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ABSTRACT 

 

Defects occurrence during software development process is a common phenomenon and its consequences 

in software organizations are inevitable. This can result in software failure or delayed delivery of product. 

Defect removal procedure is obviously an option but on the other hand it, it can affect the budget of 

organization. Organizations are demanding timely delivery of defect free and high quality software. Besides 

defect removal, defect prevention techniques must be encouraged during development. It should be 

considered as an ongoing process during development to enhance quality and testing efficiency. The paper 

is an empirical work enhancing the relevance of some of process enhancing metrics. These metrics are 

useful in monitoring the on-going software development and meeting the quality standards. The paper 

explores the applicability of capability analysis metrics for defect prevention and how it can be used as 

technique for upgrading software quality. 
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1. INTRODUCTION  

 

Presence of defects is a common phenomenon 

that occurs during software development process. 

The defects have various consequences by affecting 

the delivery of product. It may cause even failure of 

product due to improper defect removal techniques.  

 

It becomes important to intelligently manage 

these defects. When defects are detected in the 

initial phases of its development, it has many 

benefits like saving time as compared to the time 

involved in defect detection in later phases, 

preventing extra cost and rework resources. Also, 

this avoids the defects penetration in later phases. 

Two most common approaches in Defect 

Management [29] are Defect Detection and Defect 

Prevention. Former is a technique of identifying 

defects whereas, later deals with minimizing and 

preventing defects from reoccurring.  

 

 An effective defect removal technique can 

minimize the time taken for development and result 

in better quality of software. With increase in 

complexities in software and hardware, and 

increased competition, organization demand for 

high quality software.  Therefore, it is advisable for 

organizations to undergo defect detection during 

initial stages of software development. 

 

 A proper identification of defects is important as 

it affects the standard already set by organization. 

Therefore, in order to quantify the performance and 

check whether ongoing process is considerable, use 

of metrics is highly encouraged. Software Process 

control is achieved by a thorough Process capability 

analysis (PCA) and Six Sigma methodologies. This 

paper deals with PCA, a methodology used to 

upgrade software processes for maintaining 

satisfaction level about the product. 

 

The paper is empirically based research 

conducted on one of the software organizations of 

India, which is involved in testing and development 

of software.  The paper first presents some of the 

commonly used metrics and later highlights use of 

metrics in process capability for enhancing the 

quality of software under development. A brief 

Literature Review is presented in Section 2. Section 

3 discusses the objectives of research. Organization 

profile is given in Section 4. Section 5 presents 

influence of using Process Capability metrics. 

Results and discussions on findings are presented in 

Section 6. Section 7 deals with conclusions and 

future scope. Section 8 highlights the limitation of 

work conducted. 
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2. LITERATURE REVIEW 

 

Software defect prediction is a process involved 

in improving software quality and testing efficiency 

by developing predictive classification models [1].  

An intensive work is required to find and fix a 

software problem after delivery than doing the 

same during requirements and design phase. Also, 

about 80% of the avoidable rework is from 20% of 

software defects [2]. Many questions [3] regarding 

defect detection techniques are undertaken which 

were based on a survey of empirical studies on 

testing and inspection techniques. 

  

A leading software company [4] provided 

information on various methods and practices 

supporting defect detection and prevention and 

found that on an average 13 % to 15% of inspection 

and 25% - 30% of testing out of whole project 

effort time is required for 99% - 99.75% of defect 

elimination. The authors [5] observed after 

analyzing data from a progressive software 

company, that the defect prevention technique 

involved proactive, reactive and retrospective 

moves to uncover 70% of defects during 

inspections and developer unit testing. The 

validation testing uncovered about 29% of defects.  

  

The importance of life cycle modeling for defect 

detection and prevention [6] developed a set of 

concrete, proven methods to be used for 

optimization of defect detection and prevention. 

The results was discussed on work on a series of e-

Workshops on software defect reduction [7] leading 

to the reformulation of heuristics.  

  

Statistical method is proposed in [8] to control 

the software defect detection process together with 

further defect prevention analysis.  In order to 

improve effectiveness of inspection and testing 

approaches for 99% defect-free product by 

analyzing defect patterns [9] ‘depth of inspection 

(DI)' metric is proposed to indicate productivity and 

quality levels for software process.  

  

The first level of Orthogonal Defect 

Classification (ODC) [10] of defects and finding 

root causes of the defects was based on the learning 

preventive ideas from these projects. Fang Chenbin 

[11] introduced a tool called Bug Tracing System 

(BTS) for defect tracing for improves the accuracy 

of tracking the identified defects. 

 

Improvement in software quality and productivity 

[12] by defect analysis prevented their reoccurrence 

in later stages. A framework [13] for software 

defect prediction supporting unbiased and 

comprehensive comparison between competing 

prediction systems was proposed and evaluated. 

 

An extensive research [14] was conducted for 

identification of factors that influence defect 

injection and defect detection. The role of Object 

Oriented design complexity [15] was empirically 

supported using metrics for determining software 

defects. A static analysis tool, FindBugs [16] was 

used to know more about the kinds of warnings and 

provided insight into why static analysis tools often 

detect true but trivial bugs.  Ceiling effect [17] 

discussed for the lower useful bound on the number 

of training instances. The Defect Based Process - 

Defect Casual Analysis (DCA) [18] helped in 

process improvement and addressing an identified 

opportunity for further investigation by integrating 

organizational learning mechanisms. An 

experiment [19] compared defect detection 

efficiency of exploratory testing (ET) and test case 

based testing (TCT). A defect prediction model was 

proposed [20] and observed that it is enough to 

inspect 32% of the code on the average, for 

detecting 76% of the defects. PCA (Process 

Capability Analysis) has widely been accepted as 

the measure of performance to evaluate the ability 

of a process to satisfy customer requirements in 

terms of specification limits [21] [22]. 

 

3. OBJECTIVES OF STUDY 

 

After studying literatures, the objective of the 

paper is first to have a closer understanding about 

the metrics used in various defect detection and 

removal within the organization. For this, data from 

past nine projects are used. Later, it attempts to 

explore use of control chart for controlling and 

monitoring the process performance. Control chart 

is used as a tool for plotting of the process 

parameter over time to identify causes of any 

abnormal variation. The capability of an ongoing 

process is measured to check whether ongoing 

software development process is meeting the 

organization baseline and quality standards. Finally, 

the results are validated using Normal Probability 

plots. 

 

4. ORGANIZATION PROFILE 

 
The organization is an Indian based SEI-CMMi 

Level 5 organization, having development centers 

serving global businesses. The organization deals 
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with development and testing of software projects. 

The organization has been lucratively handling the 

development of projects within cost and schedule 

frame, producing more contented clients. 

 

5. RESEARCH METHODOLOGY 

 

5.1.     LSL, USL, COQ 

 

The reason we chose to use control chart as it is 

useful technique in gauging the capability of the 

process, than just the stability. The USL(Upper 

Specification Limit) and LSL(Lower Specification 

Limit) are requirement standards set by the 

customers’ and these are the variation that 

customers’ will accept from the process. The 

UCL(Upper Control Limit) and LCL (Lower 

Control Limit) are limits set by process based on 

the actual amount of variation of the process. The 

figure 1 [23] explains this concept. 

 

 
 

 

 

 

 

 

 

Figure 1: USL and LSL of a project 

Continuous improvement essentially involves 

improving the performance of the process so that 

the specification limits are satisfied and the process 

becomes more capable. After the specification 

limits are satisfied, more strong specification limits 

can be defined and another cycle of continuous 

improvement can begin. Organizational baselines 

(LSL, USL and target) for the projects under 

consideration with respect to DD (Effort), DD 

(Size), COQ and DRE is shown in Table 1.  

Table 1: Organization baseline. 
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LSL 3.8  5.5 16.3 59.9 

USL 6.8 29.3 34.5 80.0 

TARGET 5.2  18.1 30.6 70.2 

 

Cost of Quality metric is used for assessing the 

loss from a defined process. It is important to keep 

COQ at minimum. COQ can be used to track 

modification or up-gradation over time for a 

particular process. COQ is shown as in figure 2 

[24]. 

 

Cost of poor quality and Cost of good quality are 

the two variations of COQ. Cost of poor quality 

term is used for the cost incurred when something 

wrong happens with project. It is the cost of 

delivering poor quality product or services suffered 

due to internal failure and costs due to external 

failure. Cost of good quality which includes 

prevention costs and appraisal costs is actually the 

cost of achieving good quality.  COQ  is given as in 

equation 1. 

 

COQ = ∑ (((E+I+A+P) / S) * 100 %                    (1)                          

 

 

Where: E = External Failure Costs 

             I = Internal Failure Costs 

             A= Appraisal Costs 

             P = Prevention Costs 

             S = Sales 

 

Figure 2[24] depicts COQ. 

                                    

 
Figure 2: Cost of Quality (COQ) 

                 Table 2: Comparative Study of Metrics used 

for various projects in organization. 
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1 5.77 9.08 15.15 Yes 17.42 

2 5.03 12.48 16.19 Yes 15.11 

3 5.24 12.96 17.78 Yes 16.06 

4 5.51 15.85 11.91 Yes 12.53 

5 5.27 14.00 0.00 No 18.62 

6 5.33 11.56 17.78 Yes 16.94 

7 5.45 8.33 0.00 No 10.10 

8 5.13 9.52 100.00 Yes 12.60 

 9 4.57 4.76 25.00 Yes 18.43 
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Table 2 (above), shows the empirical data for 

nine projects developed by the organization. These 

projects have been tested and delivered to the 

clients. Out of 9 projects, two of these projects 

(Project 5 and Project 7) do not have On Time 

Delivery (OTD) to the clients. A summarized 

description of these metrics is discussed as below. 

 

DD (Size), the first metric under analysis,   is the 

ratio of the numbers of defects occurred during 

development of the software product to the size of 

the software developed. This metric can be 

beneficial in improving the software by reducing 

the coding defects. DD is given in by equation 2 as: 

 

  DD (Size) = (Total number of defects detected) /   

Code Size                                    (2)                                     

 

DD (Effort) metric, widely used in the 

organization is the ratio of the numbers of defect 

occurred during software development to the effort 

involved in the production of desired software. It is 

given by the equation 3 as: 

 

DD (Effort) = (Total number of defects detected) / 

(Effort involved in development)            

                                   (3)               

  A high value for this metric 

means more effort is involved in resolving defects 

found in software development process. 

 

The use of these metrics is encouraged to be used 

in organizations because of their tremendous 

advantages. Measuring Defect Density (DD) 

enables comparison of relative number of defects in 

different components, which allows concentration 

of limited resources into areas with the highest 

potential return on the investment. Another benefit 

of Defect Density is in comparison of  subsequent 

releases of a product to track the impact of defect 

reduction and quality improvement activities. 

 

Defect Removal Effectiveness is an effective 

measurement of software.  A good defect removal 

process promotes the release of products with lower 

latent defects, generating high customer confidence. 

The Defect Removal Efficiency (DRE) estimates 

the development team ability to remove defects 

prior to release. DRE is the ratio of defects resolved 

or removed to total number of defects found. 

Mathematically, it is represented as in equation 4 

below: 

 

DRE = (Total number of defects corrected or 

removed) / (Total number of defects found)     

                                                                 (4)           

                                                                                

 This metric proves to be beneficial for any 

organization while measuring the effectiveness of 

their quality assurance process based on the number 

of defects found in the product before and after its 

release using DRE. 

 
5.2. Comparative Analysis Of Data  

 

The data from organization is analyzed using 

various comparative methods to find the relation 

among these metrics. Table 2 provides information 

about project data with the Defect Density (DD) 

recorded in terms of effort and size of the projects.  

The table shows that Defect Density (Effort) is 

much lower for all of the nine projects in 

comparison to DD (Size). The difference between 

these two DD is observed to be highest for Project 

4; while Project 9 shows a relative less variation. 

The range of DD (Effort) varies in the limit of 4.57 

to 5.77; while for DD (Size) is 4.76 to 15.85.    

           
5.3. Metrics in Process Capability Analysis 

 

Process capability examines the variability in 

process characteristics by determining the process 

capability in developing products which conforms 

to specifications. The comparison is done by 

forming the ratio of the area spread between the 

process specifications to the spread of the process 

values, as measured by six process standard 

deviation units.  

 

The research encourages use of metric - Process 

Capability (Cp) index to compare the given sample 

to its specification limits by using capability 

indices.  A process capability index works with 

both the process variability and the process 

specifications to determine whether the process is 

"capable". Equation 5 represents the mathematical 

formula for Cp.  

 

Cp   = (allowable range) / 6σ 

        = Tolerance (T) / 6σ  

        = (USL – LSL) / 6 X Standard Deviation     (5)  

 

Cp metric determines ability of a process to meet 

specifications. A higher value of this index 

indicates a more capable process. The process is 
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centered at the midpoint of the specification limits 

if Cp=Cpk. The process if off-centered and can be 

accepted as lower capability than the case that the 

process is centered if Cpk<Cp. If Cpk=0, the 

process mean is exactly equal to one of the 

specification limits.  If Cpk<0, the process mean 

lies outside the specification limits, that is for 

μ>USL or μ<LSL, Cpk<0. If Cpk<-1, the entire 

process lies outside the specification limits. It 

should be noted that some authors define Cpk to be 

non-negative so that values less than zero are 

defined as zero [21]. 1<Cpk<1.33 means that the 

process is barely capable. If Cp>1.50, it shows the 

variables are critical. Automotive industry uses 

Cpk=1.33 as a benchmark in accessing the 

capability of a process [25]. The data of the past 

projects of organization is illustrated in Table 3. 

 

Process Performance Index (PPI),  is a  capability 

index metric that considers only the spread of the 

characteristic in relation to specification limits 

assumes two-sided specification limits. The product 

can be unworthy if the mean is not set 

appropriately. The Process Performance Index 

takes account of the mean (µ) and is given as in 

equation 6:  

 

Cpk = min [(USL - µ )/3σ, (µ - LSL)/3σ]            (6)             

 

The PPI can also accommodate one sided 

specification limits. For upper and lower 

specification limit, it is given by equation 9 and 10. 

 

Cpk = (USL - µ)/3σ                                              (7)                                                                                 

 

Cpk = (µ - LSL)/ 3σ                                             (8)

                                                                                              

Cpu and Cpl are the next two metrics that are 

explored next. Cpu measures the capability of the 

upper half of the process; Cpl measures the 

capability of the lower half of the process. The Cpu 

and Cpl metrics are given by equation 9 and 10.  

 

Cpu = (USL – Mean) / (3 * Standard Deviation)                                                                   

                                      (9) 

Cpl = (Mean - LSL) / (3 * Standard Deviation)                                                                   

                                                  (10) 

Cpk, Cpu, and Cpl indicate the ideal performance 

of the process. If these potential indices are 

compared to benchmarks in the field, it can be 

helpful to determine whether to improve the 

process or not.  

 

Next, the research drives towards fitting of the 

data using Anderson Darling (AD) Goodness of Fit 

(GoF) test. There are two main approaches [26] 

[27] [28] for checking distribution assumptions. 

One is empirical based approach, which is easy to 

understand and implement. These are intuitive 

based graphical properties. Another approach is 

GoF (Goodness of Fit) test. These tests are more 

formal, statistical procedures for assessing 

underlying distribution of data. The results are 

more quantifiable and reliable than those of 

empirical based approach. Anderson-Darling (A-D) 

and Kolmogorov-Smirnov (K-S) tests are two most 

commonly used tests. The correct implementations 

of statistical procedures require establishing 

underlying distribution of data-set. Firstly, it 

requires whether normal applies before we can 

implement statistical procedures. 

 

In GoF, two distribution elements are basically 

considered; Cumulative Distribution Function (cdf) 

and Probability Distribution Function (pdf). AD test 

is selected because of two characteristics. Firstly, it 

is one of the best distance tests that can be applied 

to both small samples and large samples of data. 

Also, various statistical packages are available for 

applying AD and KS tests. 

 

 To implement distance tests, firstly it is assumed 

that there is normal (pre-specified) distribution. 

Next, distribution parameters; mean and variance 

are estimated from the data. This process builds 

distribution hypothesis, known as null hypothesis 

(H0). Then the assumed or hypothesized 

distribution is tested using data set. Finally, H0 is 

rejected, if any of the elements composing H0 is 

not supported by data.The A-D test has the form as 

in equation 11:  

 

 

 

Where F0 : assumed distribution with sample 

estimated parameters (µ,σ); 
          Zi:  the standardized sorted ith sample value 

n:    the sample size 
ln : the natural logarithm taking values from 

1 to n. 

At significance level of α =0.05, the null hypothesis 

is rejected if AD statistic is greater than the AD*. 

This is given by equation 12. 
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The steps followed in the AD GoF test for 

Normality is summarized as: 

• Sort original X sample and standardized  

         Z = [(x-µ) / σ]                                            (13)                                                                                                                    

• Establish the null hypothesis 

• Obtain the distribution parameters µ,σ 

• Obtain the F(Z) cumulative probability 

• Obtain logarithm of the above. 

• Sort cumulative probability in descending order 

• Find values of 1- F(Z) 

• Find logarithm of the result of above step 

• Evaluate test statistics i.e. AD and AD* 

• Reject null hypothesis if AD* < AD 

 

The research next performs AD GoF test on 

Defect Density (Effort) by following the above 

steps. Table 4 shows the descriptive statistic for DD 

(Effort). 

 

Table 4: Descriptive Statistic of Probable Defect Density 

(Effort) Data for AD GOF test. 

 
For the smallest element, we have the normal 

probability of smallest variable within estimated µ 

and σ as in equation 14: 

 

 Pµ=5.25, σ = 0.34  = Normal ( (4.57-5.25) / 0.34)           

                  = F0 (Z) = F0 (-2) = 0.022                                      

                                                                            (14)                                         

                          

 In this case, AD value obtained is 0.25, whereas 

AD* calculated from equation 14 is 0.67. Table 5 

shows intermediate values for AD GoF test for 

Normality. 

Table 5: Intermediate values for AD GoF test for   

Normality with Defect Density (Effort) 

Dataset 

 

 

Similarly, for Defect Density Table 6 and 7 

shows the AD statistic and intermediate values   for 

AD GoF test for Normality with Defect Density 

(Size) Dataset. 

Table 6: Descriptive Statistic of Probable Defect Density 

(Size) Data for AD GoF test 

 

 

 

 

 

Variable 

 

N 

 

Mean (µ) 

 

Median(σ) 

 

Data Set 9 10.95 11.56 

 

DD 

(Effort) 

 

i 

 

Sorted 

 

F(Xi) 

 

 

1-F(Xi) 

 

 

1-F(Xn-i+1) 

 

5.77 1 4.57 0.02 0.97 0.06 

5.03 2 5.03 0.25 0.74 0.22 

5.24 3 5.13 0.35 0.64 0.28 

5.51 4 5.24 0.48 0.51 0.41 

5.27 5 5.27 0.51 0.48 0.48 

5.33 6 5.33 0.58 0.41 0.51 

5.45 7 5.45 0.71 0.28 0.64 

5.13 8 5.51 0.77 0.22 0.74 

4.57 9 5.77 0.93 0.06 0.97 

Variable 

 

N 

 

Mean (µ) 

 

Median(σ) 

 

Data Set 9 5.25 5.27 
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Table 7: Intermediate values for AD GoF test for 

Normality with Defect Density (Size) Dataset 

 

    AD value obtained is 0.17 and AD* is 0.19. 

Table 8 and 9 shows statistic data for DRE and 

COQ and similar test is conducted for DRE and 

COQ and the results are given as in Table 10 and 

11.  

Table 8: Descriptive Statistic of Probable DRE Data for 

AD GoF test 

 

 

 

 

 

 

 

 

 

Table 9: Intermediate values for AD GoF test for 

Normality with DRE Dataset 

 

Table 10: Descriptive Statistic of Probable COQ Data 

for AD GoF test 

 

 

 

 

 

 

DD 

(Size) 

 

i 

 

Sorted 

 

F(Xi) 

 

 

1-

F(Xi) 

 

 

1-F(Xn-

i+1) 

 

9.08 1 4.76 0.03 0.96 0.07 

12.48 2 8.33 0.21 0.78 0.18 

12.96 3 9.08 0.28 0.71 0.27 

15.85 4 9.52 0.33 0.66 0.32 

14 5 11.56 0.57 0.42 0.42 

11.56 6 12.48 0.67 0.32 0.66 

8.33 7 12.96 0.72 0.27 0.71 

9.52 8 14 0.81 0.18 0.78 

4.76 9 15.85 0.92 0.07 0.96 

Variable 

 

N 

 

Mean (µ) 

 

Median(σ) 

 

Data Set 9 15.31 16.05 

 

DRE 

 

i 

 

Sorted 

 

F(Xi) 

 

 

1-F(Xi) 

 

 

1-F(Xn-

i+1) 

 

15.15 1 0 0.22 0.77 0.00 

16.19 2 0 0.22 0.77 0.46 

17.77 3 11.90 0.36 0.63 0.56 

11.90 4 15.15 0.40 0.59 0.56 

0 5 16.19 0.41 0.58 0.58 

17.77 6 17.77 0.43 0.56 0.59 

0 7 17.77 0.43 0.56 0.63 

100 8 25 0.53 0.46 0.77 

25 9 100 0.99 0.00 0.77 

Variable 

 

N 

 

Mean (µ) 

 

Median(σ) 

 

Data Set 9 22.64 16.19 
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Table 11: Intermediate values for AD GoF test for 

Normality with COQ Dataset 

 

The AD and AD* for DRE are 1.41 and 1.57; and 

for COQ, it is 0.33 and 0.37 respectively. The 

normal probability curve for the above results is 

shown below as in figure 3- 

6.

 
 

              Figure 3: Normal Probability Plot for AD GoF 

test for DD (Effort) 

                

 
 

Figure 4: Normal Probability Plot for AD GoF test for 

DD (Size) 

               

 
 

Figure 5: Normal Probability Plot for AD GoF test for 

DRE 

 

 

DD 

(COQ) 

 

i 

 

Sorted 

 

F(Xi) 

 

 

1-

F(Xi) 

 

 

1-F(Xn-

i+1) 

 

17.42 1 10.1 0.03 0.96 0.13 

15.11 2 12.53 0.17 0.82 0.14 

16.05 3 12.59 0.18 0.81 0.23 

12.53 4 15.11 0.47 0.52 0.29 

18.62 5 16.05 0.59 0.40 0.40 

16.93 6 16.93 0.70 0.29 0.52 

10.1 7 17.42 0.76 0.23 0.81 

12.59 8 18.43 0.85 0.14 0.82 

18.43 9 18.62 0.86 0.13 0.96 
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Figure 6: Normal Probability Plot for AD GoF test for 

COQ 

6. RESULTS AND ANALYSIS  

 

Results from Table 3 shows that for DD (Effort), 

Cp metric has a value of 1.48, which can be 

interpreted to be satisfactory for existing process. 

The value of Cp metric for DD (Size) is 1.17 

interpreted to be adequate process. The Cp metric 

values for COQ and DRE are obtained as 1.02 and 

0.11, which is interpreted as adequate and 

unsatisfactorily process respectively. The result of 

Cp metric for DRE process can be improved by 

first reducing the variation in the process and then 

shifting the mean of the process towards the target. 

 

In the case of GoF test for DD (Effort), AD 

yields a value 0.25, which is less than AD* value of 

0.67. The p-value observed is 0.64. Therefore, AD 

GoF test doesnot reject the null hypothesis that 

these samples have been drawn from a Normal 

(5.25, 0.34) population and we can assume 

normality of data. For DD (Size), the AD statistics 

obtained is 0.17 and AD* is 0.19. Here also, 

AD<AD* and observed p-value is 0.89, meaning 

null hypothesis is accepted. AD statistics in the case 

of DRE is 1.41 and AD* is 1.57, whereas p-value is 

0. This condition rejects the null hypothesis as p-

value is less than 0.05. For GoF test on COQ, the 

value of AD is 0.33 and AD* is 0.37. The p-value 

is 0.425, which is more than acceptable value of 

0.05. 

 

 

7. CONCLUSIONS  

 

The process capability metrics can be beneficial 

in determining the effectiveness of software 

development process. When the capability index of 

the process is known, the areas that needs 

improvement can be more efficiently be worked 

upon. Software Process Control helps in monitoring 

the performance of the metrics and bringing the 

process under control. The continuous 

improvement process involves reducing variance 

where it matters and find breakthroughs to shift the 

mean. This will make the process more capable as 

well as will also aid in the process of defect 

detection and removal; thereby advancing the 

removal efficiency and quality of the software to be 

delivered to expected customers. 

 

The AD GoF Normality test is helpful in 

determining the underlying distribution of data. 

Various parameters are estimated and checked to 

know about correct implementation of statistical 

procedures. 

 

8. LIMITATION OF STUDY AND FUTURE 

SCOPE 

 
The research conducted here is based on data 

from nine projects only making the analysis 

confined.  Also, the study is restricted to only one 

software organization, so a comparative analysis is 

not possible to know about the trends in defect 

detection and removal. 

 

As a future work, the research can be extended in 

the defect detection and removal of software during 

various phases of software development. Also new 

metrics can be proposed for early detection of the 

defects that prevails during the software 

development, thereby improving the software 

quality. 
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                                                                        Table 3: Cp metrics

 

Organization Baselines 

DD 

(Effort) 

 

Cp 

Metric 

for DD 

(Effort) 

 

DD 

(Size) 

Cp 

Metric 

for DD 

(Size) 

 

COQ 

Cp 

Metric 

for 

COQ 

 

DRE 

Cp 

Metric 

for 

DRE 

 

LSL 
3.89 

1.48 

5.53 

 
 

1.17 

 

16.30 

 

1.02 

 

59.90 

 

0.11 
 

USL 
6.88 

29.31 

 
34.50 80.04 

 

TARGET 
5.25 18.15 30.60 70.23 

 

Process 

Performance 

Index Metrics 

 

Cpk 
0.154 

 

1.81 

 

0 

 

0 
 

Cpl 
0.154 

6.08 

 
0 0 

Cpu 
1.59 

1.81 

 
2.15 0.65 
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