime, database and job queuing

handling. At the bottom layer of the IaaS services,

block storage, compute instances, the network,

the file system, and storage must be provisioned

to satisfy user demands.

Cloud computing has many advantages as

well as some disadvantages. Table 1 describes the

pros and cons of cloud computing.

3 DATA MINING TECHNIQUES

Data mining methods and tools are a set of well-

defined procedures to create a data mining model

from data repositories [47]. Typically, specified

data mining tools analyse the user-defined data to

create a model considering the exact types of

patterns and trends of the data. The techniques

reveal the solutions of this analysis to define the

optimal parameters for creating the data mining

model [12]. These parameters help to extract the

patterns and detailed statistics from the entire

dataset. Data mining methods involve seven

common classes of data mining techniques

according to function and application purpose,

which are described as follows:

i. Anomaly Detection or Outlier Detection:
Anomaly or Outlier detection refers to the

identification of the items, events, and

observations in a dataset that do not conform

to normal behaviour. SVM, Fuzzy Logic, K-

Means, Nearest Neighbour, and Outlier Count

are the popular algorithms used in outlier

detection [84]. The outlier detection

techniques can be applied to numerous

domains, such as network intrusion detection,

telecommunication fraud detection, credit card

fraud detection, fault detection, system health

monitoring, and event detection in sensor

networks [12,34,47]
.

ii. Association Rule Mining (ARM): ARM

attempts to find frequent itemsets among large

datasets and describes the association

relationship among different attributes [85].

The most-used algorithms for ARM are

Apriori, Eclat, FP-Growth, and partition.

Market basket analysis, text mining, Web

usage mining, protein sequences, and

Bioinformatics are the application areas for

ARM [12,13,34,47].

iii. Classification: Classification is the data

mining function that assigns items in a

collection to target categories or classes [34].

The goal of classification is to build a model

that can accurately predict the target class for

each case in the data. Decision Tree, Naïve

Bayes, k-NN, GLM, and SVM are the well-

known algorithms, and fraud detection, credit

risk, stock market, DNA, and E-mail

classification are well-established areas using

classification techniques [12,34,47,85]

iv. Clustering: Clustering is the process of

grouping a set of physical or abstract objects

in such a way that objects in the same group

are more similar to each other than to those in

other groups. K-Means, canopy, DBSCAN,

EM, Fuzzy, C-Means, CLOPE, and cobweb

are popular implementations of clustering.

The clustering techniques can be implemented

in several fields, such as machine learning,

pattern recognition, image analysis,

information retrieval, bioinformatics, crime

analysis, and climatology (12,23, 34, 47].

v. Regression: Regression is commonly used to

predict future trends based on past values by

suitable points on the curve. Multivariate, and

Adaptive Regression are two of the best

algorithms used in regression analysis. The

detection of fraud, and the minimization of

risk assessments are suitable areas for the use

of regression analysis [10, 47, 97].

vi. Summarization: Visualization and report

generation is the main goal of the

summarization. It provides a more compact

representation of the dataset [47]. LexRank,

TF–ISF, and TextRank are two of the best

algorithms used in summarization. Multimedia

documents, text summarization, and image

collection are appropriate domains to

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

327

graphically represent data using

summarization [3,69].

vii. Mining Time-Series Data: Many

organisations and business industries utilize

time-series or dynamic data. It is typically the

case that all statistical and real-time control

data used in process monitoring and control

are essentially time series. A time-series

database consists of sequences of values or

events obtained over repeated measurements

of time. The values are typically measured at

equal time intervals (e.g. hourly, daily, and

weekly). Time-series databases are popular in

many applications, such as stock market

analysis, economic and sales forecasting,

budgetary analysis, utility studies, inventory

studies, yield projections, workload

projections, process and quality control,

observation of natural phenomena (such as the

atmosphere, temperature, wind, and

earthquakes), scientific and engineering

experiments, and medical treatments[35,97].

3.1 Association Rule Mining (ARM)

ARM is one of the key methods of data mining

techniques, and it was introduced by Agrawal et

al. in 1993. We elaborate some generic concepts

of association rules of mining formally as

follows:

Let �	 � 	 ���, ��,	. . . , �
�	�e a set of m different

literals or items. For instance, goods such as bags,

pens, and pencils for purchase in a shop are items.

X is a set of items such that	 ⊆ �, a collection of

zero or more items, is called an itemset. If an

itemset contains � items, it is called a k-itemset.

For example, a set of items for purchase from a

super market is an itemset.

Let � � ���, ����, … . . , ��� be a set of transactions,

where each transaction � has ��� and � � �������
� � ����, � � ��������.
The itemset has in the transaction dataset � a

support, denoted as S; if �% transaction

contains	, here we called	� � �!""��.
�!""�� � |�� ∈ �; ⊆ ��||�|

An itemset X in a transaction database D is

called a large, or frequent, itemset if its support is

equal to, or greater than, the threshold minimal

support (minsup) given by users. The negation of

an itemset X is	&.

The support of & is	�!""�&� 	� 	1	 �
	�!""�).

An association rule is an implication in the form

of	 →),*+�,�	,)	 ⊆ �	-.�	 ∩) � 0

[117,127]. The quality of an association rule can

be represented as measurements, support and

confidence.

�!""1,�	��� determines how often a rule is

applicable to a given dataset.

�� →)� � Supp� ∪)� �6 .

71.8���.9��7� determines how frequently items

in) appear in transactions that contain	.

7� →)� � �!""� ∪)�/�!""��	.
The association rule mining task can be broken

down into two sub-tasks [43, 116, 129].

I. Finding all of the frequent itemsets that

have support above the user-specified

minimum support, i.e. generating all

frequent itemsets.

II. Generating all rules that have minimum

confidence in the following simple way:

For every frequent itemset	 and

any	;	 ⊂ 	, =��	>	 � 		 � 	;. If the

confidence of a rule >	 → 	; is greater

than or equal to the minimum confidence

(or	�!""��/�!""�>� 	? 	��.91.8),

then it can be extracted as a valid rule.

The ARM performance typically depends on

the first task. Usually, ARM generates a vast

number of association rules. Most of the time, it is

difficult for users to understand and confirm a

huge number of complex association rules. Thus,

it is important to generate only “interesting” and

“non-redundant” rules or rules satisfying certain

criteria, such as being easy to handle, control,

understand, and increase the strength of. Dozens

of algorithms have been developed to find the

frequent itemsets and association rules in ARM,

and some of the commonly used algorithms are

the Apriori algorithm, partition algorithm, hash

tree algorithm, dynamic item set counting

algorithm, FP tree growth algorithm, Eclat and

dEclat.

3.1.1 Apriori algorithm

The rapid advancement of information technology

has resulted in the accumulation of tremendous

amounts of data for organisations, and therefore,

extracting needed information from huge amounts

of data has been a significant challenge for

researchers [79]. Apriori is a classic and broadly

used ARM algorithm. It uses an iterative

approach called breath-first search to generate

�� � 1� itemsets from � item sets. The basic

principal of this algorithm is that all nonempty

subsets of a frequent itemset must be frequent

[15,97]. There are two main steps in Apriori:

1. The prune step: remove an itemset if its

support is less than min_sup, which is a value

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

328

predefined by the user, and abandon the

itemset if its subset is not frequent.

2. The Join step: candidates are produced by

joining among the frequent itemsets level-

wise. The key drawback of this algorithm is

the multiple dataset scans.

Algorithm 1 presents the pseudocode of the

Apriori algorithm [97].

Algorithm 1: Frequent itemset generation of the

Apriori algorithm

k =1

Lk = {i|i ∈ I ∧ σ({i}) ≥ N × minsup}.

 {Find all frequent 1-itemsets}

 repeat

 k=k+1.

 Ck = apriori-gen(Lk-1)).

{Generate candidate itemsets}

 for each transection t ∈ T do

 Ct = subset(Ck, t)

 {Identify all candidates that belong to t}

 for each candidate itemset c ∈ Ct do

 σ(c) = σ(c)+1. {Increment support count}

end for

end for

 Lk = {c|c ∈ Ck ∧ σ(c) ≥ N x minsup

 {Extract the frequent k-

itemsets}

 until Lk = ϕ

 Result = ⋃Lk

Cloud could be a perfect platform for data

mining algorithms because of the advantages of

cloud such as availability, scalability, recovery,

performance, and cost effective. However, the

classical Apriori algorithm cannot be

implemented in the parallel environment because

it was intended for sequential processing.

Numerous techniques have been proposed to

improve the efficiency of the classical Apriori

algorithm, such as direct hash and pruning (DHP),

transaction reduction, partitioning, sampling,

dynamic itemset counting (DIC), vertical layout

techniques, and FP-Growth [53]. Table 2 describe

some popular sequential Apriori algorithms that

have improved the efficiency and performance of

the original Apriori algorithm in a sequential

manner.

4 PARALLEL DISCOVERY OF THE

APRIORI ALGORITHM

The current parallel and distributed algorithms are

based on the classical Apriori algorithm. Classical

Apriori is a well-known algorithm for discovering

frequent itemsets from a transactional database;

however, it needs to scan the dataset repeatedly to

find frequent itemsets, and it generates numerous
candidate itemsets. Unfortunately, if the dataset

is massive, both the memory usage and

computational cost are more expensive.

Moreover, a single machine processor’s memory

and central processing unit resources are

inadequate, which makes the algorithm

performance inefficient. Furthermore, because of

the exponential increase in global information,

many organisations must deal with big data. As

these data grow past GBs towards TBs or more, it

becomes infeasible to manage, store, and analyse

such data on a single sequential machine.

Parallel and distributed computing offer a

potential solution for the above problems when

efficient and scalable parallel and distributed

algorithms can be implemented. Count

Distribution (CD), Data Distribution (DD) and

Candidate Distribution are three parallel versions

of the Apriori algorithm that have been developed

by Agrawal and Shafer [5]. Ever since, many

versions of parallel algorithms

have been proposed to improve the efficiency of

the classical Apriori algorithm [1,5,11,20,21,22

,36,37,51,72,73,78, 89,90,94,103,112, 118,119,

120,123,125]. These parallel algorithms can be

implemented in the cloud-computing environment

to reduce computation time, memory usage and

I/O overhead for generating frequent itemsets.

This can boost the performance of association

rule-mining algorithms.

4.1 Count Distribution algorithm (CD)

This technique involves the data parallelism

approach that splits the database into horizontal

partitions and then scans individually to find the

local counts of all candidate itemsets on each

process. Finally, the local counts are summed up

after every iteration to obtain the global count to

find frequent itemsets. The main advantage of this

method is the minimization of the communication

cost, as data tuples are not exchanged among

processors, only the counts are exchanged

[5,125]. Table 3 describes the count distribution

algorithm

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

329

pseudocode and complexity analysis.

4.2 Data Distribution Algorithm (DD)

This method is helpful in using the average main

memory of machines in parallel by partitioning

both the database and the candidate itemsets. As

each candidate itemset is counted by only one

process, all processes have to exchange database

Method Description

Storage

data

structure

Database Algorithm proposed by

Direct hash

and

pruning

(DHP)

This method attempts to generate

large itemsets efficiently and

reduces the transaction database

size. When generating L1, the

algorithm also generates all of

the 2-itemsets for each

transaction, hashes them to a

hash table and keeps a count.

array Suitable for

medium-

size

databases

[68,75,76,77,122]

Transaction

reduction

A transaction that does not

contain any frequent k+1-itemset

may be marked and removed.

array Suitable for

small- and

medium-

size

databases

[93,100,117]

Partitioning The set of transactions may be

divided into a number of disjoint

subsets. Then, each partition is

searched for frequent itemsets.

These frequent itemsets are

called local frequent itemsets.

array More

suitable for

huge-size

databases

[30, 80, 81, 125]

Sampling A random sample (usually large

enough to fit in the main

memory) may be obtained from

the overall set of transactions,

and the sample is searched for

frequent itemsets

array Right fit for

all sizes of

databases

[42, 62, 102,123]

Dynamic

itemset

counting

(DIC)

DIC allows for the counting of

an itemset to begin as soon as we

suspect that it may be necessary

to count it.

array Appropriate

for small-

and

medium-

size

databases

[16,17,19,98]

Vertical

layout

technique

(Eclat)

The Eclat algorithm is based on

depth-first search algorithm

techniques. It uses a vertical

database layout instance of a

horizontal layout, i.e., instead of

explicitly listing all transactions,

each item is stored together with

its cover (also called tidlist), and

the intersection-based approach

is used to compute the support of

an itemset.

array Suitable for

medium-

size and

dense

datasets but

not small-

size datasets

[103, 121]

Table 2: Methods for improving the Apriori algorithm

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

330

partitions during each iteration for each process

to obtain the global counts of the assigned

candidate itemsets. The key advantages of this

method are that the total memory of the system

is used more efficiently and that this algorithm is

viable only on a machine with very fast

communication [5,125]. Table 4 explains the

data distribution algorithm pseudocode and

complexity analysis.

4.3 Candidate Distribution algorithm

This method also partitions candidate itemsets

but selectively uses replicas, instead of

partitioning and exchanging database

transactions, such that each process can proceed

independently. The main advantage of this

method is that this algorithm tries to do away

with the dependence between processors;

therefore, processors work separately without

synchronizing. Table 5 explains the data

distribution algorithm pseudocode.

4.4 Challenges of a parallel Apriori

algorithm

Apriori parallel algorithms handle gigantic

datasets on various platforms with different

configurations. There are many major challenges

that need to be considered, as mentioned below.

• How can efficacious load balancing be

achieved, and which type of load balancing

(static or dynamic) is suitable for a particular

algorithm to use?

• How can the total memory system be used

effectively?

• How can new algorithms be produced for

different memory systems?

• Which data layout is more convenient to use

(horizontal, vertical, hybrid, or projection)?

• How is the choice of which parallel technique

(data or task parallelism) to use in a new

algorithm decided?

• How can the communication cost among

processors be reduced?

• How can synchronization be minimized?
• How can system failure and data recovery be

managed?

• How can parallel programming issues be

simplified?

• How can scalability and high availability be

managed?

5 APRIORI ALGORITHM ON THE

HADOOP-MAPREDUCE MODEL

To overcome the above-stated major challenges,

the Hadoop-MapReduce framework is a suitable

solution. Hadoop is an open-source

programming framework that is capable of

running applications for large-scale processing

and storage on large clusters of commodity

hardware [57,110]. Hadoop cluster

characteristics include the partitioning or

distributing of data, computation across multiple

nodes, and performing computations in parallel

[88]. It provides applications with both reliability

and data motion. The Apache Hadoop

framework consists of four core components:

Hadoop common, Hadoop distributed file

system, Hadoop YARN, and Hadoop-

MapReduce. Hadoop common contains Java

libraries and utilities required by other Hadoop

components. These libraries contain the file

system and essential Java files and scripts and

operating system-level abstractions.

The Hadoop Distributed File System

(HDFS) that stores data on the simple computer

machines provides high-throughput aggregate

bandwidth across the cluster [91]. Hadoop

YARN is a resource-management framework for

handling compute resources and job scheduling

of user applications [105]. Hadoop-MapReduce

is a programming model for parallel processing

of large-scale datasets. Beyond the above four

modules, the Apache Hadoop framework has

many related projects, such as

Oozie, HBase, Pig, Mahout, Hive,

Sqoop, Flume, and Zookeeper.

Figure 4 illustrates components of the Hadoop

framework and their ecosystem [82].

Figure 4. Hadoop framework and its ecosystem

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

331

Table 3: CD Algorithm Pseudocode And Analysis

Table 4: DD Algorithm Pseudocode And Analysis

Table 5: Candidate Distribution Algorithm Pseudocode

Method Pseudo code Analysis

Count

Distribution

Algorithm (CD)

Pass>1

Generate complete Ck from Lk-1

Count local data Di to find support for Ck

Exchange local count for Ck to find global

Ck

Compute Lk from Ck

Pass k=1

Generate local C1 from local data Di

Merge local candidate sets to find C1

B�C/D�
B�91!.��/D	 E 	1F�,+�-�

G B�|7H|�	"�,	7DIH

G logD
H

Input/output Time

CPU Time

Communication Volume

Message Count

Method Pseudo code Analysis

Data

Distribution

Algorithm

(DD)

Partition data + candidate set

Generate Ck from Lk-1 ; retain |7H|/D

locally

Count local Ck using both local and

remote data

Calculate local Lk using the local Ck and

synchronize

B�C/D�
B�91!.��/D	 E 	1F�,+�-�

G B�C�	"�,	7DI
H

G B�D�
H

Input/output Time

CPU Time

Communication Volume

Message Count

Method Pseudo code

Candidate

Distribution

Algorithm

Pass k < l: Use either Count or Data distribution algorithm

Pass k = l:

Partition Lk-1 among the N processors such that Lk-1 sets are “well balanced”.

Processor Pi generates Ck logically using only the Lk-1 partition assigned to it.

Pi develops global counts for candidate in Ck and the database is repartitioned into

Di at the same time.

After Pi has processed all its local data and any data received from all other

processors, it posts N-1 asynchronous receive buffers to receive Lk from all other

processors. These Lk are needed for pruning Ck+1 in the prune step of candidate

generation.

Processor Pi computes Lk from Ck and asynchronously broadcasts it to the other N-

1 processors using N-1 asynchronous sends.

Pass K>1:

Processor Pi collects all frequent itemsets that have been sent to it by other

processors.

Pi generates Ck using the local Lk-1.

Pi makes a pass over Di and counts Ck.

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

332

Figure. 5. High-level architecture of Hadoop

5.1 Hadoop Common

The Hadoop software library is an Apache open-

source framework written in the Java

programming language that allows for the

distributed processing of huge datasets across

clusters of computers using simple programming

models [8,44]. It is an Apache project released

under Apache Open Source License v2.0, which

is very commercially friendly. The Hadoop

framework provides distributed storage and

computation among computers on clusters.

HDFS provides the distributed storage.

MapReduce performs the computing process

across the clusters of computers [44, 57,110].

Figure 5 illustrates the high-level architecture of

Hadoop.

5.2 Yet Another Resource Negotiator

(YARN)

Apache Yet Another Resource Negotiator

(YARN) is a next-generation compute and

resource management infrastructure, and it

delegates many scheduling functions (e.g. task

fault tolerance) to per-application components in

Hadoop[110]. YARN eliminates the scalability

limitation of the first-generation MapReduce

paradigm. YARN’s basic idea is to split the two

major functionalities of the JobTracker, resource

management and job scheduling, into separate

daemons.

The idea is to have a global ResourceManager

and per-application ApplicationMaster. The

ResourceManager arbitrates resources among all

of the applications in the system and has two

components: the Scheduler and Applications

Manager [56]. The YARN architecture is shown

in Figure 6.

5.3 Hadoop Distributed File System

(HDFS)

HDFS is responsible for storing very large data

reliably on a cluster in Hadoop. Files in HDFS

are split into blocks before they are stored on the

cluster. The typical size of a block is 64 MB or

128 MB. The blocks belonging to one file are

then stored on different nodes. HDFS separately

stores application data as well as file-system

metadata. HDFS stores metadata on the

NameNode, and application data are stored on

DataNodes. All nodes are fully connected and

communicate among themselves using TCP-

based protocols. HDFS has many characteristics,

such as its ‘writing to one-reading to many’

model, processing logic near to the data instead

of moving the data to the processing logic, data

access through MapReduce streaming, simple

and robust model, scalability for processing huge

data and storing data reliably, cost effectiveness

for distributing and processing data across

clusters of commodity hardware, efficient

distribution of data and parallel processing, and

reliability manifested in maintaining multiple

copies of data on existing nodes [91,92]. Figure

7 describes a logical representation of the

components in HDFS.

5.4 MapReduce

MapReduce is a software framework designed to

process and generate large amounts of data in-

parallel across distributed clusters (thousands of

nodes) of personal computer hardware in a

trustworthy, fault-recoverable manner [74]. The

Figure. 7. HDFS shows how a client communicates

with the master NameNode and slave DataNodes

Figure. 6. YARN architecture [8]

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

333

MapReduce paradigm is composed of the map

task, which takes input pairs and produces

intermediate key/value pairs, and the reduce task,

which accepts the output key/value pairs from

the map task and merges, shuffles, and combines

those key/value pairs.

The map task is always performed before the

reduce task. Generally, both the input and the

output are stored in HDFS. The framework is

responsible for scheduling tasks, monitoring

them and re-executing the failed ones [44, 57,

110]. A logical view of the MapReduce

programming model is shown in Figure 8.

Figure. 8. Logical view of the MapReduce

programming model

The map operation and reduce function need to

be defined by the programmer. Figure 9 shows a

logical view of the map function with respect to

its input and output.

Figure 9. Logical view of the map function

The shuffle and sort phases are illustrated in

Figure 10.

Figure. 10. Logical view of reduce function

Figure 11 illustrates the pseudocode definition of

a reduce function.

Figure. 11. Logical view of the reduce function

Hadoop’s MapReduce architecture is based on

the master-slave architecture model in HDFS.

The overall logical architecture of the Hadoop-

MapReduce framework with its main

components is shown in Figure 12

Figure. 12. Logical architecture of MapReduce

5.5 Apriori example on the Hadoop

MapReduce model

The following example briefly describes how to

implement the Apriori algorithm on the Hadoop-

MapReduce model, as shown in Figure 13, using

the Map, Shuffle, and Reduce processes.

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

334

6. ANALYSIS OF SEVERAL IMPROVED

APRIORI ALGORITHMS IN THE

HADOOP-MAPREDUCE ENVIRONMENT

In this section, the related works are analysed

regarding four categories: the objective of the

work, main theme of the researchers’ concern,

datasets that were used for the experiment, and

machine configuration and platform used to

execute the proposed studies. The following

tables describe the above four categories as

follows:

Table 6 presents several related studies that use a

parallel Apriori algorithm to deal with big data

through the use of the Hadoop and MapReduce

distributed framework. This table provides the

objectives of related papers that deal with a

parallel Apriori algorithm based on Hadoop

technologies and describes the techniques and

technologies used in the Hadoop-MapReduce

environment to address big data.

Table 7 summarizes the main theme of the

related studies.

Table 8 demonstrates the datasets that were used

to analyse the proposed studies. Some

researchers have given very clear details of the

dataset that they used.

Table 9 summarizes the hardware and software

configuration and platform where the authors

implemented their experiment.

 Figure. 13. Apriori example on MapReduce framework

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

335

Table 6: Review of several improved Apriori algorithms on Hadoop-MapReduce and their objectives

Reference Objective

[60] To evaluate the performance of their proposed Apriori algorithm in terms of

size-up, speedup, and scale-up to address massive-scale datasets.

[117] They proved their improved Apriori algorithm on a theoretical basis. First, they

replace the transaction dataset using the Boolean matrix array; by this method,

non-frequent item sets can be removed from the matrix, and there is no need to

scan the original database repeatedly. It just needs to operate on the Boolean

matrix using the vector operation “AND” and the random access characteristics

of the array so that it can directly generate the k- frequent itemsets.

[74] From this study, they suggested a count distribution algorithm as the best way to

parallelize the Apriori algorithm. Hadoop has three modes of operation: as the

Standalone, Pseudo-Distributed, and Fully-Distributed modes. The count

distribution strategy was chosen to implement the Apriori algorithm on a

Hadoop cluster.

[31] The authors have improved the Apriori algorithm using the following steps:

• Split the transaction database horizontally into n data subsets and

distribute them to ‘m’ nodes.

• Each node scans its own datasets and generates a set of candidate

itemsets 7M

• Then, the support count of each candidate itemset is set to 1. This

candidate itemset 7M is divided into r partitions and sent to r nodes with

their support count. r nodes respectively accumulate the support count

of the same itemset to produce the final practical support and determine

the frequent itemset NM in the partition after comparing with the

min_sup.

• Finally merge the output of r nodes to generate set of global frequent

itemset L

[111] To illustrate its time complexity, which theoretically shows that the algorithm

has much higher performance than the sequential algorithm when the map and

reduce nodes get added.

[114] To compare and prove the good performance of the newly proposed 2-phase

algorithm with previously existing 1-phase and k-phase scanning algorithms

repeatedly changing the number of transaction and minimum support.

[59]) To deploy the revised Apriori algorithm on Amazon Elastic Cloud Computing

(EC2) to assess the performance when varying the number of nodes and

min_sup threshold.

[54]

C � OP��7OP��7

OP��7 � OP��7 � =1QRC	

To produce all of the subsets that would be generated from the given itemset,

these subsets are searched against the datasets and frequency is noted. There are

huge data itemsets and their subsets, hence they must be searched

simultaneously so that the search time is reduced. An experiment evaluated this

by changing the Hadoop mode with Fully configured multi-node Hadoop with

Different System Configuration (FHDSC) and Fully configured multi-node

Hadoop with Similar System Configuration (FHSSC)

where N is the number of nodes installed in the cluster

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

336

[83] The Apriori algorithm is a famous algorithm for association rule mining. The

traditional Apriori algorithm is not suitable for the cloud-computing paradigm

because it was not designed for parallel and distributed computing. The current

implementations have the drawback that they do not scale linearly as the number

of records increases. Secondly, the execution time increases when a higher value

of k-itemsets is required. Thus, the authors have attempted to overcome the

above limitations, and they have improved the Apriori algorithm such that it

now has the following features:

• It will scale linearly as the number of records increases.

• The time taken will be agnostic to the value k. That is, whatever k-

itemsets run occurs, it will take the same amount of time for the given

number of records.

[49] The authors have produced a new map-reduce-based algorithm expressing the

problem of mining frequent itemsets using dynamic workload management

through a block-based partitioning. The block-based approach addresses

memory constraints because the basic task of generating combinations may need

a very large memory space depending on several parameters, including the

support threshold. The features of the proposed algorithm are that it uses a

properly tuned estimation to measure the correct itemset during the pass, and the

redundancy is eliminated by handling duplicates carefully and because of the

workload management.

[46] In this study, the authors proposed a new parallel frequent pattern algorithm.

The proposed algorithm has five steps:

• Divide the complete transaction database Db into the number of

available processors so that each individual processor works on the

allocated DB in parallel

• Construct the Global Frequent Header Table using a MapReduce task

for the first time

• Generate conditional frequent patterns using a map task the second

time

• Each reducer combines all conditional frequent patterns of the same

key to generate frequent sets

• All reducers’ outputs are aggregated to generate the final frequent sets.

[66] They proposed an algorithm that used a Trie structure and grouping

methodology, but it will locally prune the dataset at the base level as well as at

an intermediate level by grouping nodes into clusters. At the end, the final

aggregation of the frequent itemsets is done at the global level. The proposed

algorithm can reduce the message passing overhead. Like the gossip-based

mining approach, the overall message passing overhead occurs because it

follows a random approach for communication, and, if any update occurs, then

the message passing should occur randomly for all nodes, while, in our proposed

strategy, the global dataset generated is centralized, so it will take only one

message for one node to communicate. Additionally, fault tolerance is

automatically resolved by using the Hadoop distributed framework.

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

337

[107]

>99!,-9S � �TD E TC�
�TD E TC E OD E OC�

D,�9���1. � TD
�TD E OD�

��.����F��S�U�9-==� � TD
�TD E OC�

The authors introduce a method named the Token-Based approach that is used

to generate precise frequent patterns of data. The input of this module is the

output from the previous module. The output displayed after the elimination of

the threshold value is the frequent pattern. They evaluated the performance by

using a confusion matrix; it provides the accuracy of the patterns.

Confusion Matrix Frequent Infrequent

Frequent True Positive(TP)
False

Negative(FN)

Infrequent False Positive(FP)
True

Negative(TN)

[104] From this study, they introduced a method to measure the performance of the

distributed algorithm. Measuring the spent time of an algorithm that runs on

multiple machines in a parallel environment is not a trivial task. The Hadoop

framework can tell how long a job was running, but their computations are using

multiple jobs; they can sum up these jobs of course, but the framework does

many things in the background, such as copying code and data between the

nodes as well as ordering and shuffling the intermediate job data. Thus, they

created a scaffolding framework for their implementation that is responsible for

measuring the time spent on each task.

[55] Several Apriori-based algorithms were developed, but the modifications are

based on the reduction of the number of the database scans. However, Apriori-

based algorithms have some other drawbacks. The role of the 2 frequent

itemsets is fundamental, therefore it is useful to take care of the second

candidates. In this case, the itemset counters can be stored in a triangular matrix.

This triangular matrix can be indexed by the itemset identifiers. Hence, this

matrix contains counter values of each 2 itemsets, and the diagonal of the matrix

can be the place holder of the 1-item set counters. The advantages of this

solution are as follows:

• It is necessary to generate the 2 candidate

• It is possible to count the 1 and 2 itemset in one scan

• Each of the counters can be reached in O(1) time

• It is independent of the size of database, as it depends only on the

number of items.

[41] The goal of the paper is to experimentally evaluate association rule-mining

approaches using a vertical dataset layout and database partitioning on the

Hadoop-MapReduce framework. They developed a new MapReduce-based

association rule miner for extracting strong rules from benchmark datasets.

[67] They introduced two algorithms based on the MapReduce framework for which

the frequency thresholds can be set low:

1. Dist-Eclat is a MapReduce implementation of the well-known Eclat

algorithm, optimized for speed in case a specific encoding of the data

fits into memory. This technique is able to mine large datasets, but it

can be prohibitive when dealing with massive amounts of data.

2. BigFIM is optimized to deal with truly Big Data by using a hybrid

algorithm, combining principles from both Apriori and Eclat.

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

338

Table 7: Main theme of the proposed approaches

Reference Main theme

[60] In this study, the authors implemented a parallel Apriori algorithm in the

context of the MapReduce paradigm. MapReduce is a framework for parallel

data processing in a high-performance cluster computing environment

[117] The aims of this study were to find the frequent itemsets and association rule

in the transactional database with the min_sup and min_conf predefined by

the user on the Hadoop-MapReduce framework. Typically, the standard

Apriori algorithm has many challenges to discover the frequent itemsets from

the huge dataset efficiently and quickly.

[74] ARM plays a key role in data mining techniques. Apriori is an extensively

used algorithm in association rule mining. The classical Apriori algorithm

runs on a single node. Thus, it is difficult to process large datasets on a single

node using the classical Apriori algorithm. There have been various studies

for parallelizing the algorithm. In this study, Apache Hadoop has been chosen

as the distributed framework to implement the Apriori algorithm, and the

performance of the algorithm was evaluated on Hadoop. The classical Apriori

algorithm was modified to be run on Hadoop.

[114] They introduced the ability to find all k-frequent itemsets within only two

phases of scanning the entire dataset and implemented that in a MapReduce

Apriori algorithm on the Hadoop-MapReduce model efficiently and

effectively compared with the 1-phase and k-phase algorithms.

[59] Big-data analysis is a very important research field in data mining strategies

in the context of the cloud-computing paradigm. In this study, the authors

developed a new parallel Apriori algorithm based on the existing sequential

Apriori association rule algorithm for implementation on the Hadoop-

MapReduce parallel computing platform.

[54] Apriori is a broadly used algorithm for obtaining all frequent itemsets.

Currently, data come from various domains in various formats with

unbelievable velocity. Processing, managing, and analysing such huge

amounts of data are impossible using simple computing machines. Hence,

distributed and parallel environments undertake such scenarios efficiently.

Apache Hadoop-MapReduce distribution is one of the cluster frameworks in a

distributed environment that helps by distributing voluminous data across a

number of nodes in the framework

[58] They proposed a MapReduce-based parallel FP-Growth algorithm, which

intelligently shards a large-scale mining task into independent parallel

computational tasks and maps them onto MapReduce jobs. The proposed

algorithm then uses the MapReduce model to take advantage of its recovery

model. It can achieve near-linear speedup with the capability of restarting from

computer failures. They experimented with their proposed algorithm on a

massive dataset and verified the outstanding scalability of this algorithm. To

make the algorithm suitable for mining Web data, which are usually of long tail

distribution, they designed this algorithm to mine top-k patterns related to each

item rather than relying on a user-specified value for the global minimal support

threshold. They demonstrated that the proposed algorithm is effective in mining

tag-tag associations and WebPage-WebPage associations to support query

recommendation or related search.

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

339

[31] This study has implemented a revised Apriori algorithm to extract frequent

pattern itemsets from transactional databases based on the Hadoop-

MapReduce framework. They used the single-node Hadoop cluster mode to

evaluate the performance. This redesigned algorithm can be easily parallelized

and is easy to implement

[83] Cloud computing has become a big name in the present era. It has proved to

be a great solution for storing and processing huge amounts of data. Data

mining techniques implemented with the cloud-computing paradigm can be

useful for analysing big data in the cloud. In this paper, the researchers used

the Apriori algorithm for association rules in a cloud environment.

[49] From this study, the authors proposed one such distributed algorithm that is

run on Hadoop, which is one of the most popular recent distributed

frameworks and is mainly focused on the map/reduce paradigm.

[46] In data mining, research in the field of distributed and parallel mining is

gaining popularity as there is a tremendous increase in the sizes of databases

stored in data warehouses. Frequent pattern mining is one of the important

areas in data mining for finding associations in databases. As FP-Tree is

considered the best compact data structure for holding data patterns in

memory, there have been efforts to make it parallel and distributed to handle

large databases. However, it incurs large amounts of communication overhead

during the mining. In this study, the authors proposed the Hadoop map/reduce

framework as a parallel and distributed framework for frequent pattern mining

algorithm as it shows the best performance results for large databases.

[66] In this study, the authors discussed different distributed Apriori algorithms

proposed by different authors and compared those algorithms with a

comparison matrix. They also proposed a new algorithm.

COMPARISON MATRIX

Algorithm Complexity
Message

passing overhead

Count Distribution (CD) High, O(|Ck|n), where 7H

is a candidate itemset and

n is the number of site

Less

Fast Distribution Mining

(FDM)

High, less than CD

O(|CP|n), where 7M is the

union of all local

candidate itemsets

Less

Optimized Distribution

Association Mining

(ODAM)

Low compared to

CD,FDM

O(|CR+P(FD|*n), where

7V is the intersection of

all local frequent

itemsets, P(FD) is the

total number of disjoint

local frequent itemsets

that have higher

probability, and n is the

total number of sites

High

Distributed Trie Frequent

Itemset Mining (DTFIM)

Low compared to

CD,FDM,ODAM (O(n
2
))

High

Gossip-based distributed

frequent itemset mining

Low compared to all of

the above (O(nlogn))
High

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

340

[107] Data mining is a rapidly growing field, and it has become a popular research

area. In this study, a system was proposed to find the frequent patterns in

order to increase the profit by making the frequent items available

consistently. A token-based approach is proposed in order to find the frequent

pattern from the intermediate output. There are many existing methods for

analysing big data and frequent patterns, but the proposed system is fault

tolerant, time consuming and highly reliable.

[58] Fault recovery is a typical problem in massive computing environments

because the probability that none of the thousands of computers crashes

during execution of a task is close to zero. The demands of sustainable

speedup and fault tolerance require highly constrained and efficient

communication protocols. Thus, they show that their proposed solution is able

to address the issues of memory use and fault tolerance in addition to more

effectively parallelizing computation.

[67] The main challenge in adapting algorithms to the MapReduce framework is

the limitation of the communication between tasks, which are run as batches

in parallel. All of the tasks that have to be executed should be defined at start-

up, such that nodes do not have to communicate with each other during task

execution. Fortunately, the prefix tree that is used by Eclat can be partitioned

into independent groups. Each one of these independent groups can be mined

separately on different machines. The proposed algorithms exploit the inter-

independence of sub-trees of a prefix tree and use longer FIs as prefixes for

better load balancing.

Table 8: Details of the datasets used in experiments

Reference Dataset

[60] In this study, they used the transactional data for an all-electronics branch and

the T1014D100K dataset. They replicated it to obtain 1 GB, 2 Gb, 4 GB, and

8 GB. For the T1014D100K dataset, they have replicated it into 2 times, 4

times, and 8 times and got 0.6 GB, 1.2 GB and 2.4 GB datasets, respectively.

They denoted those datasets as T1014D200K, T1014D400K and

T1014D800K. Additionally, they used some transactional logs from a

telecommunication company.

[117] Sample

[74] Accident dataset- National Institute of Statistics (NIS) for the region of

Flanders (Belgium) period from 1991-2000. 340,184 records, 572 attributes

and they used synthetically generated dataset

[114] In this study, the T1014D100K dataset was used to obtain the experiment

results generated by IBM’s quest synthetic data generator. The total number of

transactions is 100000, and each transaction contains 10 items on average; the

total number of items is 1000, and the average length of frequent itemsets is 4

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

341

[59] The datasets of chess, mushroom, and connect are real-life datasets

downloaded from the UCI dataset repository, and T1014D100K was

synthetically generated by the IBM Almaden Quest research group

Dataset Total

Instances

Total

Attributes

Chess 3196 36

Mushroom 8124 22

Connect 67557 42

T1014D100

K

100000 26

[54]
Transactional Dataset

[31]
Word count Example

[83]
INA

1

[49] The experiment is done using two real datasets that are publicly available and

have different characteristics: one is generated by an IBM synthetic data

generator and the other is the basket dataset.

Table I: Number of Items and Transactions in each

Dataset

Dataset σ |F1| |F| Max

{k||Fk|>0}c

T2017D500K 700 804 550126 18

Retail Market 7 8051 285758 11

Table II: Lowest Min Threshold for each Dataset

Dataset #Items #Transaction Min|T| Max|T| Avg|T|

T2017D100K 942 90000 4 77 39

Retail Market 16470 88163 1 51 13

[46] Several real and synthetic datasets are used to test the performance of the

algorithm.

[66] Mushroom dataset from UCI (8124 number of records and 23 transaction

length)

[58] They generated a tag transaction database and named it TTD and a URL

transaction database, as shown in below

 TTD WWD

URLs 802,939 802,739

Tags 1.021.107 1,021,107

Transaction

s

15.898.94

9

7,009,457

Total items 84,925,90

8

38,333,65

3

1
 INA-Information Not Available

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

342

[67] They have used the benchmark data, such as Abstract, T1014D100K,

Mushroom, and Pumsb. Additionally, they used a scrape of the delicious

dataset provided by DAI-Labor.

Dataset
Number of

Items

Number of

Transactions

Abstracts 4,976 859

T1014D100K 870 100,000

Mushroom 119 8,124

Pumsb 2,113 49,046

Tag 45,446,863 6,201,207

[107] The daily, monthly, and yearly sales of various shops are collected from

various websites.

Table 9: Experiment platform and H/W & S/W Configuration

Reference Hadoop mode #phase Introduced Algorithm

[59] INA k PApriori

[74] Fully distributed k Modified Apriori

[114] Standalone 2 MRAPRIORI

[59] Fully Distribution INA Modified Apriori

[54]
Stand alone, pseudo, and fully

distributed
INA Modified Apriori

[31] Standalone 1 Modified Apriori

[83] Fully distribution 2 Modified Apriori

[46] Standalone 2 DPFPM

[66] Standalone 2 Modified Apriori

[67] Standalone k Dist-Eclat and BigFIM

[58] INA k Parallel FP (PFP)

[107] INA INA
Modified

Apriori

[117] - 1 None

[111] - - Apriori-Map/Reduce

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

343

6 CHALLENGES, AND OPEN ISSUES

OF BIG DATA IN THE CLOUD AND

HADOOP-MAPREDUCE

6.1 Big data in the Cloud: Challenges

• Scalability: How can the explosion

growth of data be handled in an

appropriate manner?

• Availability: How can the cloud service

providers be trusted to continuously

provide data that are stored in the

cloud?

• Data integrity: How can it be ensured

that a cloud user’s data are not being

viewed, altered, or analysed by

authorized parties or data owner?

• Data Transformation: Big data has a

variety of data formats, so how can data

be transformed into a suitable format

for big data analysis?

• Data Quality: Big data originates from

various domains, so how can high-

quality data be obtained from various

sources?

• Data Heterogeneity: Big data comes

from numerous sources with different

types of data and they have

incompatible format and inconsistency,

so how can the challenge of big data

analysis and management on a cloud

platform be addressed?

• Privacy: How can the reliability of

storing private data in cloud storage be

ensured?

• Legal issues: How can the unique laws

and regulations be established to

achieve data privacy and protection?

• Data governance: How can a well-

defined and acceptable data policy,

according to the type of data to be

stored, how quickly an individual data

access must be, and how the private

data are accessed, be created?

• Timeliness: How can interaction

response times to complex queries at

scale over high-volume event streams

be provided?

• Data visualization: How can the

visualization of big data be improved in

an appropriate way?

6.2 Big Data in the Cloud: Open Issues

• Find the more feasible techniques to

simplify the transformation and

cleaning of unstructured big data in a

cloud platform such as the Hadoop-

MapReduce distribution platform.

• Improve the techniques to store, easily

retrieved, and migrated big data

between cloud servers and other

devices.

• There is a door for efficiently

improving the data analysis tools and

technologies that are highly appreciated

under the cloud platform.

• Data security is the keen open issue to

solve the unresolved security threats

that exist in cloud computing, such as

privacy, confidentiality, data integrity,

and availability of big data using the in-

cloud environment.

6.3 Hadoop-MapReduce: Challenges

• The current architecture of the Hadoop-

MapReduce programming model does

not provide a fast, scalable and

distributed resource infrastructure

solution. Business and scientific

organisations are required to solve a

wide range of data-intensive analytic

problems.

• Current implementations of the

Hadoop-MapReduce programming

model are not able to react quickly and

grow or shrink to adjust to the current

workload to reduce costs while

maximizing results based on the

application and/or user demand.

• The current architecture of the Hadoop-

MapReduce programming model does

not make it easy to handle multiple

application integrations on a

production-scale distributed system

with automated application service

deployment capability.

• Current implementations of the

Hadoop-MapReduce programming

model are not specifically optimized to

take full advantage of multi-core

servers.

• Current implementations of the

Hadoop-MapReduce programming

model only support the Hadoop

Distribution File System (HDFS). Data

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

344

transformation is the key challenge to

translate the data into an HDFS-suitable

format.

6.4 Hadoop-MapReduce: Open Issues

• Optimization technique-related issues

require study under the Hadoop-

MapReduce architecture.

• MapReduce programs are based on

data-intensive instead of computation-

intensive tasks, and, in order to achieve

good performance, it is vital to

minimize disk I/O and communication.

Therefore, many studies seek ways to

enable in-memory processing and avoid

reading from disk when possible.

• Another open issue is to find the

mechanism by which Hadoop could

offer capabilities of tuneable fault-

tolerance to users or provide automatic

fault tolerance adjustment mechanisms,

depending on the cluster and application

characteristics.

7 DISCUSSION AND CONCLUSION

7.1 Discussion

Hadoop-MapReduce is an open-source

programming software framework introduced by

Google in 2004, and since then, numerous

methods have been proposed to improve the

performance of the Apriori algorithm on the

Hadoop-MapReduce framework. According to

Tables 6 and 7, researchers’ perspectives can be

classified as follows:

I. Horizontal vs. vertical layout analysis

Most of the researchers analysed the

performance of the Apriori algorithm

based on a horizontal layout. Eclat is

the vertical dataset layout algorithm that

is more efficient than the Apriori

algorithm in the sequential

environment. Sandy Moens et al. [67]

proposed two new parallel algorithms

based on the Eclat algorithm: Dist-Eclat

and BigFIM. Dist-Eclat is a MapReduce

implementation of the well-known Eclat

algorithm that focuses on speed, while

BigFIM is optimized to deal with truly

Big Data by using a hybrid algorithm

with both Apriori and Eclat on

MapReduce. Rahman et al. [41]

implemented a parallel Eclat algorithm

on Hadoop-MapReduce. The authors

checked the performance, and they

achieved good results.

II. 1-phase, 2-phase, and k-phase analysis

Researchers find all the frequent

itemsets in three different ways: 1-

phase, which requires a single iteration

to find all frequent itemsets; 2-phase,

which only needs two MapReduce

phases to extract all frequent itemsets;

and k-phase, which needs to find all

frequent itemsets in k MapReduce

phases. Othman et al. compared 2-phase

with the 1-phase and k-phase types.

They proved that the 2-phase algorithm

is much better than the 1- and k-phase

algorithms. Additionally, 1-phase is

worse than k-phase, as it is inefficient

and slow.

III. Hadoop mode performance analysis

Hadoop can typically be configured to

run in three modes: Standalone mode

(on the local computer, useful for

testing and debugging), pseudo-

distributed mode (i.e. on an emulated

"cluster" of one computer, useful for

testing), and fully-distributed mode (on

a full cluster, for production purposes).

• Standalone mode: this is the default

mode of the Hadoop framework,

i.e., it is configured to run in the

non-distributed mode. None of the

Hadoop daemons (NameNode,

DataNode, Secondary NameNode,

Job Tracker, and Task Tracker) are

running. The local file system is

utilized instead of the Hadoop

Distribution File System (HDFS).

This mode is very useful for the

testing and debugging process.

• Pseudo mode: the Hadoop daemons

run on a local machine, therefore

simulating a cluster on a small

scale. Different Hadoop daemons

run in different Java virtual

machine (JVM) instances but on a

single machine. Here, HDFS is

exploited instead of the local file

system.

• Fully distributed mode: this mode

consists of multi-node clusters and

is exploiting the actual power of

Hadoop.

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

345

Researchers mostly implemented their work in

the standalone and fully distributed modes (see

Table 9) because the pseudo-distributed mode

does not add value for most purposes.

Koundinya et al. [54] tested the three-mode

performance with an increasing number of

transactions. From their study, the fully

distributed mode is better than the standalone

and pseudo modes

IV. Candidate and frequent itemset analysis

Most of the Hadoop-MapReduce-based modified

algorithms focused on the reduction of the

number of database scans. However, the Apriori

algorithm suffers when generating and storing

candidate itemsets specially focusing on 2-

candidate itemsets. Kovacs et al. proposed an

algorithm to handle 2 itemsets in a special way

(see Table 6 and 7), thereby significantly

reducing the response time of the Apriori

algorithm, but the drawback of this method is

that more memory is needed to store the itemset

in a triangular matrix (spatial complexity of

O(n
2
))

7.2 Conclusion

Currently, data are huge and exponentially

increasing every day. As datasets grow past GBs

to TBs or more, it has become infeasible to

manage, store, and analyse them on a single

sequential machine. Parallel and distributed

computing offers a potential solution for the

above problem when efficient and scalable

parallel and distributed algorithms can be

implemented. The Hadoop-MapReduce platform

is more suitable for the parallel processing of

huge data on many clusters using commodity

hardware. Several survey studies have done by

previous researchers but in this survey mainly

concentrate on the parallelized Apriori algorithm

on the Hadoop-MapReduce programming

software framework with different new

techniques such as 1-, 2-, and k-phase iteration

techniques, of data layout (horizontal and

vertical), and Hadoop modes and their

suitability. We have presented a review of the

various proposed parallel Apriori algorithm

methods on the Hadoop-MapReduce platform.

We analysed the related studies in several ways,

such as by objectives of the studies, main themes

of the proposed methods, which datasets were

used to analyse the performance of the proposed

algorithms, software and hardware

configurations, which Hadoop mode was used,

how many phases they used, etc. Moreover, we

deeply discussed different categories, such as the

types of data layout (horizontal and vertical), 1-,

2-, and k-phase iteration techniques and their

performance, types of Hadoop modes and their

appropriateness, and how to generate more

candidate itemsets. Finally, we interpreted the

challenges and open issues of big data in the

cloud and the Hadoop-MapReduce framework.

From this study, we can ultimately conclude that

the Hadoop-MapReduce platform is an efficient

and scalable platform for the analysis of any big

data computational problem and that the

Hadoop-MapReduce-based Apriori algorithm is

more efficient than the sequential version

without Hadoop-MapReduce platform

algorithms.

ACKNOWLEDGMENT

We wish to thank Universiti Kebangsaan

Malaysia (UKM) and Ministry of Higher

Education Malaysia for supporting this work

through the following research grants

(ERGS/1/2013/ICT07/UKM/02/3 and DIP-2014-

37).

REFERENCES

[1] Adamo, J.-M. (2001). Data Mining for

Association Rules and Sequential Patterns:

sequential and parallel algorithms. Springer

Science & Business Media.

[2] Aggarwal, C. C., Zhao, Y., & Yu, P. S.

(2010). On clustering graph streams. In Sdm

,Vol.2 , pp. 478–489.

[3] Aggarwal, C., & Zhai, C. (2012). Mining

text data. Springer Science & Business

Media.

[4] Agrawal, R., Imieliński, T., & Swami, A.

(1993). Mining association rules between

sets of items in large databases. In ACM

SIGMOD Record ,Vol. 22, pp. 207–216.

ACM.

[5] Agrawal, R., & Shafer, J. C. (1996). Parallel

mining of association rules. In IEEE

Transactions on Knowledge and Data

Engineering ,Vol. 8(6), pp. 962–969.

Springer.

[6] Antonie, M., Coman, A., & Zaiane, O. R.

(2001). Application of Data Mining

Techniques for Medical Image

Classification. In Proceedings of the second

international Workshop on Multimida Data

Mining (MDM/KDD’2001) pp. 94–101.

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

346

[7] Antonopoulos, N., & Gillam, L. (2010).

Cloud computing: Principles, systems and

applications. Springer Science & Business

Media.

[8] apache. (2014). Welcome to Apache
TM

Hadoop®!

[9] Azarmi, B. (2014). Knowing about the

Hadoop ecosystem.

[10] Bakin, S. (1999). Adaptive regression and

model selection in data mining

problems.Thesis.

[11] Becuzzi, P., Coppola, M., & Vanneschi, M.

(1999). Mining of association rules in very

large databases: A structured parallel

approach. In Euro-Par’99: Parallel

Processing, Vol. 1685, pp. 1441–1450.

Springer.

[12] Berry, M. J., & Gordon S. Linoff. (2011).

Data mining techniques-for marketing, sales

and customer support. John Wiley & Sons,

Inc.

[13] Berry, M., & Linoff, G. (1999). Mastering

Data Mining: The Art and Science of

Customer Relationship Management. John

Wiley & Sons, Inc.

[14] Bialecki, a, Cafarella, M., Cutting, D., &

O’Malley, O. (2005). Hadoop: a framework

for running applications on large clusters

built of commodity hardware. http://Lucene.

Apache. Org/Hadoop, 11.

[15] Borgelt, C., Borgelt, C., Kruse, R., & Kruse,

R. (2002). Induction of Association Rules:

Apriori Implementation. In 15th Conference

on Computational Statistics Physica Verlag,

Heidelberg, Germany 2002, Vol. 1, pp. 1–6.

Springer.

[16] Brin, S., Motwani, R., Ullman, J. D., &

Tsur, S. (1997). Dynamic itemset counting

and implication rules for market basket data.

In ACM SIGMOD Record , Vol. 26, pp.

255–264. ACM.

[17] Brin, S., Ramkumar, G. D., & Tsur, S.

(2001). Method and apparatus for

dynamically counting large itemsets. Google

Patents.

[18] Buhl, H. U., Röglinger, M., Moser, D.-K. F.,

& Heidemann, J. (2013). Big data. Business

& Information Systems Engineering, Vol.

5(2), pp.65–69.

[19] Burdick, D., Calimlim, M., & Gehrke, J.

(2001). MAFIA: a maximal frequent itemset

algorithm for transactional databases. In

Proceedings 17th International Conference

on Data Engineering, pp. 443–452. IEEE.

[20] Chen, D. C. D., Lai, C. L. C., Hu, W. H. W.,

Chen, W. C. W., Zhang, Y. Z. Y., & Zheng,

W. Z. W. (2006). Tree partition based

parallel frequent pattern mining on shared

memory systems. In Proceedings 20th IEEE

International Parallel & Distributed

Processing Symposium (p. 8 pp.). IEEE.

[21] Cheung, D. W., Ng, V. T., Fu, A. W., & Fu,

Y. F. Y. (1996). Efficient mining of

association rules in distributed databases.

IEEE Transactions on Knowledge and Data

Engineering, Vol.8(6), pp.911–922.

[22] Cheung, D., & Xiao, Y. (1998). Effect of

data skewness in parallel mining of

association rules. In Research and

Development in Knowledge Discovery and

Data Mining pp. 48–60. Springer.

[23] Cios, K. J., Pedrycz, W., & Swiniarsk, R. M.

(1998). Data mining methods for knowledge

discovery. IEEE Transactions on Neural

Networks / a Publication of the IEEE Neural

Networks Council, Vol. 9(6), pp.1533–1534.

[24] Coenen, F., Leng, P., & Ahmed, S. (2004).

Data Structure for Association Rule

Mining : IEEE Transactions on Knowledge

and Data Engineering, Vol. 16(6), pp.1–5.

[25] Crc, H. (2009). Data Mining and. In

Knowledge Creation Diffusion Utilization

pp. 27–61. Springer.

[26] Dean, J., & Ghemawat, S. (2008).

MapReduce: simplified data processing on

large clusters. Communications of the ACM,

Vol. 51(1), pp. 107-113.

[27] Dean, J., & Ghemawat, S. (2010).

MapReduce: a flexible data processing tool.

Communications of the ACM, Vol. 53(1),

pp. 72-77.

[28] Dillon, T., Wu, C., & Chang, E. (2010).

Cloud computing: issues and challenges. In

Advanced Information Networking and

Applications (AINA), 2010 24th IEEE

International Conference on AINA, pp. 27–

33. IEEE.

[29] Domzal, J. (2011). Securing the cloud:

Cloud computer security techniques and

tactics (Winkler, V.; 2011) [Book reviews].

IEEE Communications Magazine , Vol. 49.

Elsevier.

[30] Evfimievsky, a, Srikant, R., Gehrke, J., &

Agrawal, R. (2002). Privacy preserving data

mining of association rules. Proceedings of

the 8th ACM SIGKDD International

Conference on Knowledge Discovery in

Databases and Data Mining, Vol. 16(9), pp.

217–228.

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

347

[31] Ezhilvathani, A., & Raja, K. (2013).

Implementation of parallel apriori algorithm

on hadoop cluster. International Journal of

Computer Science and Mobile Computing.

Vol. 2(4), pp. 513-516

[32] Fayyad, U., Piatetsky-Shapiro, G., & Smyth,

P. (1996). The KDD process for extracting

useful knowledge from volumes of data.

Communications of the ACM, Vol. 39(11),

pp. 27–34.

[33] Foster, I., Zhao, Y., Raicu, I., & Lu, S.

(2008). Cloud Computing and Grid

Computing 360-degree compared. In Grid

Computing Environments Workshop, GCE

2008, pp. 1–10. IEEE.

[34] Frank, J. (2000). Data mining. Nature

biotechnology (Vol. 18 Suppl). Morgan

Kaufmann.

[35] Fu, T. C. (2011). A review on time series

data mining. Engineering Applications of

Artificial Intelligence, 24(1), 164–181.

Ganti, V., Gehrke, J., & Ramakrishnan, R.

(1999). Mining very large databases.

Computer, Vol. 32(8), pp. 38–45.

[36] Han, E.-H., Karypis, G., & Kumar, V.

(1997). Scalable parallel data mining for

association rules. ACM SIGMOD Record,

Vol. 26(2), pp. 277–288.

[37] Han, J., Cheng, H., Xin, D., & Yan, X.

(2007). Frequent pattern mining: Current

status and future directions. Data Mining

and Knowledge Discovery, Vol. 15(1), pp.

55–86.

[38] Han, J., & Kamber, M. (2006). Data Mining,

Concepts and Techniques. Morgan

Kaufmann.Elsevier.

[39] Han, J., Pei, J., & Yin, Y. (2000). Mining

frequent patterns without candidate

generation. In ACM SIGMOD Record , Vol.

29, pp. 1–12. ACM.

[40] Hand, D. J. (2007). Principles of data

mining. Drug Safety (Vol. 30). MIT press.

[41] Hazarika, M., & Rahman, M. (2014).

Mapreduce Based Eclat Algorithm for

Association Rule Mining in Datamining :

Mr _ Eclat. International Journal of

Computer Science and Engineering, Vol.

3(1), pp. 19–28.

[42] Hidber, C. (1999). Online association rule

mining. SIGMOD '99 Proceedings of the

1999 ACM SIGMOD international

conference on Management of data Vol.

28(2). pp.145-156. ACM.

[43] Hipp, J., Güntzer, U., & Nakhaeizadeh, G.

(2000). Algorithms for association rule

mining --- a general survey and comparison.

ACM SIGKDD Explorations Newsletter,

Vol. 2(1), pp. 58–64.

[44] Holmes, A. (2012). Hadoop in Practices.

Manning Publications Co.

[45] IBM. (2013). four-vs-big-data.

http://www.ibmbigdatahub.com/infographic/

four-vs-big-data

[46] Itkar, S., & Kulkarni, U. (2013). Distributed

Algorithm for Frequent Pattern Mining

using HadoopMap Reduce Framework.

Proceeding of International Conference on

Advances in Computer Science, AETACS,

pp.15-24.

[47] Jiawei, H., & Kamber, M. (2006). Data

mining: concepts and techniques. San

Francisco, CA, Itd: Morgan Kaufmann,

Vol.5.

[48] Jula, A., Sundararajan, E., & Othman, Z.

(2014). Cloud computing service

composition: A systematic literature review.

Expert Systems with Applications, Vol.

41(8), pp. 3809–3824.

[49] Jyoti, L. D., & Kiran, B. D. (2014). A Novel

Methodology of Frequent Itemset Mining on

Hadoop. International Journal of Emerging

Technology and Advanced Engineering,

Vol. 4(7), pp. 851–859

[50] Kaisler, S., Armour, F., Espinosa, J. A., &

Money, W. (2013). Big data: Issues and

challenges moving forward. In System

Sciences (HICSS), 2013 46th Hawaii

International Conference on HICSS, pp.

995–1004 . IEEE.

[51] Kamber, M. (2012). Mining Association

Rules in Large Databases. Knowledge and

Data Engineering, IEEE Transactions on,

Vol. 11(5), pp. 798–805.

[52] Kim, J., Seo, S., Jung, D., Kim, J. S., &

Huh, J. (2012). Parameter-aware I/O

management for solid state disks (SSDs).

IEEE Transactions on Computers, Vol.

61(5), pp. 636–649.

[53] Kotsiantis, S., & Kanellopoulos, D. (2006).

Association Rules Mining : A Recent

Overview Basic Concepts & Basic

Association Rules Algorithms. GESTS

International Transactions on Computer

Science and Engineering, Vol. 32(1), pp.

71–82.

[54] Koundinya, A., & Sharma, K. (2012).

Map/Reduce Deisgn and Implementation of

Apriori Alogirthm for handling voluminous

data-sets. Advanced Computing: An

International Journal, Vol. 3(6), pp. 29–39.

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

348

[55] Kovacs, F., & Illes, J. (2013). Frequent

itemset mining on hadoop., 2013 IEEE 9th

International Conference on Computational

Cybernatics, pp. 241–245.

[56] Kulkarni, A. P., & Khandewal, M. (2014).

Survey on Hadoop and Introduction to

YARN. International Journal of Emerging

Technology and Advanced Engineering,

Vol. 4(5), pp.82–87.

[57] Lam, C. (2011). Hadoop in Action. Manning

Publications Co.

[58] Leclerc, M. (1991). An implementation of

the McEliece-cryptosystem. In ACM

SIGSAC Review (Vol. 9, pp. 1–4). ACM. Li,

H., Wang, Y., Zhang, D., Zhang, M., &

Chang, E. Y. (2008). Pfp. Proceedings of the

2008 ACM Conference on Recommender

Systems - RecSys ’08, pp. 107-114.

[59] Li, J., Roy, P., Khan, S. U., Wang, L., &

Bai, Y. (2012). Data Mining Using Clouds :

An Experimental Implementation of Apriori

over MapReduce. 12th International

Conference on Scalable Computing and

Communications (ScalCom).

[60] Li, N. (2013). Parallel Implementation of

Apriori Algorithm Based on MapReduce

Received 22 March 2012 Accepted 13

November 2012. In Software Engineering,

Artificial Intelligence, Networking and

Parallel & Distributed Computing (SNPD),

2012 13th ACIS International Conference

on, Vol. 1, pp. 89–96. IEEE.

[61] Liu, B., Hsu, W., Ma, Y., & Ma, B. (1998).

Integrating Classification and Association

Rule Mining. In Knowledge Discovery and

Data Mining, pp. 80–86.

[62] Mahafzah, B. a., Al-Badarneh, a. F., &

Zakaria, M. Z. (2009). A new sampling

technique for association rule mining.

Journal of Information Science, Vol. 35(3),

pp. 358–376.

[63] Maimon, O, & Rokach, L. (2005). Data

mining and knowledge discovery handbook.

Springer.

[64] Manvi, S. S., & Shyam, G. K. (2014).

Resource management for Infrastructure as a

Service (IaaS) in cloud computing: A

survey. Journal of network and computer

applications, 41, 424-440

[65] Mell, P., & Grance, T. (2011). The NIST

definition of cloud computing, NIST Special

Publication 800, 145.

[66] Modgi, M. P. (2014). Mining Distributed

Frequent Itemset with Hadoop. International

Journal of Computer Science & Information

Technologies(IJCSIT), Vol5(3), pp. 3093–

3097.

[67] Moens, S., Aksehirli, E., & Goethals, B.

(2013). Frequent Itemset Mining for Big

Data. Big Data, 2013 IEEE International

Conference on, pp. 111–118.

[68] Najadat, H., Shatnawi, A., & Obiedat, G.

(2011). A New Perfect Hashing and Pruning

Algorithm for Mining Association Rule.

Communications of the IBIMA, pp. 1–8.

[69] Neto, J. L., Santos, A. D., Kaestner, C. a. a.,

& Freitas, A. a. (2000). Document

Clustering and Text

Summarization.Citeseer.

[70] Ngai, E. W. T., Xiu, L., & Chau, D. C. K.

(2009). Application of data mining

techniques in customer relationship

management: A literature review and

classification. Expert Systems with

Applications, Vol. 36(2), pp. 2592–2602.

[71] Obenshain, M. K. (2004). Application of

data mining techniques to healthcare data.

Infection Control and Hospital

Epidemiology : The Official Journal of the

Society of Hospital Epidemiologists of

America, Vol. 25(8), pp. 690–695.

[72] Orlando, S., Palmerini, P., & Perego, R.

(2001). Enhancing the Apriori Algorithm for

Frequent Set Counting. In Data

Warehousing and Knowledge Discovery pp.

71–82. Springer.

[73] Orlando, S., Palmerini, P., Perego, R., &

Silvestri, F. (2003). An efficient parallel and

distributed algorithm for counting frequent

sets. In High Performance Computing for

Computational Science - Vecpar 2002, Vol.

2565, pp. 421–435. Springer.

[74] Oruganti, S., Ding, Q., & Tabrizi, N. (2013).

Exploring HADOOP as a Platform for

Distributed Association Rule Mining. In

FUTURE COMPUTING 2013, The Fifth

International Conference on Future

Computational Technologies and

Applications pp. 62–67.

[75] Ozel, S. a., & Guvenir, H. a. (2001). An

algorithm for mining association rules using

perfect hashing and database pruning. In

10th Turkish Symposium on Artificial

Intelligence and Neural Networks, pp. 257–

264. Citeseer.

[76] Park, J. S., Chen, M. S., & Yu, P. S. (1997).

Using a hash-based method with transaction

trimming for mining association rules. IEEE

Transactions on Knowledge and Data

Engineering, Vol. 9(5), pp. 813–825.

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

349

[77] Park, J. S., Chen, M.-S., & Yu, P. S.

(1995a). An effective hash-based algorithm

for mining association rules. ACM SIGMOD

Record, Vol. 24(2), pp. 175-186. ACM.

[78] Park, J. S., Chen, M.-S., & Yu, P. S.

(1995b). Efficient parallel data mining for

association rules. In Proceedings of the

fourth international conference on

Information and knowledge management -

CIKM ’95 pp. 31–36. ACM.

[79] Patel, A. B., Birla, M., & Nair, U. (2012).

Addressing big data problem using Hadoop

and Map Reduce. In 3rd Nirma University

International Conference on Engineering,

NUiCONE 2012, pp. 1–5. IEEE.

[80] Paul, S., & Saravanan, V. (2008). Hash

Partitioned Apriori in parallel and

distributed data mining environment with

dynamic data allocation approach. In

Proceedings of the International Conference

on Computer Science and Information

Technology, ICCSIT 2008, pp. 481–485.

IEEE.

[81] Pei, J. P. J., Han, J. H. J., Lu, H. L. H.,

Nishio, S. N. S., Tang, S. T. S., & Yang, D.

Y. D. (2001). H-mine: hyper-structure

mining of frequent patterns in large

databases. In Proceedings 2001 IEEE

International Conference on Data Mining,

pp. 441–448. IEEE.

[82] Polato, I., Ré, R., Goldman, A., & Kon, F.

(2014). A comprehensive view of Hadoop

research—A systematic literature review.

Journal of network and computer

applications, 46, 1-25.

[83] Qureshi, Z., & Bansal, S. (2014). Improving

Apriori Algorithm to get better performance

with Cloud Computing. International

Journal of Software & Hardware Research

in Engineerin, Vol. 2(2),pp. 33-37.

[84] Ramaswamy, S., Rastogi, R., & Shim, K.

(2000). Efficient algorithms for mining

outliers from large data sets. In Proceedings

of the 2000 ACM SIGMOD international

conference on Management of data -

SIGMOD ’00 , Vol. 29, pp. 427–438. ACM.

[85] Romero, C., & Ventura, S. (2007).

Educational data mining: A survey from

1995 to 2005. Expert Systems with

Applications, Vol. 33(1), pp. 135–146.

[86] Said, A. M., Dominic, P. D. D., & Abdullah,

A. B. (2009). A comparative study of fp-

growth variations. International Journal of

Computer Science and Network Security,

Vol. 9(5), pp. 266–272.

[87] Shaw, M. J. . B. C., Subramaniam, C. ., Tan,

G. W. ., & Welge, M. E. . (2001).

Knowledge management and data mining

for marketing. Decision Support Systems,

31(1), 127–137.

[88] Sheikh, N. (2013). Implementing Analytics.

Implementing Analytics, Vol. 46(5), pp. 3–

20.

[89] Shintani, T., & Kitsuregawa, M. (1996).

Hash based parallel algorithms for mining

association rules. In Fourth International

Conference on Parallel and Distributed

Information Systems, pp. 19–30. IEEE.

[90] Shintani, T., & Kitsuregawa, M. (1998).

Parallel mining algorithms for generalized

association rules with classification

hierarchy. In ACM SIGMOD Record, Vol.

27, pp. 25–36. ACM.

[91] Shvachko, K., Kuang, H., Radia, S., &

Chansler, R. (2010a). The Hadoop

distributed file system. In 2010 IEEE 26th

Symposium on Mass Storage Systems and

Technologies, MSST2010, pp. 1–10. IEEE.

[92] Shvachko, K., Kuang, H., Radia, S., &

Chansler, R. (2010b). The Hadoop

distributed file system. 2010 IEEE 26th

Symposium on Mass Storage Systems and

Technologies, MSST2010, Vol. 11(2007),

pp. 1–14.

[93] Singh, J., & Ram, H. (2013). Improving

Efficiency of Apriori Algorithm Using.

International Journal of Scientific and

Research Publications, Vol. 3(1), pp. 1–4.

[94] Srikant, R., & Agrawal, R. (1997). Mining

generalized association rules. Future

Generation Computer Systems, Vol. 13(2-3),

pp. 161–180.

[95] Srivastava, J., Cooley, R., Deshpande, M., &

Tan, P.-N. (2000). Web usage mining:

Discovery and applications of usage patterns

from web data. Acm Sigkdd, Vol. 1(2), pp.

12–23.

[96] Subashini, S., & Kavitha, V. (2011). A

survey on security issues in service delivery

models of cloud computing. Journal of

Network and Computer Applications, Vol.

34(1), pp. 1–11.

[97] Tan, P. (2007). Introduction To Data

Mining.,Vol. 1. Pearson Addison Wesley

Boston.

[98] Tang, J. (1998). Using incremental pruning

to increase the efficiency of dynamic itemset

counting for mining association rules. In

Proceedings of the seventh international

conference on , pp. 273–280. ACM.

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

350

[99] Taylor, R. C. (2010). An overview of the

Hadoop/MapReduce/HBase framework and

its current applications in bioinformatics.

BMC Bioinformatics, 11 Suppl 12(Suppl

12), S1.

[100] Thevar, R. E., & Krishnamoorthy, R.

(2008). A new approach of modified

transaction reduction algorithm for mining

frequent itemset. In 2008 11th International

Conference on Computer and Information

Technology, pp. 1–6. IEEE.

[101] Tian, W., & Zhao, Y. (2015). 1 - An

Introduction to Cloud Computing. In W.

Tian & Y. Zhao (Eds.), Optimized Cloud

Resource Management and Scheduling, pp.

1–15. Boston: Morgan Kaufmann.

[102] Toivonen, H. (1996). Sampling Large

Databases for Association Rules. In

Proceedings of the 22th International

Conference on Very Large Data Bases, Vol.

96, pp. 134–145.

[103] V.MuthuLakshmi, N., & Sandhya Rani,

K. (2012). Privacy Preserving Association

Rule Mining in Vertically Partitioned

Databases. In International Journal of

Computer Applications, Vol. 39, pp. 29–35.

ACM.

[104] Vajk, I. (2013). Performance Evaluation

of Apriori Algorithm on a Hadoop Cluster.

Wseas.Us, pp. 114–121.

[105] Vavilapalli, V. K., Seth, S., Saha, B.,

Curino, C., O’Malley, O., Radia, S., Shah,

H. (2013). Apache Hadoop YARN. In the

4th annual Symposium, pp. 1–16. ACM.

[106] Velte, T., Velte, A., & Elsenpeter, R.

(2009). Cloud computing, a practical

approach. McGraw-Hill, Inc.

[107] Vinodhini, S., & Vinoth, M. (2014).

Frequent Pattern Identification using Map

Reduce Paradigm. International Journal

of Engineering Research & Technology,

Vol. 3(3), pp. 1763-1768.

[108] Wang, K., Tang, L., Han, J., & Liu, J.

(2002). Top Down FP-Growth for

Association Rule Mining. Pakdd. Springer.

[109] Whaiduzzaman, M., Sookhak, M., Gani,

A., & Buyya, R. (2014). A survey on

vehicular cloud computing. Journal of

network and computer applications, 40,

325-344.

[110] White, T. (2009). Hadoop: the

definitive guide: the definitive guide. “

O’Reilly Media, Inc.”

[111] Woo, J. (2012). Apriori-Map/Reduce

Algorithm. Proceedings of the International

Conference on Parallel and Distributed

Processing Techniques and Applications

(PDPTA)

[112] Wu, H., Lu, Z., Pan, L., Xu, R., &

Jiang, W. (2009). An improved Apriori-

based algorithm for association rules

mining. In 6th International Conference on

Fuzzy Systems and Knowledge Discovery,

FSKD 2009, Vol. 2, pp. 51–55. IEEE.

[113] Wu, X., Zhu, X., Wu, G., & Ding, W.

(2014). Data mining with big data.

Knowledge and Data Engineering, IEEE

Transaction on, Vol. 26(1), pp. 97–107.

[114] Yahya, O., Hegazy, O., & Ezat, E.

(2012). An efficient implementation of

Apriori algorithm based on Hadoop-

Mapreduce model. International Journal of

Reviews in Computing, Vol. 12, pp.59-67.

[115] Ye, Y., & Chiang, C. C. (2006). A

parallel apriori algorithm for frequent

itemsets mining. In Proceedings - Fourth

International Conference on Software

Engineering Research, Management and

Applications, SERA 2006 ,pp. 87–94. IEEE.

[116] Yu, H., Wen, J., Wang, H., & Jun, L.

(2011). An improved Apriori algorithm

based on the Boolean matrix and Hadoop.

Procedia Engineering,Vol.15, pp. 1827-

1831, CEIS 2011.

[117] Yu, H., Wen, J., Wang, H., & Li, J.

(2011). An improved Apriori algorithm

based on the Boolean matrix and Hadoop. In

Procedia Engineering, Vol. 15, pp. 1827–

1831. IEEE.

[118] Yu, K. M., Zhou, J., Hong, T. P., &

Zhou, J. L. (2010). A load-balanced

distributed parallel mining algorithm. Expert

Systems with Applications, Vol. 37(3), pp.

2459–2464.

[119] Yu, K. M., & Zhou, J. L. (2008). A

weighted load-balancing parallel apriori

algorithm for association rule mining. In

2008 IEEE International Conference on

Granular Computing, GRC 2008 (pp. 756–

761). IEEE.

[120] Zaiane, O. R., El-Hajj, M., & Lu, P.

(2001). Fast parallel association rule mining

without candidacy generation. In

Proceedings 2001 IEEE International

Conference on Data Mining, pp. 665–668.

IEEE.

[121] Zaki, M. J., & Gouda, K. (2003). Fast

vertical mining using diffsets. In

Proceedings of the ninth ACM SIGKDD

international conference on Knowledge

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

351

discovery and data mining - KDD ’03, p.

326. ACM.

[122] Zaki, M. J. M., Parthasarathy, S.,

Ogihara, M., Li, W., & Others. (1997). New

algorithms for fast discovery of association

rules. In Kdd, Vol. 7, pp. 283–286.

[123] Zaki, M. J., Ogihara, M., Parthasarathy,

S., & Li, W. (1996). Parallel Data Mining

for Association Rules on Shared-Memory

Multi-Processors. Proceedings of the 1996

ACM/IEEE Conference on Supercomputing,

Vol. 3(1), pp. 1–29.

[124] Zaki, M. J., Parthasarathy, S., Li, W. L.

W., & Ogihara, M. (1997). Evaluation of

sampling for data mining of association

rules. In Proceedings Seventh International

Workshop on Research Issues in Data

Engineering. High Performance Database

Management for Large-Scale Applications,

pp. 42–50. IEEE.

[125] Zaki, M. J., & Zaki, M. J. (1999).

Parallel and Distributed Data Mining: A

Survey. IEEE Concurrency, Vol. 7(4), pp.

14–25.

[126] Zaki, M., Parthasarathy, S., Ogihara,

M., & Li, W. (1997). Parallel algorithms for

discovery of association rules. … and

Knowledge Discovery, Vol. 373(4), pp. 343–

373.

[127] Zhan, J., Matwin, S., & Chang, L.

(2007). Privacy-preserving collaborative

association rule mining. Journal of network

and computer applications, 30(3), 1216-

1227.

[128] Zhang, C., & Zhang, S. (2002).

Association rule mining: models and

algorithms. Lecture Notes in Artificial

Intelligence, Springer-Verlag.

[129] Zhao, Q., & Bhowmick, S. S. (2003).

Association rule mining: A survey. Nanyang

Technological University,

Singapore.Technical Report.

[130] Zheng, Z., Kohavi, R., & Mason, L.

(2001). Real world performance of

association rule algorithms. In Proceedings

of the seventh ACM SIGKDD international

conference on Knowledge discovery and

data mining - KDD ’01, pp. 401–406. ACM.

[131] Zikopoulos, P., Eaton, C., DeRoose, D.,

Deutsch, T., & Lapis, G. (2011).

Understanding Big Data: Analytics for

Enterprise Class Hadoop and Streaming

Data. McGraw-Hill Osborne Media.

