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A B S T R A C T  

Data mining is the extraction of useful, prognostic, interesting, and unknown information from massive 

transaction databases and other repositories. Data mining tools predict potential trends and actions, 

allowing various fields to make proactive, knowledge-driven decisions. Recently, with the rapid growth of 

information technology, the amount of data has exponentially increased in various fields. Big data mostly 

comes from people’s day-to-day activities and Internet-based companies. Mining frequent itemsets and 

association rule mining (ARM) are well-analysed techniques for revealing attractive correlations among 

variables in huge datasets. The Apriori algorithm is one of the most broadly used algorithms in ARM, and 

it collects the itemsets that frequently occur in order to discover association rules in massive datasets. The 

original Apriori algorithm is for sequential (single node or computer) environments. This Apriori algorithm 

has many drawbacks for processing huge datasets, such as that a single machine’s memory, CPU and 

storage capacity are insufficient. Parallel and distributed computing is the better solution to overcome the 

above problems. Many researchers have parallelized the Apriori algorithm. This study performs a survey 

on several well-enhanced and revised techniques for the parallel Apriori algorithm in the Hadoop-

MapReduce environment. The Hadoop-MapReduce framework is a programming model that efficiently 

and effectively processes enormous databases in parallel. It can handle large clusters of commodity 

hardware in a reliable and fault-tolerant manner. This survey will provide an overall view of the parallel 

Apriori algorithm implementation in the Hadoop-MapReduce environment and briefly discuss the 

challenges and open issues of big data in the cloud and Hadoop-MapReduce. Moreover, this survey will not 

only give overall existing improved Apriori algorithm methods on Hadoop-MapReduce but also provide 

future research direction for upcoming researchers. 
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1 INTRODUCTION 

 

Data mining is the process of extracting 

useful, potential, novel, understandable, and 

concealed information from databases that are 

huge, noisy, and ambiguous[40,97].  Data mining 

plays a vital role in various applications in the 

modern world, such as market analysis, credit 

assessment, fraud detection, medical and pharma 

discovery, fault diagnosis in production systems, 

insurance and healthcare, banking and finance, 

hazard forecasting, customer relationship 

management (CRM), and exploration of science 

[6,47,69,71,87,95]. Many view data mining as 

synonymous to Knowledge Discovery from Data 

(KDD), while others consider data mining as an 

essential stage in the KDD process [25,47,128]. 

The outline of the KDD process is shown in 

Figure 1.  
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The first step is to define a problem from a 

particular domain that contains appropriate 

previous knowledge and particular application 

goals. The second process is choosing an 

appropriate dataset, which consists of a dataset or 

concentrates on a subset of variables or data 

samples on which discovery is to be 

accomplished. Pre-processing is the third step of 

the KDD process, which consists of data 

collecting, data cleaning, and data selection. It is 

the key step in the KDD process, and it removes 

noise, outliers, and redundant or irrelevant 

information, handles missing data fields, and 

determines DBMS issues, such as types of data, 

schema, and the managing of missing and 

unknown values. 

The fourth step is data transformation, 

which may refer to data reduction and projection; 

this process helps to discover the most valuable 

features of the data that is depending on the task 

and applies dimensionality reduction, such as 

reducing the number of attributes, attribute 

values, and tuples, or transformation methods, 

such as normalization, aggregation, 

generalization, and attribute construction, to 

reduce the effective number of variables under 

consideration or to find invariant representations 

for the data. The fifth step is one of the most 

important processes for selecting the appropriate 

function of data mining; it constructs a suitable 

model derived by the particular data mining 

algorithms (e.g. association rule mining, 

classification, summarization, clustering, and 

regression). 

The sixth step is choosing the proper data 

mining algorithm(s), which includes selecting 

technique(s) to be used to find the patterns of the 

data, such as deciding which models may be 

proper and matching a particular data mining 

technique with the KDD process. The seventh key 

step is data mining, which includes discovery of 

the interesting patterns in the particular assigned 

dataset, including classification rules, decision 

trees, regression, clustering, sequence modelling, 

dependency, and line analysis. The eighth step is 

interpretation, which consists of data mining 

techniques and finding out whether a good 

clustering or classifying approach must interpret 

the result of such an approach. If a result cannot 

be explained properly, it is useless for further 

application. The last step is utilizing the 

discovered knowledge, i.e. using a newly 

discovered set of knowledge for future analysis 

and the prediction of new models [128]. 

Business intelligence has become an integral 

part of many successful organisations. Analysing 

data and making decisions based upon the 

analysis is very important for an organisation’s 

growth. Data mining techniques help analyse the 

substantial data available to assist in decision-

making. Association Rule Mining (ARM) or 

Frequent Itemset Mining (FIM) is one of the key 

areas of the data-mining paradigm. It is intended 

to extract interesting relationships, patterns, and 

associations among sets of items in the 

transaction database or other data repositories 

[12,20,43,128]. The most typical application of 

ARM is in market basket analysis, which analyses 

Figure. 1. Knowledge discovery of KDD process [32,63] 
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the purchasing behaviour of customers by finding 

items that are frequently purchased together. In 

addition to the many business application, it is 

also applicable to telecommunication networks, 

web log mining, market and risk management, 

inventory control, bio-informatics, medical 

diagnosis and text mining [34,47]. 

The Apriori algorithm is one of the best 

classical algorithms for discovering frequent 

itemsets from a transactional database, but it has 

some drawbacks, such as that it scans the dataset 

many times to generate frequent itemsets and that 

it generates many candidate itemsets. When data 

mining mainly deals with large volumes of data, 

both memory usage and computational cost can 

be very high; also, a single processor’s memory 

and central processing unit resources are 

restricted, which impacts the inefficient 

performance of the algorithm [5,74]. One way to 

improve the performance and efficiency of the 

Apriori algorithm is parallelizing and distributing 

the process of generating frequent itemsets and 

association rules. These versions of parallel and 

distributed Apriori algorithms improve the mining 

performance but also have some overheads, such 

as workload balancing, partitioning of input data, 

reduction of the communication costs and 

aggregation of information at local nodes to form 

the global information [5,60,115,124,125]. 

The problems with most distributed 

framework are the overheads of managing the 

distributed system and the lack of a high-level 

parallel programming language.  Working with a 

large number of computing nodes in a cluster or 

grid, there is always the potential of node failures, 

which cause multiple re-executions of tasks. All 

of these pitfalls can be overcome by the Hadoop-

MapReduce framework introduced by Google 

[26,27,44,99]. The Hadoop-MapReduce model is 

a Java-based programming model for readily and 

efficiently developing applications that process 

massive datasets in parallel on large clusters of 

commodity hardware in a trustworthy failure-

resilient manner [57,91,110]. 

In this study, we give a detailed review of 

several improved Apriori algorithms in the 

Hadoop-MapReduce environment and the 

challenges and open issues of big data in the 

cloud and for Hadoop-MapReduce. The rest of 

this paper is organized as follows. Section 2 

explains big data and cloud computing. Section 3 

elaborates data mining techniques, the basic 

concept of ARM, and the Apriori algorithm. 

Section 4 provides an overview of the parallel 

discovery of the Apriori algorithm and related 

challenges. Section 5 describes the concepts of 

Hadoop, MapReduce, and HDFS and how the 

Apriori algorithm is implemented for the Hadoop-

MapReduce model with an example. Section 6 

presents analysis of several improved Apriori 

algorithms in the Hadoop-MapReduce 

environment. Section 7 briefly discusses the 

challenges and open issues of big data in the 

cloud and for Hadoop-MapReduce. Section 8 

presents the discussion and conclusion. 
 

2 BIG DATA AND CLOUD COMPUTING 

 

Big data is the science of analyzing high volumes 

of diverse data in near-real time (volume, 

velocity, variety, veracity). Massive amount of 

data generated are generated daily due to 

technological growth, digitalization and by a 

variety of sources, including business application 

transactions, web pages, videos, images, e-mails, 

and social media. Typically it involves using 

NoSQL technology and a distributed architecture 

to analyze the data. The analysis can be done in 

the public cloud or on private infrastructure. 

Cloud computing provides IT resources such as 

Infrastructure, Platform, Software, Database, and 

Storage as service. It provides many features like: 

on-demand self-service, resource pooling, rapid 

elasticity, flexible scaling and high availability. 

Big data represents content and cloud 

computing is an environment that can be used to 

perform tasks on big data. Nonetheless, the two 

concepts are connected. In fact, big data can be 

processed, analyzed, and managed on cloud.  

 

2.1 Big Data 

 

Big data is the term used to delineate massive 

amounts of information of both structured and 

unstructured data types [113, 131]. Traditional 

database techniques and software applications are 

not suitable to process big data analytics. Big data 

is often characterized using four important 

aspects, namely data volume, data variety, data 

veracity and data velocity, sometimes referred to 

as the 4 V’s of big data (volume, variety, veracity, 

and velocity) [45]. In addition, each of the four 

V’s has its own consequences for analytics. 

Figure 2 shows the 4 V’s characteristics of big 

data. 

 

2.1.1 Volume  

 

Volume refers to the generation and collection of 

different types of massive data. Most of the 
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datasets are too large to store and analyse using 

traditional database technology. Distributed 

systems are a new type of technology to 

overcome the above drawbacks. For instance, 40 

zetabytes (43 trillion GB) of data will have been 

created by the year 2020, 6 billion people have 

mobile devices (85.7% of the total world 

population), and 2.5 quintillion bytes (2.3 trillion 

GB) of data are produced each day [45,50]. 

 
2.1.2 Velocity 

 
Velocity represents the speed at which new data 

are generated, stored, analysed, and visualized. In 

the big data era, data are produced in real-time, or 

near real-time. Currently, the big data production 

speed from various perspectives is almost 

unbelievable. For instance, every minute, email 

users send 204 million messages, Facebook users 

share 2.46 million pieces of content, Google 

receives over 4 million search queries, and 

YouTube users upload 100 hours of video [45, 

50]. 

 

2.1.3 Variety  

 
Variety represents the various types of data users 

can now utilize. Previously, all data fell under 

categories of structured data. It was neatly stored 

in tables and relational databases. Currently, most 

of the world’s data produced by many 

organisations and Internet service companies is 

unstructured data. Data can be categorized into 

four formats: structured data, semi-structured 

data, unstructured data, and complex structured 

data, such as audio, video, web pages, text, 

images, 3D models, simulations, and sensor data 

[50]. Big data requires different approaches and 

techniques to analyse and manage all of the raw 

data. 

 
2.1.4 Veracity 

 
Veracity refers to the uncertainty of data [18]. 

Different volumes of data come with different 

variety at high velocity from different sources. 

Organisations need to ensure the veracity of data, 

i.e., its accuracy, fidelity, and truthfulness, 

because improper data may cause significant 

problems for organisations as well as customers. 

 
2.2 Cloud Computing 

 
Cloud computing is a paradigm that is evolved 

from distributed processing, parallel computing, 

and grid computing. Cloud computing refers to 

“Outsourcing” and provides ubiquitous, 

expedient, and elastic services over the Internet or 

similar networks or both with access to a shared 

pool of computing resources, such as storage, 

memory, servers, network, applications, and 

services [33,52,65] The main features of cloud 

computing are resource pooling, rapid elasticity, 

self-service and on-demand capabilities, broad 

network access, virtualization, accessibility and 

scalability, and measured service [65]. Cloud 

computing delivers infrastructure, platform, and 

software as services via a cloud and delivers them 

over the Internet or a private network [29]. These 

cloud computing services can be generally 

categorized into three different service models: 

Infrastructure as a Service (IaaS), Platform as a 

Service (PaaS), and Software as a Service (SaaS) 

[48,65,109]. 

 

2.2.1 Infrastructure as a Service (IaaS) 

 
IaaS is one of three pillars of the cloud-computing 

model. This service model allows cloud users to 

use virtualized information technology resources 

for computing, storage, networking, and other 

infrastructure components on behalf of its cloud 

users [7,64,65,96]. The user can deploy and run 

his applications over his chosen operating system 

environment. The user does not have privilege to 

manage or control the underlying cloud 

infrastructure, but the user can control the 

operating system, computing storage, deployed 

applications and networking components [96]. 

Figure. 2. 4 V's Characteristics of Big Data 
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Popular IaaS implementations include Amazon 

Web Service (AWS), GoGrid, Rackspace Cloud, 

Windows Azure, IBM Smart Cloud, and Google 

Compute Engine [28]. 

 
2.2.2 Platform as a Service (PaaS) 

PaaS is the second pillar of the cloud-

computing model. The platform cloud is an 

integrated computer system consisting of both 

hardware and software infrastructure. The user 

application can be deployed on this virtualized 

cloud platform using various software tools and 

programming languages supported by the cloud 
service provider. The cloud user cannot manage 

the underlying cloud infrastructure [101,106, 

109]. The cloud provider supports user 

application development and testing on a well-

defined service platform. This PaaS model 

permits a collaborated software platform for users 

from all over the world. This model also 

motivates third parties to provide software 

management, integration, and monitoring 

solutions. Common PaaS vendors include Google 

App Engine, Salesforce.com (CRM), Microsoft 

Azure, Amazon Elastic MapReduce, and Aneka 

[28]. 

 

Advantages Disadvantages 

Cost efficiency 
Security and privacy in the cloud due to multi-

tenancy 

Convenience and high availability 
Performance problems due to the reliance on the 

Internet 

Backup and recovery  

Quick deployment and ease of integration  

Resiliency and redundancy  

Device diversity and location independence  

Scalability and performance  

Increased storage capacity  

Automatic software integration  

Figure. 3. Cloud computing service models with 

examples 

Table 1: Advantages And Disadvantages Of Cloud 
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2.2.3 Software as a Service (SaaS) 

The third pillar of the cloud model is SaaS. 

SaaS is a way of delivering and managing 

software applications over the Internet by one or 

more cloud providers. SaaS application software 

(s/w) sometimes may refer to web-based s/w, on-

demand s/w or hosted s/w. The providers have 

privileged access to the application, including 

security controls, availability, and performance. 

Suitable examples of SaaS services include 

Google Gmail and Docs, Microsoft SharePoint, 

and CRM software from Salesforce.com [28]. 

Figure 3 illustrates three cloud models at 

different service levels of the cloud. SaaS is 

applied at the application end using interfaces by 

users or clients, such as monitoring, 

communication, content management, finance, 

and collaboration. At the PaaS layer, the cloud 

platform must perform object storage, user 

identity, runtime, database and job queuing 

handling. At the bottom layer of the IaaS services, 

block storage, compute instances, the network, 

the file system, and storage must be provisioned 

to satisfy user demands. 

 
Cloud computing has many advantages as 

well as some disadvantages. Table 1 describes the 

pros and cons of cloud computing.  

 
3 DATA MINING TECHNIQUES 

 
Data mining methods and tools are a set of well-

defined procedures to create a data mining model 

from data repositories [47]. Typically, specified 

data mining tools analyse the user-defined data to 

create a model considering the exact types of 

patterns and trends of the data. The techniques 

reveal the solutions of this analysis to define the 

optimal parameters for creating the data mining 

model [12]. These parameters help to extract the 

patterns and detailed statistics from the entire 

dataset. Data mining methods involve seven 

common classes of data mining techniques 

according to function and application purpose, 

which are described as follows: 

i. Anomaly Detection or Outlier Detection: 
Anomaly or Outlier detection refers to the 

identification of the items, events, and 

observations in a dataset that do not conform 

to normal behaviour. SVM, Fuzzy Logic, K-

Means, Nearest Neighbour, and Outlier Count 

are the popular algorithms used in outlier 

detection [84]. The outlier detection 

techniques can be applied to numerous 

domains, such as network intrusion detection, 

telecommunication fraud detection, credit card 

fraud detection, fault detection, system health 

monitoring, and event detection in sensor 

networks [12,34,47] 
. 

ii. Association Rule Mining (ARM): ARM 

attempts to find frequent itemsets among large 

datasets and describes the association 

relationship among different attributes [85]. 

The most-used algorithms for ARM are 

Apriori, Eclat, FP-Growth, and partition. 

Market basket analysis, text mining, Web 

usage mining, protein sequences, and 

Bioinformatics are the application areas for 

ARM [12,13,34,47]. 

iii. Classification: Classification is the data 

mining function that assigns items in a 

collection to target categories or classes [34]. 

The goal of classification is to build a model 

that can accurately predict the target class for 

each case in the data. Decision Tree, Naïve 

Bayes, k-NN, GLM, and SVM are the well-

known algorithms, and fraud detection, credit 

risk, stock market, DNA, and E-mail 

classification are well-established areas using 

classification techniques [12,34,47,85] 

iv. Clustering: Clustering is the process of 

grouping a set of physical or abstract objects 

in such a way that objects in the same group 

are more similar to each other than to those in 

other groups. K-Means, canopy, DBSCAN, 

EM, Fuzzy, C-Means, CLOPE, and cobweb 

are popular implementations of clustering.  

The clustering techniques can be implemented 

in several fields, such as machine learning, 

pattern recognition, image analysis, 

information retrieval, bioinformatics, crime 

analysis, and climatology (12,23, 34, 47]. 

 

v. Regression: Regression is commonly used to 

predict future trends based on past values by 

suitable points on the curve. Multivariate, and 

Adaptive Regression are two of the best 

algorithms used in regression analysis. The 

detection of fraud, and the minimization of 

risk assessments are suitable areas for the use 

of regression analysis [10, 47, 97]. 

vi. Summarization: Visualization and report 

generation is the main goal of the 

summarization. It provides a more compact 

representation of the dataset [47]. LexRank, 

TF–ISF, and TextRank are two of the best 

algorithms used in summarization. Multimedia 

documents, text summarization, and image 

collection are appropriate domains to 
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graphically represent data using 

summarization [3,69]. 
 

vii. Mining Time-Series Data: Many 

organisations and business industries utilize 

time-series or dynamic data. It is typically the 

case that all statistical and real-time control 

data used in process monitoring and control 

are essentially time series. A time-series 

database consists of sequences of values or 

events obtained over repeated measurements 

of time. The values are typically measured at 

equal time intervals (e.g. hourly, daily, and 

weekly). Time-series databases are popular in 

many applications, such as stock market 

analysis, economic and sales forecasting, 

budgetary analysis, utility studies, inventory 

studies, yield projections, workload 

projections, process and quality control, 

observation of natural phenomena (such as the 

atmosphere, temperature, wind, and 

earthquakes), scientific and engineering 

experiments, and medical treatments[35,97]. 

 
3.1 Association Rule Mining (ARM)  

ARM is one of the key methods of data mining 

techniques, and it was introduced by Agrawal et 

al. in 1993. We elaborate some generic concepts 

of association rules of mining formally as 

follows: 

Let �	 � 	 ���, ��,	. . . , �
�	�e a set of m different 

literals or items. For instance, goods such as bags, 

pens, and pencils for purchase in a shop are items. 

X is a set of items such that	 ⊆ �, a collection of 

zero or more items, is called an itemset. If an 

itemset contains � items, it is called a k-itemset. 

For example, a set of items for purchase from a 

super market is an itemset. 

Let � � ���, ����, … . . , ��� be a set of transactions, 

where each transaction � has ��� and � � ������� 
� � ����, � � ��������. 
The itemset  has in the transaction dataset � a 

support, denoted as S; if �% transaction 

contains	, here we called	� � �!""��.   
�!""�� � |�� ∈ �;  ⊆ ��||�|  

An itemset X in a transaction database D is 

called a large, or frequent, itemset if its support is 

equal to, or greater than, the threshold minimal 

support (minsup) given by users. The negation of 

an itemset X is	&.  

The support of & is	�!""�&� 	� 	1	 �
	�!""�). 

An association rule is an implication in the form 

of	 → ),*+�,�	, )	 ⊆ �	-.�	 ∩ ) � 0 

[117,127]. The quality of an association rule can 

be represented as measurements, support and 

confidence. 

�!""1,�	��� determines how often a rule is 

applicable to a given dataset. 

�� → )� � Supp� ∪ )� �6  . 

71.8���.9��7� determines how frequently items 

in ) appear in transactions that contain	. 

7� → )� � �!""� ∪ )�/�!""��	. 
The association rule mining task can be broken 

down into two sub-tasks [43, 116, 129]. 

I. Finding all of the frequent itemsets that 

have support above the user-specified 

minimum support, i.e. generating all 

frequent itemsets.  

II. Generating all rules that have minimum 

confidence in the following simple way: 

For every frequent itemset	 and 

any	;	 ⊂ 	, =��	>	 � 		 � 	;. If the 

confidence of a rule >	 → 	; is greater 

than or equal to the minimum confidence 

(or	�!""��/�!""�>� 	? 	��.91.8), 

then it can be extracted as a valid rule. 

The ARM performance typically depends on 

the first task. Usually, ARM generates a vast 

number of association rules. Most of the time, it is 

difficult for users to understand and confirm a 

huge number of complex association rules. Thus, 

it is important to generate only “interesting” and 

“non-redundant” rules or rules satisfying certain 

criteria, such as being easy to handle, control, 

understand, and increase the strength of. Dozens 

of algorithms have been developed to find the 

frequent itemsets and association rules in ARM, 

and some of the commonly used algorithms are 

the Apriori algorithm, partition algorithm, hash 

tree algorithm, dynamic item set counting 

algorithm, FP tree growth algorithm, Eclat and 

dEclat. 

 

3.1.1 Apriori algorithm 

The rapid advancement of information technology 

has resulted in the accumulation of tremendous 

amounts of data for organisations, and therefore, 

extracting needed information from huge amounts 

of data has been a significant challenge for 

researchers [79]. Apriori is a classic and broadly 

used ARM algorithm. It uses an iterative 

approach called breath-first search to generate 

�� � 1� itemsets from � item sets. The basic 

principal of this algorithm is that all nonempty 

subsets of a frequent itemset must be frequent 

[15,97]. There are two main steps in Apriori: 

1. The prune step: remove an itemset if its 

support is less than min_sup, which is a value 
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predefined by the user, and abandon the 

itemset if its subset is not frequent.  

2. The Join step: candidates are produced by 

joining among the frequent itemsets level-

wise. The key drawback of this algorithm is 

the multiple dataset scans. 

Algorithm 1 presents the pseudocode of the 

Apriori algorithm [97]. 

 

Algorithm 1: Frequent itemset generation of the 

Apriori algorithm 

k =1 

Lk = {i|i ∈ I ∧ σ({i}) ≥ N × minsup}.   

                           {Find all frequent 1-itemsets} 

    repeat 

    k=k+1. 

    Ck = apriori-gen(Lk-1) ).       

{Generate candidate itemsets} 

  for each transection t ∈ T do 

        Ct = subset( Ck, t )              

           {Identify all candidates that belong to t} 

    for each candidate itemset c ∈ Ct  do 

    σ(c) = σ(c)+1.    {Increment support count} 

end for 

end for 

    Lk = {c|c ∈ Ck ∧ σ(c) ≥ N x minsup    

                                  {Extract the frequent k-

itemsets} 

    until Lk = ϕ 

    Result = ⋃Lk 

 

Cloud could be a perfect platform for data 

mining algorithms because of the advantages of 

cloud such as availability, scalability, recovery, 

performance, and cost effective. However, the 

classical Apriori algorithm cannot be 

implemented in the parallel environment because 

it was intended for sequential processing. 

Numerous techniques have been proposed to 

improve the efficiency of the classical Apriori 

algorithm, such as direct hash and pruning (DHP), 

transaction reduction, partitioning, sampling, 

dynamic itemset counting (DIC), vertical layout 

techniques, and FP-Growth [53]. Table 2 describe 

some popular sequential Apriori algorithms that 

have improved the efficiency and performance of 

the original Apriori algorithm in a sequential 

manner. 

 

 

 

 

 

4 PARALLEL DISCOVERY OF THE 

APRIORI ALGORITHM 

 
The current parallel and distributed algorithms are 

based on the classical Apriori algorithm. Classical 

Apriori is a well-known algorithm for discovering 

frequent itemsets from a transactional database; 

however, it needs to scan the dataset repeatedly to 

find frequent itemsets, and it generates numerous 
candidate itemsets. Unfortunately, if the dataset 

is massive, both the memory usage and 

computational cost are more expensive. 

Moreover, a single machine processor’s memory 

and central processing unit resources are 

inadequate, which makes the algorithm 

performance inefficient. Furthermore, because of 

the exponential increase in global information, 

many organisations must deal with big data. As 

these data grow past GBs towards TBs or more, it 

becomes infeasible to manage, store, and analyse 

such data on a single sequential machine.  

Parallel and distributed computing offer a 

potential solution for the above problems when 

efficient and scalable parallel and distributed 

algorithms can be implemented.  Count 

Distribution (CD), Data Distribution (DD) and 

Candidate Distribution are three parallel versions 

of the Apriori algorithm that have been developed 

by Agrawal and Shafer [5]. Ever since, many 

versions of parallel algorithms 

have been proposed to improve the efficiency of 

the classical Apriori algorithm [1,5,11,20,21,22 

,36,37,51,72,73,78, 89,90,94,103,112, 118,119, 

120,123,125]. These parallel algorithms can be 

implemented in the cloud-computing environment 

to reduce computation time, memory usage and 

I/O overhead for generating frequent itemsets. 

This can boost the performance of association 

rule-mining algorithms. 

 

4.1 Count Distribution algorithm (CD) 

 

This technique involves the data parallelism 

approach that splits the database into horizontal 

partitions and then scans individually to find the 

local counts of all candidate itemsets on each 

process. Finally, the local counts are summed up 

after every iteration to obtain the global count to 

find frequent itemsets. The main advantage of this 

method is the minimization of the communication 

cost, as data tuples are not exchanged among 

processors, only the counts are exchanged 

[5,125]. Table 3  describes the count distribution 

algorithm 
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pseudocode and complexity analysis. 

 

4.2 Data Distribution Algorithm (DD) 

 

This method is helpful in using the average main 

memory of machines in parallel by partitioning 

both the database and the candidate itemsets. As 

each candidate itemset is counted by only one 

process, all processes have to exchange database 

Method Description 

Storage 

data 

structure 

Database Algorithm proposed by 

Direct hash 

and 

pruning 

(DHP) 

This method attempts to generate 

large itemsets efficiently and 

reduces the transaction database 

size. When generating L1, the 

algorithm also generates all of 

the 2-itemsets for each 

transaction, hashes them to a 

hash table and keeps a count. 

array Suitable for 

medium-

size 

databases 

[68,75,76,77,122] 

Transaction 

reduction 

A transaction that does not 

contain any frequent k+1-itemset 

may be marked and removed. 

array Suitable for 

small- and 

medium-

size 

databases 

[93,100,117] 

Partitioning The set of transactions may be 

divided into a number of disjoint 

subsets. Then, each partition is 

searched for frequent itemsets. 

These frequent itemsets are 

called local frequent itemsets. 

array More 

suitable for 

huge-size 

databases 

[30, 80, 81, 125] 

Sampling A random sample (usually large 

enough to fit in the main 

memory) may be obtained from 

the overall set of transactions, 

and the sample is searched for 

frequent itemsets 

array Right fit for 

all sizes of 

databases 

[42, 62, 102,123] 

Dynamic 

itemset 

counting 

(DIC) 

DIC allows for the counting of 

an itemset to begin as soon as we 

suspect that it may be necessary 

to count it. 

array Appropriate 

for small- 

and 

medium-

size 

databases 

[16,17,19,98] 

Vertical 

layout 

technique 

(Eclat ) 

The Eclat algorithm is based on 

depth-first search algorithm 

techniques. It uses a vertical 

database layout instance of a 

horizontal layout, i.e., instead of 

explicitly listing all transactions, 

each item is stored together with 

its cover (also called tidlist), and 

the intersection-based approach 

is used to compute the support of 

an itemset. 

 

array Suitable for 

medium-

size and 

dense 

datasets but 

not small-

size datasets 

[103, 121] 

Table 2: Methods for improving the Apriori algorithm 
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partitions during each iteration for each process 

to obtain the global counts of the assigned 

candidate itemsets. The key advantages of this 

method are that the total memory of the system 

is used more efficiently and that this algorithm is 

viable only on a machine with very fast 

communication [5,125]. Table 4 explains the 

data distribution algorithm pseudocode and 

complexity analysis. 

 

4.3 Candidate Distribution algorithm 

This method also partitions candidate itemsets 

but selectively uses replicas, instead of 

partitioning and exchanging database 

transactions, such that each process can proceed 

independently. The main advantage of this 

method is that this algorithm tries to do away 

with the dependence between processors; 

therefore, processors work separately without 

synchronizing. Table 5 explains the data 

distribution algorithm pseudocode. 

4.4 Challenges of a parallel Apriori 

algorithm 

 

Apriori parallel algorithms handle gigantic 

datasets on various platforms with different 

configurations. There are many major challenges 

that need to be considered, as mentioned below.  

 

• How can efficacious load balancing be 

achieved, and which type of load balancing 

(static or dynamic) is suitable for a particular 

algorithm to use? 

• How can the total memory system be used 

effectively?  

• How can new algorithms be produced for 

different memory systems? 

• Which data layout is more convenient to use 

(horizontal, vertical, hybrid, or projection)? 

• How is the choice of which parallel technique 

(data or task parallelism) to use in a new 

algorithm decided? 

• How can the communication cost among 

processors be reduced? 

• How can synchronization be minimized?  
• How can system failure and data recovery be 

managed? 

• How can parallel programming issues be 

simplified? 

• How can scalability and high availability be 

managed? 

 
5 APRIORI ALGORITHM ON THE 

HADOOP-MAPREDUCE MODEL 

 
To overcome the above-stated major challenges, 

the Hadoop-MapReduce framework is a suitable 

solution. Hadoop is an open-source 

programming framework that is capable of 

running applications for large-scale processing 

and storage on large clusters of commodity 

hardware [57,110]. Hadoop cluster 

characteristics include the partitioning or 

distributing of data, computation across multiple 

nodes, and performing computations in parallel 

[88]. It provides applications with both reliability 

and data motion. The Apache Hadoop 

framework consists of four core components: 

Hadoop common, Hadoop distributed file 

system, Hadoop YARN, and Hadoop-

MapReduce.  Hadoop common contains Java 

libraries and utilities required by other Hadoop 

components.   These libraries contain the file 

system and essential Java files and scripts and 

operating system-level abstractions. 

 

The Hadoop Distributed File System 

(HDFS) that stores data on the simple computer 

machines provides high-throughput aggregate 

bandwidth across the cluster [91]. Hadoop 

YARN is a resource-management framework for 

handling compute resources and job scheduling 

of user applications [105]. Hadoop-MapReduce 

is a programming model for parallel processing 

of large-scale datasets. Beyond the above four 

modules, the Apache Hadoop framework has 

many related projects, such as 

Oozie, HBase, Pig, Mahout, Hive, 

Sqoop, Flume, and Zookeeper. 

Figure 4 illustrates components of the Hadoop 

framework and their ecosystem [82]. 

 

 

 

 

 

 

 

 

 

 
 

 

 
Figure 4. Hadoop framework and its ecosystem 
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Table 3: CD Algorithm Pseudocode And Analysis 

 
Table 4: DD Algorithm Pseudocode And Analysis 

 

Table 5: Candidate Distribution Algorithm Pseudocode 

 

 

 

 

 

Method Pseudo code Analysis 

Count 

Distribution 

Algorithm (CD) 

Pass>1 

Generate complete Ck from Lk-1 

Count local data Di to find support for Ck 

Exchange local count for Ck to find global 

Ck 

Compute Lk from Ck 

Pass k=1 

Generate local C1 from local data Di 

Merge local candidate sets to find C1 

B�C/D� 
B�91!.��/D	 E 	1F�,+�-� 

G B�|7H|�	"�,	7DIH
 

G logD
H

 

Input/output Time 

CPU Time 

Communication Volume 

Message Count 

Method Pseudo code Analysis 

Data 

Distribution 

Algorithm 

(DD) 

Partition data + candidate set 

Generate Ck from Lk-1 ; retain |7H|/D 

locally 

Count local Ck using both local and 

remote data 

Calculate local Lk using the local Ck and 

synchronize 

 

 

B�C/D� 
B�91!.��/D	 E 	1F�,+�-� 

G B�C�	"�,	7DI
H

 

G B�D�
H

 

Input/output Time 

CPU Time 

 

Communication Volume 

Message Count 

Method Pseudo code 

Candidate 

Distribution 

Algorithm 

Pass k < l: Use either Count or Data distribution algorithm 

Pass k = l: 

Partition Lk-1 among the N processors such that Lk-1 sets are “well balanced”. 

Processor Pi generates Ck logically using only the Lk-1 partition assigned to it. 

Pi develops global counts for candidate in Ck and the database is repartitioned into 

Di at the same time. 

After Pi has processed all its local data and any data received from all other 

processors, it posts N-1 asynchronous receive buffers to receive Lk from all other 

processors. These Lk are needed for pruning Ck+1 in the prune step of candidate 

generation. 

Processor Pi computes Lk from Ck and asynchronously broadcasts it to the other N-

1 processors using N-1 asynchronous sends. 

Pass K>1: 

Processor Pi collects all frequent itemsets that have been sent to it by other 

processors. 

Pi generates Ck using the local Lk-1. 

Pi makes a pass over Di and counts Ck. 
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Figure. 5. High-level architecture of Hadoop 

5.1 Hadoop Common 

The Hadoop software library is an Apache open-

source framework written in the Java 

programming language that allows for the 

distributed processing of huge datasets across 

clusters of computers using simple programming 

models [8,44]. It is an Apache project released 

under Apache Open Source License v2.0, which 

is very commercially friendly. The Hadoop 

framework provides distributed storage and 

computation among computers on clusters. 

HDFS provides the distributed storage. 

MapReduce performs the computing process 

across the clusters of computers [44, 57,110]. 

Figure 5 illustrates the high-level architecture of 

Hadoop. 

 

5.2 Yet Another Resource Negotiator 

(YARN) 

 

Apache Yet Another Resource Negotiator 

(YARN) is a next-generation compute and 

resource management infrastructure, and it 

delegates many scheduling functions (e.g. task 

fault tolerance) to per-application components in 

Hadoop[110]. YARN eliminates the scalability 

limitation of the first-generation MapReduce 

paradigm. YARN’s basic idea is to split the two 

major functionalities of the JobTracker, resource 

management and job scheduling, into separate 

daemons.  

The idea is to have a global ResourceManager 

and per-application ApplicationMaster. The 

ResourceManager arbitrates resources among all 

of the applications in the system and has two 

components: the Scheduler and Applications 

Manager [56]. The YARN architecture is shown 

in Figure 6. 

 

5.3 Hadoop Distributed File System 

(HDFS) 

HDFS is responsible for storing very large data 

reliably on a cluster in Hadoop. Files in HDFS 

are split into blocks before they are stored on the 

cluster. The typical size of a block is 64 MB or 

128 MB. The blocks belonging to one file are 

then stored on different nodes. HDFS separately 

stores application data as well as file-system 

metadata. HDFS stores metadata on the 

NameNode, and application data are stored on 

DataNodes. All nodes are fully connected and 

communicate among themselves using TCP-

based protocols. HDFS has many characteristics, 

such as its ‘writing to one-reading to many’ 

model, processing logic near to the data instead 

of moving the data to the processing logic, data 

access through MapReduce streaming, simple 

and robust model, scalability for processing huge 

data and storing data reliably, cost effectiveness 

for distributing and processing data across 

clusters of commodity hardware, efficient 

distribution of data and parallel processing, and 

reliability manifested in maintaining multiple 

copies of data on existing nodes [91,92]. Figure 

7 describes a logical representation of the 

components in HDFS. 

 

5.4 MapReduce 

 

MapReduce is a software framework designed to 

process and generate large amounts of data in-

parallel across distributed clusters (thousands of 

nodes) of personal computer hardware in a 

trustworthy, fault-recoverable manner [74]. The 

Figure. 7.  HDFS shows how a client communicates 

with the master NameNode and slave DataNodes 

Figure. 6. YARN architecture [8] 
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MapReduce paradigm is composed of the map 

task, which takes input pairs and produces 

intermediate key/value pairs, and the reduce task, 

which accepts the output key/value pairs from 

the map task and merges, shuffles, and combines 

those  key/value pairs. 

The map task is always performed before the 

reduce task. Generally, both the input and the 

output are stored in HDFS. The framework is 

responsible for scheduling tasks, monitoring 

them and re-executing the failed ones [44, 57, 

110]. A logical view of the MapReduce 

programming model is shown in Figure 8. 

Figure. 8.  Logical view of the MapReduce 

programming model 

 

The map operation and reduce function need to 

be defined by the programmer. Figure 9 shows a 

logical view of the map function with respect to 

its input and output.  

Figure 9. Logical view of the map function 

The shuffle and sort phases are illustrated in 

Figure 10. 

 

 

Figure. 10. Logical view of reduce function 

Figure 11 illustrates the pseudocode definition of 

a reduce function. 

 

 

Figure. 11. Logical view of the reduce function 

Hadoop’s MapReduce architecture is based on 

the master-slave architecture model in HDFS. 

The overall logical architecture of the Hadoop-

MapReduce framework with its main 

components is shown in Figure 12  

 

Figure. 12. Logical architecture of MapReduce 

5.5 Apriori example on the Hadoop 

MapReduce model 

 

The following example briefly describes how to 

implement the Apriori algorithm on the Hadoop-

MapReduce model, as shown in Figure 13, using 

the Map, Shuffle, and Reduce processes. 
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6. ANALYSIS OF SEVERAL IMPROVED 

APRIORI ALGORITHMS IN THE 

HADOOP-MAPREDUCE ENVIRONMENT 

 

In this section, the related works are analysed 

regarding four categories: the objective of the 

work, main theme of the researchers’ concern, 

datasets that were used for the experiment, and 

machine configuration and platform used to 

execute the proposed studies. The following 

tables describe the above four categories as 

follows:  

Table 6 presents several related studies that use a 

parallel Apriori algorithm to deal with big data 

through the use of the Hadoop and MapReduce 

distributed framework. This table provides the 

objectives of related papers that deal with a 

parallel Apriori algorithm based on Hadoop 

technologies and describes the techniques and 

technologies used in the Hadoop-MapReduce 

environment to address big data. 

Table 7 summarizes the main theme of the 

related studies. 

Table 8 demonstrates the datasets that were used 

to analyse the proposed studies. Some 

researchers have given very clear details of the 

dataset that they used.  

Table 9 summarizes the hardware and software 

configuration and platform where the authors 

implemented their experiment. 

 

 

 Figure. 13. Apriori example on MapReduce framework 
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Table 6: Review of several improved Apriori algorithms on Hadoop-MapReduce and their objectives 

Reference Objective 

[60] To evaluate the performance of their proposed Apriori algorithm in terms of 

size-up, speedup, and scale-up to address massive-scale datasets. 

[117] They proved their improved Apriori algorithm on a theoretical basis. First, they 

replace the transaction dataset using the Boolean matrix array; by this method, 

non-frequent item sets can be removed from the matrix, and there is no need to 

scan the original database repeatedly. It just needs to operate on the Boolean 

matrix using the vector operation “AND” and the random access characteristics 

of the array so that it can directly generate the k- frequent itemsets. 

[74] From this study, they suggested a count distribution algorithm as the best way to 

parallelize the Apriori algorithm. Hadoop has three modes of operation: as the 

Standalone, Pseudo-Distributed, and Fully-Distributed modes. The count 

distribution strategy was chosen to implement the Apriori algorithm on a 

Hadoop cluster. 

[31] The authors have improved the Apriori algorithm using the following steps: 

• Split the transaction database horizontally into n data subsets and 

distribute them to ‘m’ nodes. 

• Each node scans its own datasets and generates a set of candidate 

itemsets 7M  

• Then, the support count of each candidate itemset is set to 1. This 

candidate itemset 7M is divided into r partitions and sent to r nodes with 

their support count. r nodes respectively accumulate the support count 

of the same itemset to produce the final practical support and determine 

the frequent itemset NM in the partition after comparing with the 

min_sup. 

• Finally merge the output of r nodes to generate set of global frequent 

itemset L 

[111] To illustrate its time complexity, which theoretically shows that the algorithm 

has much higher performance than the sequential algorithm when the map and 

reduce nodes get added. 

[114] To compare and prove the good performance of the newly proposed 2-phase 

algorithm with previously existing 1-phase and k-phase scanning algorithms 

repeatedly changing the number of transaction and minimum support. 

[59]) To deploy the revised Apriori algorithm on Amazon Elastic Cloud Computing 

(EC2) to assess the performance when varying the number of nodes and 

min_sup threshold. 

[54] 

C � OP��7OP��7  

OP��7 � OP��7 � =1QRC	 

To produce all of the subsets that would be generated from the given itemset, 

these subsets are searched against the datasets and frequency is noted. There are 

huge data itemsets and their subsets, hence they must be searched 

simultaneously so that the search time is reduced. An experiment evaluated this 

by changing the Hadoop mode with Fully configured multi-node Hadoop with 

Different System Configuration (FHDSC) and Fully configured multi-node 

Hadoop with Similar System Configuration (FHSSC) 

where N is the number of nodes installed in the cluster 
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[83] The Apriori algorithm is a famous algorithm for association rule mining. The 

traditional Apriori algorithm is not suitable for the cloud-computing paradigm 

because it was not designed for parallel and distributed computing. The current 

implementations have the drawback that they do not scale linearly as the number 

of records increases. Secondly, the execution time increases when a higher value 

of k-itemsets is required. Thus, the authors have attempted to overcome the 

above limitations, and they have improved the Apriori algorithm such that it 

now has the following features: 

• It will scale linearly as the number of records increases. 

• The time taken will be agnostic to the value k. That is, whatever k-

itemsets run occurs, it will take the same amount of time for the given 

number of records. 

[49] The authors have produced a new map-reduce-based algorithm expressing the 

problem of mining frequent itemsets using dynamic workload management 

through a block-based partitioning. The block-based approach addresses 

memory constraints because the basic task of generating combinations may need 

a very large memory space depending on several parameters, including the 

support threshold. The features of the proposed algorithm are that it uses a 

properly tuned estimation to measure the correct itemset during the pass, and the 

redundancy is eliminated by handling duplicates carefully and because of the 

workload management. 

[46] In this study, the authors proposed a new parallel frequent pattern algorithm. 

The proposed algorithm has five steps: 

• Divide the complete transaction database Db into the number of 

available processors so that each individual processor works on the 

allocated DB in parallel 

• Construct the Global Frequent Header Table using a MapReduce task 

for the first time  

• Generate conditional frequent patterns using a map task the second 

time 

• Each reducer combines all conditional frequent patterns of the same 

key to generate frequent sets 

• All reducers’ outputs are aggregated to generate the final frequent sets. 

[66] They proposed an algorithm that used a Trie structure and grouping 

methodology, but it will locally prune the dataset at the base level as well as at 

an intermediate level by grouping nodes into clusters. At the end, the final 

aggregation of the frequent itemsets is done at the global level. The proposed 

algorithm can reduce the message passing overhead. Like the gossip-based 

mining approach, the overall message passing overhead occurs because it 

follows a random approach for communication, and, if any update occurs, then 

the message passing should occur randomly for all nodes, while, in our proposed 

strategy, the global dataset generated is centralized, so it will take only one 

message for one node to communicate. Additionally, fault tolerance is 

automatically resolved by using the Hadoop distributed framework. 



Journal of Theoretical and Applied Information Technology 
 31st March 2016. Vol.85. No.3 

© 2005 - 2016 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
337 

 

[107] 

>99!,-9S � �TD E TC�
�TD E TC E OD E OC� 

D,�9���1. � TD
�TD E OD� 

��.����F��S�U�9-==� � TD
�TD E OC� 

The authors introduce a method named the Token-Based approach that is used 

to generate precise frequent patterns of data. The input of this module is the 

output from the previous module. The output displayed after the elimination of 

the threshold value is the frequent pattern. They evaluated the performance by 

using a confusion matrix; it provides the accuracy of the patterns. 

 

Confusion Matrix Frequent Infrequent 

Frequent True Positive(TP) 
False 

Negative(FN) 

Infrequent False Positive(FP) 
True 

Negative(TN) 

 

[104] From this study, they introduced a method to measure the performance of the 

distributed algorithm. Measuring the spent time of an algorithm that runs on 

multiple machines in a parallel environment is not a trivial task. The Hadoop 

framework can tell how long a job was running, but their computations are using 

multiple jobs; they can sum up these jobs of course, but the framework does 

many things in the background, such as copying code and data between the 

nodes as well as ordering and shuffling the intermediate job data. Thus, they 

created a scaffolding framework for their implementation that is responsible for 

measuring the time spent on each task. 

[55] Several Apriori-based algorithms were developed, but the modifications are 

based on the reduction of the number of the database scans. However, Apriori-

based algorithms have some other drawbacks. The role of the 2 frequent 

itemsets is fundamental, therefore it is useful to take care of the second 

candidates. In this case, the itemset counters can be stored in a triangular matrix. 

This triangular matrix can be indexed by the itemset identifiers. Hence, this 

matrix contains counter values of each 2 itemsets, and the diagonal of the matrix 

can be the place holder of the 1-item set counters. The advantages of this 

solution are as follows: 

• It is necessary to generate the 2 candidate 

• It is possible to count the 1 and 2 itemset in one scan 

• Each of the counters can be reached in O(1) time 

• It is independent of the size of database, as it depends only on the 

number of items. 

[41] The goal of the paper is to experimentally evaluate association rule-mining 

approaches using a vertical dataset layout and database partitioning on the 

Hadoop-MapReduce framework. They developed a new MapReduce-based 

association rule miner for extracting strong rules from benchmark datasets. 

[67] They introduced two algorithms based on the MapReduce framework for which 

the frequency thresholds can be set low: 

1. Dist-Eclat is a MapReduce implementation of the well-known Eclat 

algorithm, optimized for speed in case a specific encoding of the data 

fits into memory. This technique is able to mine large datasets, but it 

can be prohibitive when dealing with massive amounts of data. 

2. BigFIM is optimized to deal with truly Big Data by using a hybrid 

algorithm, combining principles from both Apriori and Eclat. 
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Table 7: Main theme of the proposed approaches 

Reference Main theme 

[60] In this study, the authors implemented a parallel Apriori algorithm in the 

context of the MapReduce paradigm. MapReduce is a framework for parallel 

data processing in a high-performance cluster computing environment 

[117] The aims of this study were to find the frequent itemsets and association rule 

in the transactional database with the min_sup and min_conf predefined by 

the user on the Hadoop-MapReduce framework. Typically, the standard 

Apriori algorithm has many challenges to discover the frequent itemsets from 

the huge dataset efficiently and quickly. 

[74] ARM plays a key role in data mining techniques. Apriori is an extensively 

used algorithm in association rule mining. The classical Apriori algorithm 

runs on a single node. Thus, it is difficult to process large datasets on a single 

node using the classical Apriori algorithm. There have been various studies 

for parallelizing the algorithm. In this study, Apache Hadoop has been chosen 

as the distributed framework to implement the Apriori algorithm, and the 

performance of the algorithm was evaluated on Hadoop. The classical Apriori 

algorithm was modified to be run on Hadoop. 

[114] They introduced the ability to find all k-frequent itemsets within only two 

phases of scanning the entire dataset and implemented that in a MapReduce 

Apriori algorithm on the Hadoop-MapReduce model efficiently and 

effectively compared with the 1-phase and k-phase algorithms. 

[59] Big-data analysis is a very important research field in data mining strategies 

in the context of the cloud-computing paradigm. In this study, the authors 

developed a new parallel Apriori algorithm based on the existing sequential 

Apriori association rule algorithm for implementation on the Hadoop-

MapReduce parallel computing platform. 

[54] Apriori is a broadly used algorithm for obtaining all frequent itemsets. 

Currently, data come from various domains in various formats with 

unbelievable velocity. Processing, managing, and analysing such huge 

amounts of data are impossible using simple computing machines. Hence, 

distributed and parallel environments undertake such scenarios efficiently. 

Apache Hadoop-MapReduce distribution is one of the cluster frameworks in a 

distributed environment that helps by distributing voluminous data across a 

number of nodes in the framework 

 

[58] They proposed a MapReduce-based parallel FP-Growth algorithm, which 

intelligently shards a large-scale mining task into independent parallel 

computational tasks and maps them onto MapReduce jobs. The proposed 

algorithm then uses the MapReduce model to take advantage of its recovery 

model. It can achieve near-linear speedup with the capability of restarting from 

computer failures. They experimented with their proposed algorithm on a 

massive dataset and verified the outstanding scalability of this algorithm. To 

make the algorithm suitable for mining Web data, which are usually of long tail 

distribution, they designed this algorithm to mine top-k patterns related to each 

item rather than relying on a user-specified value for the global minimal support 

threshold. They demonstrated that the proposed algorithm is effective in mining 

tag-tag associations and WebPage-WebPage associations to support query 

recommendation or related search. 
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[31] This study has implemented a revised Apriori algorithm to extract frequent 

pattern itemsets from transactional databases based on the Hadoop-

MapReduce framework. They used the single-node Hadoop cluster mode to 

evaluate the performance. This redesigned algorithm can be easily parallelized 

and is easy to implement 

[83] Cloud computing has become a big name in the present era. It has proved to 

be a great solution for storing and processing huge amounts of data. Data 

mining techniques implemented with the cloud-computing paradigm can be 

useful for analysing big data in the cloud. In this paper, the researchers used 

the Apriori algorithm for association rules in a cloud environment. 

[49] From this study, the authors proposed one such distributed algorithm that is 

run on Hadoop, which is one of the most popular recent distributed 

frameworks and is mainly focused on the map/reduce paradigm.    

[46] In data mining, research in the field of distributed and parallel mining is 

gaining popularity as there is a tremendous increase in the sizes of databases 

stored in data warehouses. Frequent pattern mining is one of the important 

areas in data mining for finding associations in databases. As FP-Tree is 

considered the best compact data structure for holding data patterns in 

memory, there have been efforts to make it parallel and distributed to handle 

large databases. However, it incurs large amounts of communication overhead 

during the mining. In this study, the authors proposed the Hadoop map/reduce 

framework as a parallel and distributed framework for frequent pattern mining 

algorithm as it shows the best performance results for large databases. 

[66] In this study, the authors discussed different distributed Apriori algorithms 

proposed by different authors and compared those algorithms with a 

comparison matrix. They also proposed a new algorithm. 

COMPARISON MATRIX 

Algorithm Complexity 
Message 

passing overhead 

Count Distribution (CD) High, O(|Ck|n), where 7H 

is a candidate itemset and 

n is the number of site 

Less 

Fast Distribution Mining 

(FDM) 

High, less than CD 

O(|CP|n), where 7M is the 

union of all local 

candidate itemsets 

Less 

Optimized Distribution 

Association Mining 

(ODAM) 

Low compared to 

CD,FDM 

O(|CR+P(FD|*n), where 

7V is the intersection of 

all local frequent 

itemsets, P(FD) is the 

total number of disjoint 

local frequent itemsets 

that have higher 

probability, and n is the 

total number of sites 

High 

Distributed Trie Frequent 

Itemset Mining (DTFIM) 

Low compared to 

CD,FDM,ODAM (O(n
2
)) 

High 

Gossip-based distributed 

frequent itemset mining 

Low compared to all of 

the above (O(nlogn)) 
High 
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[107] Data mining is a rapidly growing field, and it has become a popular research 

area. In this study, a system was proposed to find the frequent patterns in 

order to increase the profit by making the frequent items available 

consistently. A token-based approach is proposed in order to find the frequent 

pattern from the intermediate output. There are many existing methods for 

analysing big data and frequent patterns, but the proposed system is fault 

tolerant, time consuming and highly reliable. 

[58] Fault recovery is a typical problem in massive computing environments 

because the probability that none of the thousands of computers crashes 

during execution of a task is close to zero. The demands of sustainable 

speedup and fault tolerance require highly constrained and efficient 

communication protocols. Thus, they show that their proposed solution is able 

to address the issues of memory use and fault tolerance in addition to more 

effectively parallelizing computation. 

 

[67] The main challenge in adapting algorithms to the MapReduce framework is 

the limitation of the communication between tasks, which are run as batches 

in parallel. All of the tasks that have to be executed should be defined at start-

up, such that nodes do not have to communicate with each other during task 

execution. Fortunately, the prefix tree that is used by Eclat can be partitioned 

into independent groups. Each one of these independent groups can be mined 

separately on different machines. The proposed algorithms exploit the inter-

independence of sub-trees of a prefix tree and use longer FIs as prefixes for 

better load balancing.  

 
Table 8: Details of the datasets used in experiments 

Reference Dataset 

[60] In this study, they used the transactional data for an all-electronics branch and 

the T1014D100K dataset. They replicated it to obtain 1 GB, 2 Gb, 4 GB, and 

8 GB. For the T1014D100K dataset, they have replicated it into 2 times, 4 

times, and 8 times and got 0.6 GB, 1.2 GB and 2.4 GB datasets, respectively. 

They denoted those datasets as T1014D200K, T1014D400K and 

T1014D800K. Additionally, they used some transactional logs from a 

telecommunication company. 

[117] Sample 

[74] Accident dataset- National Institute of Statistics (NIS) for the region of 

Flanders (Belgium) period from 1991-2000. 340,184 records, 572 attributes 

and they used synthetically generated dataset 

[114] In this study, the T1014D100K dataset was used to obtain the experiment 

results generated by IBM’s quest synthetic data generator. The total number of 

transactions is 100000, and each transaction contains 10 items on average; the 

total number of items is 1000, and the average length of frequent itemsets is 4 
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[59] The datasets of chess, mushroom, and connect are real-life datasets 

downloaded from the UCI dataset repository, and T1014D100K was 

synthetically generated by the IBM Almaden Quest research group 

 
 

Dataset Total 

Instances 

Total 

Attributes 

Chess 3196 36 

Mushroom 8124 22 

Connect 67557 42 

T1014D100

K 

100000 26 

[54] 
Transactional Dataset 

[31] 
Word count Example 

[83] 
INA

1
 

[49] The experiment is done using two real datasets that are publicly available and 

have different characteristics: one is generated by an IBM synthetic data 

generator and the other is the basket dataset. 

 

Table I: Number of Items and Transactions in each 

Dataset 

Dataset σ |F1| |F| Max 

{k||Fk|>0}c 

T2017D500K 700 804 550126 18 

Retail Market 7 8051 285758 11 

 
 

Table II: Lowest Min Threshold for each Dataset 

Dataset #Items #Transaction Min|T| Max|T| Avg|T| 

T2017D100K 942 90000 4 77 39 

Retail Market 16470 88163 1 51 13 

[46] Several real and synthetic datasets are used to test the performance of the 

algorithm. 

[66] Mushroom dataset from UCI (8124 number of records and 23 transaction 

length) 

[58] They generated a tag transaction database and named it TTD and a URL 

transaction database, as shown in below 

 TTD WWD 

URLs 802,939 802,739 

Tags 1.021.107 1,021,107 

Transaction

s 

15.898.94

9 

7,009,457 

Total items 84,925,90

8 

38,333,65

3 
 

                                                 
1
 INA-Information Not Available 
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[67] They have used the benchmark data, such as Abstract, T1014D100K, 

Mushroom, and Pumsb. Additionally, they used a scrape of the delicious 

dataset provided by DAI-Labor. 

Dataset 
Number of 

Items 

Number of 

Transactions 

Abstracts 4,976 859 

T1014D100K 870 100,000 

Mushroom 119 8,124 

Pumsb 2,113 49,046 

Tag 45,446,863 6,201,207 
 

[107] The daily, monthly, and yearly sales of various shops are collected from 

various websites. 

 
Table 9: Experiment platform and H/W & S/W Configuration 

Reference Hadoop mode #phase Introduced Algorithm 

[59] INA k PApriori 

[74] Fully distributed k Modified Apriori 

[114] Standalone 2 MRAPRIORI 

[59] Fully Distribution INA Modified Apriori 

[54] 
Stand alone, pseudo, and fully 

distributed 
INA Modified Apriori 

[31] Standalone 1 Modified Apriori 

[83] Fully distribution 2 Modified Apriori 

[46] Standalone 2 DPFPM 

[66] Standalone 2 Modified Apriori 

[67] Standalone k Dist-Eclat and BigFIM 

[58] INA k Parallel FP (PFP) 

[107] INA INA 
Modified 

Apriori 

[117] - 1 None 

[111] - - Apriori-Map/Reduce 
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6 CHALLENGES, AND OPEN ISSUES 

OF BIG DATA IN THE CLOUD AND 

HADOOP-MAPREDUCE 

 

6.1 Big data in the Cloud: Challenges 

 

• Scalability: How can the explosion 

growth of data be handled in an 

appropriate manner? 

• Availability: How can the cloud service 

providers be trusted to continuously 

provide data that are stored in the 

cloud?  

• Data integrity: How can it be ensured 

that a cloud user’s data are not being 

viewed, altered, or analysed by 

authorized parties or data owner? 

• Data Transformation: Big data has a 

variety of data formats, so how can data 

be transformed into a suitable format 

for big data analysis? 

• Data Quality: Big data originates from 

various domains, so how can high-

quality data be obtained from various 

sources? 

• Data Heterogeneity: Big data comes 

from numerous sources with different 

types of data and they have 

incompatible format and inconsistency, 

so how can the challenge of big data 

analysis and management on a cloud 

platform be addressed?  

• Privacy: How can the reliability of 

storing private data in cloud storage be 

ensured?  

• Legal issues: How can the unique laws 

and regulations be established to 

achieve data privacy and protection? 

• Data governance: How can a well-

defined and acceptable data policy, 

according to the type of data to be 

stored, how quickly an individual data 

access must be, and how the private 

data are accessed, be created? 

• Timeliness: How can interaction 

response times to complex queries at 

scale over high-volume event streams 

be provided? 

• Data visualization: How can the 

visualization of big data be improved in 

an appropriate way? 

 

 

 

6.2 Big Data in the Cloud: Open Issues 

 

• Find the more feasible techniques to 

simplify the transformation and 

cleaning of unstructured big data in a 

cloud platform such as the Hadoop-

MapReduce distribution platform. 

• Improve the techniques to store, easily 

retrieved, and migrated big data 

between cloud servers and other 

devices. 

• There is a door for efficiently 

improving the data analysis tools and 

technologies that are highly appreciated 

under the cloud platform. 

• Data security is the keen open issue to 

solve the unresolved security threats 

that exist in cloud computing, such as 

privacy, confidentiality, data integrity, 

and availability of big data using the in-

cloud environment. 

 

6.3 Hadoop-MapReduce: Challenges 

 

• The current architecture of the Hadoop-

MapReduce programming model does 

not provide a fast, scalable and 

distributed resource infrastructure 

solution. Business and scientific 

organisations are required to solve a 

wide range of data-intensive analytic 

problems. 

• Current implementations of the 

Hadoop-MapReduce programming 

model are not able to react quickly and 

grow or shrink to adjust to the current 

workload to reduce costs while 

maximizing results based on the 

application and/or user demand.  

• The current architecture of the Hadoop-

MapReduce programming model does 

not make it easy to handle multiple 

application integrations on a 

production-scale distributed system 

with automated application service 

deployment capability. 

• Current implementations of the 

Hadoop-MapReduce programming 

model are not specifically optimized to 

take full advantage of multi-core 

servers. 

• Current implementations of the 

Hadoop-MapReduce programming 

model only support the Hadoop 

Distribution File System (HDFS). Data 
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transformation is the key challenge to 

translate the data into an HDFS-suitable 

format. 

 

6.4 Hadoop-MapReduce: Open Issues 

 

• Optimization technique-related issues 

require study under the Hadoop-

MapReduce architecture. 

• MapReduce programs are based on 

data-intensive instead of computation-

intensive tasks, and, in order to achieve 

good performance, it is vital to 

minimize disk I/O and communication. 

Therefore, many studies seek ways to 

enable in-memory processing and avoid 

reading from disk when possible. 

• Another open issue is to find the 

mechanism by which Hadoop could 

offer capabilities of tuneable fault-

tolerance to users or provide automatic 

fault tolerance adjustment mechanisms, 

depending on the cluster and application 

characteristics. 

 

7 DISCUSSION AND CONCLUSION 

 

7.1 Discussion  

 

Hadoop-MapReduce is an open-source 

programming software framework introduced by 

Google in 2004, and since then, numerous 

methods have been proposed to improve the 

performance of the Apriori algorithm on the 

Hadoop-MapReduce framework. According to 

Tables 6 and 7, researchers’ perspectives can be 

classified as follows: 

I. Horizontal vs. vertical layout analysis 

Most of the researchers analysed the 

performance of the Apriori algorithm 

based on a horizontal layout. Eclat is 

the vertical dataset layout algorithm that 

is more efficient than the Apriori 

algorithm in the sequential 

environment. Sandy Moens et al. [67] 

proposed two new parallel algorithms 

based on the Eclat algorithm: Dist-Eclat 

and BigFIM. Dist-Eclat is a MapReduce 

implementation of the well-known Eclat 

algorithm that focuses on speed, while 

BigFIM is optimized to deal with truly 

Big Data by using a hybrid algorithm 

with both Apriori and Eclat on 

MapReduce. Rahman et al. [41] 

implemented a parallel Eclat algorithm 

on Hadoop-MapReduce. The authors 

checked the performance, and they 

achieved good results. 

II. 1-phase, 2-phase, and k-phase analysis 

Researchers find all the frequent 

itemsets in three different ways: 1-

phase, which requires a single iteration 

to find all frequent itemsets; 2-phase, 

which only needs two MapReduce 

phases to extract all frequent itemsets; 

and k-phase, which needs to find all 

frequent itemsets in k MapReduce 

phases. Othman et al. compared 2-phase 

with the 1-phase and k-phase types. 

They proved that the 2-phase algorithm 

is much better than the 1- and k-phase 

algorithms. Additionally, 1-phase is 

worse than k-phase, as it is inefficient 

and slow. 

III. Hadoop mode performance analysis 

Hadoop can typically be configured to 

run in three modes: Standalone mode 

(on the local computer, useful for 

testing and debugging), pseudo-

distributed mode (i.e. on an emulated 

"cluster" of one computer, useful for 

testing), and fully-distributed mode (on 

a full cluster, for production purposes). 

• Standalone mode: this is the default 

mode of the Hadoop framework, 

i.e., it is configured to run in the 

non-distributed mode. None of the 

Hadoop daemons (NameNode, 

DataNode, Secondary NameNode, 

Job Tracker, and Task Tracker) are 

running.  The local file system is 

utilized instead of the Hadoop 

Distribution File System (HDFS). 

This mode is very useful for the 

testing and debugging process. 

• Pseudo mode: the Hadoop daemons 

run on a local machine, therefore 

simulating a cluster on a small 

scale. Different Hadoop daemons 

run in different Java virtual 

machine (JVM) instances but on a 

single machine. Here, HDFS is 

exploited instead of the local file 

system. 

• Fully distributed mode: this mode 

consists of multi-node clusters and 

is exploiting the actual power of 

Hadoop. 
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Researchers mostly implemented their work in 

the standalone and fully distributed modes (see 

Table 9) because the pseudo-distributed mode 

does not add value for most purposes. 

Koundinya et al. [54] tested the three-mode 

performance with an increasing number of 

transactions. From their study, the fully 

distributed mode is better than the standalone 

and pseudo modes 

IV. Candidate and frequent itemset analysis 

Most of the Hadoop-MapReduce-based modified 

algorithms focused on the reduction of the 

number of database scans. However, the Apriori 

algorithm suffers when generating and storing 

candidate itemsets specially focusing on 2-

candidate itemsets. Kovacs et al. proposed an 

algorithm to handle 2 itemsets in a special way 

(see Table 6 and 7), thereby significantly 

reducing the response time of the Apriori 

algorithm, but the drawback of this method is 

that more memory is needed to store the itemset 

in a triangular matrix (spatial complexity of 

O(n
2
)) 

 

7.2 Conclusion  

 

Currently, data are huge and exponentially 

increasing every day. As datasets grow past GBs 

to TBs or more, it has become infeasible to 

manage, store, and analyse them on a single 

sequential machine. Parallel and distributed 

computing offers a potential solution for the 

above problem when efficient and scalable 

parallel and distributed algorithms can be 

implemented. The Hadoop-MapReduce platform 

is more suitable for the parallel processing of 

huge data on many clusters using commodity 

hardware. Several survey studies have done by 

previous researchers but in this survey mainly 

concentrate on the parallelized Apriori algorithm 

on the Hadoop-MapReduce programming 

software framework with different new 

techniques such as 1-, 2-, and k-phase iteration 

techniques, of data layout (horizontal and 

vertical), and Hadoop modes and their 

suitability. We have presented a review of the 

various proposed parallel Apriori algorithm 

methods on the Hadoop-MapReduce platform. 

We analysed the related studies in several ways, 

such as by objectives of the studies, main themes 

of the proposed methods, which datasets were 

used to analyse the performance of the proposed 

algorithms, software and hardware 

configurations, which Hadoop mode was used, 

how many phases they used, etc. Moreover, we 

deeply discussed different categories, such as the 

types of data layout (horizontal and vertical), 1-, 

2-, and k-phase iteration techniques and their 

performance, types of Hadoop modes and their 

appropriateness, and how to generate more 

candidate itemsets. Finally, we interpreted the 

challenges and open issues of big data in the 

cloud and the Hadoop-MapReduce framework. 

From this study, we can ultimately conclude that 

the Hadoop-MapReduce platform is an efficient 

and scalable platform for the analysis of any big 

data computational problem and that the 

Hadoop-MapReduce-based Apriori algorithm is 

more efficient than the sequential version 

without Hadoop-MapReduce platform 

algorithms. 

 

ACKNOWLEDGMENT 

We wish to thank Universiti Kebangsaan 

Malaysia (UKM) and Ministry of Higher 

Education Malaysia for supporting this work 

through the following research grants 

(ERGS/1/2013/ICT07/UKM/02/3 and DIP-2014-

37). 

 

REFERENCES  

 

[1] Adamo, J.-M. (2001). Data Mining for 

Association Rules and Sequential Patterns: 

sequential and parallel algorithms. Springer 

Science & Business Media. 

[2] Aggarwal, C. C., Zhao, Y., & Yu, P. S. 

(2010). On clustering graph streams. In Sdm 

,Vol.2 , pp. 478–489. 

[3] Aggarwal, C., & Zhai, C. (2012). Mining 

text data. Springer Science & Business 

Media. 

[4] Agrawal, R., Imieliński, T., & Swami, A. 

(1993). Mining association rules between 

sets of items in large databases. In ACM 

SIGMOD Record ,Vol. 22, pp. 207–216. 

ACM. 

[5] Agrawal, R., & Shafer, J. C. (1996). Parallel 

mining of association rules. In IEEE 

Transactions on Knowledge and Data 

Engineering ,Vol. 8(6), pp. 962–969. 

Springer. 

[6] Antonie, M., Coman, A., & Zaiane, O. R. 

(2001). Application of Data Mining 

Techniques for Medical Image 

Classification. In Proceedings of the second 

international Workshop on Multimida Data 

Mining (MDM/KDD’2001) pp. 94–101. 



Journal of Theoretical and Applied Information Technology 
 31st March 2016. Vol.85. No.3 

© 2005 - 2016 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
346 

 

[7] Antonopoulos, N., & Gillam, L. (2010). 

Cloud computing: Principles, systems and 

applications. Springer Science & Business 

Media. 

[8] apache. (2014). Welcome to Apache
TM

 

Hadoop®!  

[9] Azarmi, B. (2014). Knowing about the 

Hadoop ecosystem. 

[10] Bakin, S. (1999). Adaptive regression and 

model selection in data mining 

problems.Thesis. 

[11] Becuzzi, P., Coppola, M., & Vanneschi, M. 

(1999). Mining of association rules in very 

large databases: A structured parallel 

approach. In Euro-Par’99: Parallel 

Processing, Vol. 1685, pp. 1441–1450. 

Springer. 

[12] Berry, M. J., & Gordon S. Linoff. (2011). 

Data mining techniques-for marketing, sales 

and customer support. John Wiley & Sons, 

Inc. 

[13] Berry, M., & Linoff, G. (1999). Mastering 

Data Mining: The Art and Science of 

Customer Relationship Management. John 

Wiley & Sons, Inc. 

[14] Bialecki, a, Cafarella, M., Cutting, D., & 

O’Malley, O. (2005). Hadoop: a framework 

for running applications on large clusters 

built of commodity hardware. http://Lucene. 

Apache. Org/Hadoop, 11. 

[15] Borgelt, C., Borgelt, C., Kruse, R., & Kruse, 

R. (2002). Induction of Association Rules: 

Apriori Implementation. In 15th Conference 

on Computational Statistics Physica Verlag, 

Heidelberg, Germany 2002, Vol. 1, pp. 1–6. 

Springer. 

[16] Brin, S., Motwani, R., Ullman, J. D., & 

Tsur, S. (1997). Dynamic itemset counting 

and implication rules for market basket data. 

In ACM SIGMOD Record , Vol. 26, pp. 

255–264. ACM. 

[17] Brin, S., Ramkumar, G. D., & Tsur, S. 

(2001). Method and apparatus for 

dynamically counting large itemsets. Google 

Patents. 

[18] Buhl, H. U., Röglinger, M., Moser, D.-K. F., 

& Heidemann, J. (2013). Big data. Business 

& Information Systems Engineering, Vol. 

5(2), pp.65–69. 

[19] Burdick, D., Calimlim, M., & Gehrke, J. 

(2001). MAFIA: a maximal frequent itemset 

algorithm for transactional databases. In 

Proceedings 17th International Conference 

on Data Engineering, pp. 443–452. IEEE. 

[20] Chen, D. C. D., Lai, C. L. C., Hu, W. H. W., 

Chen, W. C. W., Zhang, Y. Z. Y., & Zheng, 

W. Z. W. (2006). Tree partition based 

parallel frequent pattern mining on shared 

memory systems. In Proceedings 20th IEEE 

International Parallel & Distributed 

Processing Symposium (p. 8 pp.). IEEE. 

[21] Cheung, D. W., Ng, V. T., Fu, A. W., & Fu, 

Y. F. Y. (1996). Efficient mining of 

association rules in distributed databases. 

IEEE Transactions on Knowledge and Data 

Engineering, Vol.8(6), pp.911–922. 

[22] Cheung, D., & Xiao, Y. (1998). Effect of 

data skewness in parallel mining of 

association rules. In Research and 

Development in Knowledge Discovery and 

Data Mining pp. 48–60. Springer. 

[23] Cios, K. J., Pedrycz, W., & Swiniarsk, R. M. 

(1998). Data mining methods for knowledge 

discovery. IEEE Transactions on Neural 

Networks / a Publication of the IEEE Neural 

Networks Council, Vol. 9(6), pp.1533–1534. 

[24] Coenen, F., Leng, P., & Ahmed, S. (2004). 

Data Structure for Association Rule 

Mining : IEEE Transactions on Knowledge 

and Data Engineering, Vol. 16(6), pp.1–5. 

[25] Crc, H. (2009). Data Mining and. In 

Knowledge Creation Diffusion Utilization 

pp. 27–61. Springer. 

[26] Dean, J., & Ghemawat, S. (2008). 

MapReduce: simplified data processing on 

large clusters. Communications of the ACM, 

Vol. 51(1), pp. 107-113. 

[27] Dean, J., & Ghemawat, S. (2010). 

MapReduce: a flexible data processing tool. 

Communications of the ACM, Vol. 53(1), 

pp. 72-77. 

[28] Dillon, T., Wu, C., & Chang, E. (2010). 

Cloud computing: issues and challenges. In 

Advanced Information Networking and 

Applications (AINA), 2010 24th IEEE 

International Conference on AINA, pp. 27–

33. IEEE. 

[29] Domzal, J. (2011). Securing the cloud: 

Cloud computer security techniques and 

tactics (Winkler, V.; 2011) [Book reviews]. 

IEEE Communications Magazine , Vol. 49. 

Elsevier. 

[30] Evfimievsky, a, Srikant, R., Gehrke, J., & 

Agrawal, R. (2002). Privacy preserving data 

mining of association rules. Proceedings of 

the 8th ACM SIGKDD International 

Conference on Knowledge Discovery in 

Databases and Data Mining, Vol. 16(9), pp. 

217–228. 



Journal of Theoretical and Applied Information Technology 
 31st March 2016. Vol.85. No.3 

© 2005 - 2016 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
347 

 

[31] Ezhilvathani, A., & Raja, K. (2013). 

Implementation of parallel apriori algorithm 

on hadoop cluster. International Journal of 

Computer Science and Mobile Computing. 

Vol. 2(4), pp. 513-516 

[32] Fayyad, U., Piatetsky-Shapiro, G., & Smyth, 

P. (1996). The KDD process for extracting 

useful knowledge from volumes of data. 

Communications of the ACM, Vol. 39(11), 

pp. 27–34. 

[33] Foster, I., Zhao, Y., Raicu, I., & Lu, S. 

(2008). Cloud Computing and Grid 

Computing 360-degree compared. In Grid 

Computing Environments Workshop, GCE 

2008, pp. 1–10. IEEE.  

[34] Frank, J. (2000). Data mining. Nature 

biotechnology (Vol. 18 Suppl). Morgan 

Kaufmann. 

[35] Fu, T. C. (2011). A review on time series 

data mining. Engineering Applications of 

Artificial Intelligence, 24(1), 164–181. 

Ganti, V., Gehrke, J., & Ramakrishnan, R. 

(1999). Mining very large databases. 

Computer, Vol. 32(8), pp. 38–45. 

[36] Han, E.-H., Karypis, G., & Kumar, V. 

(1997). Scalable parallel data mining for 

association rules. ACM SIGMOD Record, 

Vol. 26(2), pp. 277–288.  

[37] Han, J., Cheng, H., Xin, D., & Yan, X. 

(2007). Frequent pattern mining: Current 

status and future directions. Data Mining 

and Knowledge Discovery, Vol. 15(1), pp. 

55–86. 

[38] Han, J., & Kamber, M. (2006). Data Mining, 

Concepts and Techniques. Morgan 

Kaufmann.Elsevier. 

[39] Han, J., Pei, J., & Yin, Y. (2000). Mining 

frequent patterns without candidate 

generation. In ACM SIGMOD Record , Vol. 

29, pp. 1–12. ACM. 

[40] Hand, D. J. (2007). Principles of data 

mining. Drug Safety (Vol. 30). MIT press. 

[41] Hazarika, M., & Rahman, M. (2014). 

Mapreduce Based Eclat Algorithm for 

Association Rule Mining in Datamining : 

Mr _ Eclat. International Journal of 

Computer Science and Engineering, Vol. 

3(1), pp. 19–28. 

[42] Hidber, C. (1999). Online association rule 

mining. SIGMOD '99 Proceedings of the 

1999 ACM SIGMOD international 

conference on Management of data Vol. 

28(2). pp.145-156. ACM. 

[43] Hipp, J., Güntzer, U., & Nakhaeizadeh, G. 

(2000). Algorithms for association rule 

mining --- a general survey and comparison. 

ACM SIGKDD Explorations Newsletter, 

Vol. 2(1), pp. 58–64.  

[44] Holmes, A. (2012). Hadoop in Practices. 

Manning Publications Co. 

[45] IBM. (2013). four-vs-big-data. 

http://www.ibmbigdatahub.com/infographic/

four-vs-big-data 

[46] Itkar, S., & Kulkarni, U. (2013). Distributed 

Algorithm for Frequent Pattern Mining 

using HadoopMap Reduce Framework. 

Proceeding of International Conference on 

Advances in Computer Science, AETACS, 

pp.15-24. 

[47] Jiawei, H., & Kamber, M. (2006). Data 

mining: concepts and techniques. San 

Francisco, CA, Itd: Morgan Kaufmann, 

Vol.5. 

[48] Jula, A., Sundararajan, E., & Othman, Z. 

(2014). Cloud computing service 

composition: A systematic literature review. 

Expert Systems with Applications, Vol. 

41(8), pp. 3809–3824. 

[49] Jyoti, L. D., & Kiran, B. D. (2014). A Novel 

Methodology of Frequent Itemset Mining on 

Hadoop. International Journal of Emerging 

Technology and Advanced Engineering, 

Vol. 4(7), pp. 851–859  

[50] Kaisler, S., Armour, F., Espinosa, J. A., & 

Money, W. (2013). Big data: Issues and 

challenges moving forward. In System 

Sciences (HICSS), 2013 46th Hawaii 

International Conference on HICSS, pp. 

995–1004 . IEEE. 

[51] Kamber, M. (2012). Mining Association 

Rules in Large Databases. Knowledge and 

Data Engineering, IEEE Transactions on, 

Vol. 11(5), pp. 798–805. 

[52] Kim, J., Seo, S., Jung, D., Kim, J. S., & 

Huh, J. (2012). Parameter-aware I/O 

management for solid state disks (SSDs). 

IEEE Transactions on Computers, Vol. 

61(5), pp. 636–649.  

[53] Kotsiantis, S., & Kanellopoulos, D. (2006). 

Association Rules Mining : A Recent 

Overview Basic Concepts & Basic 

Association Rules Algorithms. GESTS 

International Transactions on Computer 

Science and Engineering, Vol. 32(1), pp. 

71–82. 

[54] Koundinya, A., & Sharma, K. (2012). 

Map/Reduce Deisgn and Implementation of 

Apriori Alogirthm for handling voluminous 

data-sets. Advanced Computing: An 

International Journal, Vol. 3(6), pp. 29–39. 



Journal of Theoretical and Applied Information Technology 
 31st March 2016. Vol.85. No.3 

© 2005 - 2016 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
348 

 

[55] Kovacs, F., & Illes, J. (2013). Frequent 

itemset mining on hadoop., 2013 IEEE 9th 

International Conference on Computational 

Cybernatics, pp. 241–245.  

[56] Kulkarni, A. P., & Khandewal, M. (2014). 

Survey on Hadoop and Introduction to 

YARN. International Journal of Emerging 

Technology and Advanced Engineering, 

Vol. 4(5), pp.82–87. 

[57] Lam, C. (2011). Hadoop in Action. Manning 

Publications Co. 

[58] Leclerc, M. (1991). An implementation of 

the McEliece-cryptosystem. In ACM 

SIGSAC Review (Vol. 9, pp. 1–4). ACM. Li, 

H., Wang, Y., Zhang, D., Zhang, M., & 

Chang, E. Y. (2008). Pfp. Proceedings of the 

2008 ACM Conference on Recommender 

Systems - RecSys ’08, pp. 107-114. 

[59] Li, J., Roy, P., Khan, S. U., Wang, L., & 

Bai, Y. (2012). Data Mining Using Clouds : 

An Experimental Implementation of Apriori 

over MapReduce. 12th International 

Conference on Scalable Computing and 

Communications (ScalCom). 

[60] Li, N. (2013). Parallel Implementation of 

Apriori Algorithm Based on MapReduce 

Received 22 March 2012 Accepted 13 

November 2012. In Software Engineering, 

Artificial Intelligence, Networking and 

Parallel & Distributed Computing (SNPD), 

2012 13th ACIS International Conference 

on, Vol. 1, pp. 89–96. IEEE. 

[61] Liu, B., Hsu, W., Ma, Y., & Ma, B. (1998). 

Integrating Classification and Association 

Rule Mining. In Knowledge Discovery and 

Data Mining, pp. 80–86. 

[62] Mahafzah, B. a., Al-Badarneh, a. F., & 

Zakaria, M. Z. (2009). A new sampling 

technique for association rule mining. 

Journal of Information Science, Vol. 35(3), 

pp. 358–376.  

[63] Maimon, O, & Rokach, L. (2005). Data 

mining and knowledge discovery handbook. 

Springer. 

[64] Manvi, S. S., & Shyam, G. K. (2014). 

Resource management for Infrastructure as a 

Service (IaaS) in cloud computing: A 

survey. Journal of network and computer 

applications, 41, 424-440 

[65] Mell, P., & Grance, T. (2011). The NIST 

definition of cloud computing, NIST Special 

Publication 800, 145. 

[66] Modgi, M. P. (2014). Mining Distributed 

Frequent Itemset with Hadoop. International 

Journal of Computer Science & Information 

Technologies(IJCSIT), Vol5(3), pp. 3093–

3097. 

[67] Moens, S., Aksehirli, E., & Goethals, B. 

(2013). Frequent Itemset Mining for Big 

Data. Big Data, 2013 IEEE International 

Conference on, pp. 111–118. 

[68] Najadat, H., Shatnawi, A., & Obiedat, G. 

(2011). A New Perfect Hashing and Pruning 

Algorithm for Mining Association Rule. 

Communications of the IBIMA, pp. 1–8.  

[69] Neto, J. L., Santos, A. D., Kaestner, C. a. a., 

& Freitas, A. a. (2000). Document 

Clustering and Text 

Summarization.Citeseer. 

[70] Ngai, E. W. T., Xiu, L., & Chau, D. C. K. 

(2009). Application of data mining 

techniques in customer relationship 

management: A literature review and 

classification. Expert Systems with 

Applications, Vol. 36(2), pp. 2592–2602.  

[71] Obenshain, M. K. (2004). Application of 

data mining techniques to healthcare data. 

Infection Control and Hospital 

Epidemiology : The Official Journal of the 

Society of Hospital Epidemiologists of 

America, Vol. 25(8), pp. 690–695.  

[72] Orlando, S., Palmerini, P., & Perego, R. 

(2001). Enhancing the Apriori Algorithm for 

Frequent Set Counting. In Data 

Warehousing and Knowledge Discovery pp. 

71–82. Springer. 

[73] Orlando, S., Palmerini, P., Perego, R., & 

Silvestri, F. (2003). An efficient parallel and 

distributed algorithm for counting frequent 

sets. In High Performance Computing for 

Computational Science - Vecpar 2002, Vol. 

2565, pp. 421–435. Springer. 

[74] Oruganti, S., Ding, Q., & Tabrizi, N. (2013). 

Exploring HADOOP as a Platform for 

Distributed Association Rule Mining. In 

FUTURE COMPUTING 2013, The Fifth 

International Conference on Future 

Computational Technologies and 

Applications pp. 62–67. 

[75] Ozel, S. a., & Guvenir, H. a. (2001). An 

algorithm for mining association rules using 

perfect hashing and database pruning. In 

10th Turkish Symposium on Artificial 

Intelligence and Neural Networks, pp. 257–

264. Citeseer.  

[76] Park, J. S., Chen, M. S., & Yu, P. S. (1997). 

Using a hash-based method with transaction 

trimming for mining association rules. IEEE 

Transactions on Knowledge and Data 

Engineering, Vol. 9(5), pp. 813–825. 



Journal of Theoretical and Applied Information Technology 
 31st March 2016. Vol.85. No.3 

© 2005 - 2016 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
349 

 

[77] Park, J. S., Chen, M.-S., & Yu, P. S. 

(1995a). An effective hash-based algorithm 

for mining association rules. ACM SIGMOD 

Record, Vol. 24(2), pp. 175-186. ACM.  

[78] Park, J. S., Chen, M.-S., & Yu, P. S. 

(1995b). Efficient parallel data mining for 

association rules. In Proceedings of the 

fourth international conference on 

Information and knowledge management - 

CIKM ’95 pp. 31–36. ACM. 

[79] Patel, A. B., Birla, M., & Nair, U. (2012). 

Addressing big data problem using Hadoop 

and Map Reduce. In 3rd Nirma University 

International Conference on Engineering, 

NUiCONE 2012, pp. 1–5. IEEE.  

[80] Paul, S., & Saravanan, V. (2008). Hash 

Partitioned Apriori in parallel and 

distributed data mining environment with 

dynamic data allocation approach. In 

Proceedings of the International Conference 

on Computer Science and Information 

Technology, ICCSIT 2008, pp. 481–485. 

IEEE. 

[81] Pei, J. P. J., Han, J. H. J., Lu, H. L. H., 

Nishio, S. N. S., Tang, S. T. S., & Yang, D. 

Y. D. (2001). H-mine: hyper-structure 

mining of frequent patterns in large 

databases. In Proceedings 2001 IEEE 

International Conference on Data Mining, 

pp. 441–448. IEEE. 

[82] Polato, I., Ré, R., Goldman, A., & Kon, F. 

(2014). A comprehensive view of Hadoop 

research—A systematic literature review. 

Journal of network and computer 

applications, 46, 1-25. 

[83] Qureshi, Z., & Bansal, S. (2014). Improving 

Apriori Algorithm to get better performance 

with Cloud Computing. International 

Journal of Software & Hardware Research 

in Engineerin, Vol. 2(2),pp. 33-37. 

[84] Ramaswamy, S., Rastogi, R., & Shim, K. 

(2000). Efficient algorithms for mining 

outliers from large data sets. In Proceedings 

of the 2000 ACM SIGMOD international 

conference on Management of data - 

SIGMOD ’00 , Vol. 29, pp. 427–438. ACM. 

[85] Romero, C., & Ventura, S. (2007). 

Educational data mining: A survey from 

1995 to 2005. Expert Systems with 

Applications, Vol. 33(1), pp. 135–146. 

[86] Said, A. M., Dominic, P. D. D., & Abdullah, 

A. B. (2009). A comparative study of fp-

growth variations. International Journal of 

Computer Science and Network Security, 

Vol. 9(5), pp. 266–272. 

[87] Shaw, M. J. . B. C., Subramaniam, C. ., Tan, 

G. W. ., & Welge, M. E. . (2001). 

Knowledge management and data mining 

for marketing. Decision Support Systems, 

31(1), 127–137. 

[88] Sheikh, N. (2013). Implementing Analytics. 

Implementing Analytics, Vol. 46(5), pp. 3–

20.  

[89] Shintani, T., & Kitsuregawa, M. (1996). 

Hash based parallel algorithms for mining 

association rules. In Fourth International 

Conference on Parallel and Distributed 

Information Systems, pp. 19–30. IEEE. 

[90] Shintani, T., & Kitsuregawa, M. (1998). 

Parallel mining algorithms for generalized 

association rules with classification 

hierarchy. In ACM SIGMOD Record, Vol. 

27, pp. 25–36. ACM. 

[91] Shvachko, K., Kuang, H., Radia, S., & 

Chansler, R. (2010a). The Hadoop 

distributed file system. In 2010 IEEE 26th 

Symposium on Mass Storage Systems and 

Technologies, MSST2010, pp. 1–10. IEEE. 

[92] Shvachko, K., Kuang, H., Radia, S., & 

Chansler, R. (2010b). The Hadoop 

distributed file system. 2010 IEEE 26th 

Symposium on Mass Storage Systems and 

Technologies, MSST2010, Vol. 11(2007), 

pp. 1–14.  

[93] Singh, J., & Ram, H. (2013). Improving 

Efficiency of Apriori Algorithm Using. 

International Journal of Scientific and 

Research Publications, Vol. 3(1), pp. 1–4. 

[94] Srikant, R., & Agrawal, R. (1997). Mining 

generalized association rules. Future 

Generation Computer Systems, Vol. 13(2-3), 

pp. 161–180. 

[95] Srivastava, J., Cooley, R., Deshpande, M., & 

Tan, P.-N. (2000). Web usage mining: 

Discovery and applications of usage patterns 

from web data. Acm Sigkdd, Vol. 1(2), pp. 

12–23. 

[96] Subashini, S., & Kavitha, V. (2011). A 

survey on security issues in service delivery 

models of cloud computing. Journal of 

Network and Computer Applications, Vol. 

34(1), pp. 1–11. 

[97] Tan, P. (2007). Introduction To Data 

Mining.,Vol. 1. Pearson Addison Wesley 

Boston. 

[98] Tang, J. (1998). Using incremental pruning 

to increase the efficiency of dynamic itemset 

counting for mining association rules. In 

Proceedings of the seventh international 

conference on , pp. 273–280. ACM. 



Journal of Theoretical and Applied Information Technology 
 31st March 2016. Vol.85. No.3 

© 2005 - 2016 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
350 

 

[99] Taylor, R. C. (2010). An overview of the 

Hadoop/MapReduce/HBase framework and 

its current applications in bioinformatics. 

BMC Bioinformatics, 11 Suppl 12(Suppl 

12), S1.  

[100] Thevar, R. E., & Krishnamoorthy, R. 

(2008). A new approach of modified 

transaction reduction algorithm for mining 

frequent itemset. In 2008 11th International 

Conference on Computer and Information 

Technology, pp. 1–6. IEEE.  

[101] Tian, W., & Zhao, Y. (2015). 1 - An 

Introduction to Cloud Computing. In W. 

Tian & Y. Zhao (Eds.), Optimized Cloud 

Resource Management and Scheduling, pp. 

1–15. Boston: Morgan Kaufmann. 

[102] Toivonen, H. (1996). Sampling Large 

Databases for Association Rules. In 

Proceedings of the 22th International 

Conference on Very Large Data Bases, Vol. 

96, pp. 134–145. 

[103] V.MuthuLakshmi, N., & Sandhya Rani, 

K. (2012). Privacy Preserving Association 

Rule Mining in Vertically Partitioned 

Databases. In International Journal of 

Computer Applications, Vol. 39, pp. 29–35. 

ACM. 

[104] Vajk, I. (2013). Performance Evaluation 

of Apriori Algorithm on a Hadoop Cluster. 

Wseas.Us, pp. 114–121. 

[105] Vavilapalli, V. K., Seth, S., Saha, B., 

Curino, C., O’Malley, O., Radia, S., Shah, 

H. (2013). Apache Hadoop YARN. In the 

4th annual Symposium, pp. 1–16. ACM.  

[106] Velte, T., Velte, A., & Elsenpeter, R. 

(2009). Cloud computing, a practical 

approach. McGraw-Hill, Inc. 

[107] Vinodhini, S., & Vinoth, M. (2014). 

Frequent Pattern Identification using Map 

Reduce Paradigm. International Journal 

of Engineering Research & Technology, 

Vol. 3(3), pp. 1763-1768. 

[108] Wang, K., Tang, L., Han, J., & Liu, J. 

(2002). Top Down FP-Growth for 

Association Rule Mining. Pakdd. Springer. 

[109] Whaiduzzaman, M., Sookhak, M., Gani, 

A., & Buyya, R. (2014). A survey on 

vehicular cloud computing. Journal of 

network and computer applications, 40, 

325-344. 

[110] White, T. (2009). Hadoop: the 

definitive guide: the definitive guide. “ 

O’Reilly Media, Inc.” 

[111] Woo, J. (2012). Apriori-Map/Reduce 

Algorithm. Proceedings of the International 

Conference on Parallel and Distributed 

Processing Techniques and Applications 

(PDPTA) 

[112] Wu, H., Lu, Z., Pan, L., Xu, R., & 

Jiang, W. (2009). An improved Apriori-

based algorithm for association rules 

mining. In 6th International Conference on 

Fuzzy Systems and Knowledge Discovery, 

FSKD 2009, Vol. 2, pp. 51–55. IEEE.  

[113] Wu, X., Zhu, X., Wu, G., & Ding, W. 

(2014). Data mining with big data. 

Knowledge and Data Engineering, IEEE 

Transaction on, Vol. 26(1), pp. 97–107.  

[114] Yahya, O., Hegazy, O., & Ezat, E. 

(2012). An efficient implementation of 

Apriori algorithm based on Hadoop-

Mapreduce model. International Journal of 

Reviews in Computing, Vol. 12, pp.59-67. 

[115] Ye, Y., & Chiang, C. C. (2006). A 

parallel apriori algorithm for frequent 

itemsets mining. In Proceedings - Fourth 

International Conference on Software 

Engineering Research, Management and 

Applications, SERA 2006 ,pp. 87–94. IEEE.  

[116] Yu, H., Wen, J., Wang, H., & Jun, L. 

(2011). An improved Apriori algorithm 

based on the Boolean matrix and Hadoop. 

Procedia Engineering,Vol.15, pp. 1827-

1831, CEIS 2011.  

[117] Yu, H., Wen, J., Wang, H., & Li, J. 

(2011). An improved Apriori algorithm 

based on the Boolean matrix and Hadoop. In 

Procedia Engineering, Vol. 15, pp. 1827–

1831. IEEE.  

[118] Yu, K. M., Zhou, J., Hong, T. P., & 

Zhou, J. L. (2010). A load-balanced 

distributed parallel mining algorithm. Expert 

Systems with Applications, Vol. 37(3), pp. 

2459–2464. 

[119] Yu, K. M., & Zhou, J. L. (2008). A 

weighted load-balancing parallel apriori 

algorithm for association rule mining. In 

2008 IEEE International Conference on 

Granular Computing, GRC 2008 (pp. 756–

761). IEEE.  

[120] Zaiane, O. R., El-Hajj, M., & Lu, P. 

(2001). Fast parallel association rule mining 

without candidacy generation. In 

Proceedings 2001 IEEE International 

Conference on Data Mining, pp. 665–668. 

IEEE. 

[121] Zaki, M. J., & Gouda, K. (2003). Fast 

vertical mining using diffsets. In 

Proceedings of the ninth ACM SIGKDD 

international conference on Knowledge 



Journal of Theoretical and Applied Information Technology 
 31st March 2016. Vol.85. No.3 

© 2005 - 2016 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
351 

 

discovery and data mining - KDD ’03, p. 

326. ACM. 

[122] Zaki, M. J. M., Parthasarathy, S., 

Ogihara, M., Li, W., & Others. (1997). New 

algorithms for fast discovery of association 

rules. In Kdd, Vol. 7, pp. 283–286. 

[123] Zaki, M. J., Ogihara, M., Parthasarathy, 

S., & Li, W. (1996). Parallel Data Mining 

for Association Rules on Shared-Memory 

Multi-Processors. Proceedings of the 1996 

ACM/IEEE Conference on Supercomputing, 

Vol. 3(1), pp. 1–29. 

[124] Zaki, M. J., Parthasarathy, S., Li, W. L. 

W., & Ogihara, M. (1997). Evaluation of 

sampling for data mining of association 

rules. In Proceedings Seventh International 

Workshop on Research Issues in Data 

Engineering. High Performance Database 

Management for Large-Scale Applications, 

pp. 42–50. IEEE. 

[125] Zaki, M. J., & Zaki, M. J. (1999). 

Parallel and Distributed Data Mining: A 

Survey. IEEE Concurrency, Vol. 7(4), pp. 

14–25. 

[126] Zaki, M., Parthasarathy, S., Ogihara, 

M., & Li, W. (1997). Parallel algorithms for 

discovery of association rules. … and 

Knowledge Discovery, Vol. 373(4), pp. 343–

373. 

[127] Zhan, J., Matwin, S., & Chang, L. 

(2007). Privacy-preserving collaborative 

association rule mining. Journal of network 

and computer applications, 30(3), 1216-

1227. 

[128] Zhang, C., & Zhang, S. (2002). 

Association rule mining: models and 

algorithms. Lecture Notes in Artificial 

Intelligence, Springer-Verlag. 

[129] Zhao, Q., & Bhowmick, S. S. (2003). 

Association rule mining: A survey. Nanyang 

Technological University, 

Singapore.Technical Report. 

[130] Zheng, Z., Kohavi, R., & Mason, L. 

(2001). Real world performance of 

association rule algorithms. In Proceedings 

of the seventh ACM SIGKDD international 

conference on Knowledge discovery and 

data mining - KDD ’01, pp. 401–406. ACM. 

[131] Zikopoulos, P., Eaton, C., DeRoose, D., 

Deutsch, T., & Lapis, G. (2011). 

Understanding Big Data: Analytics for 

Enterprise Class Hadoop and Streaming 

Data. McGraw-Hill Osborne Media. 

 

 

 

 

 

 

 


