
Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

279

APPLICABILITY OF PROCESS CAPABILITY ANALYSIS IN

METRIFYING QUALITY OF SOFTWARE

1
POOJA JHA,

2
K S PATNAIK

1,2
Department of CSE, BIT, Mesra, Ranchi, India

E-mail:
1
pooja.jha.ism@gmail.com,

2
kspatnaik@bitmesra.ac.in

ABSTRACT

Defects occurrence during software development process is a common phenomenon and its consequences

in software organizations are inevitable. This can result in software failure or delayed delivery of product.

Defect removal procedure is obviously an option but on the other hand it, it can affect the budget of

organization. Organizations are demanding timely delivery of defect free and high quality software. Besides

defect removal, defect prevention techniques must be encouraged during development. It should be

considered as an ongoing process during development to enhance quality and testing efficiency. The paper

is an empirical work enhancing the relevance of some of process enhancing metrics. These metrics are

useful in monitoring the on-going software development and meeting the quality standards. The paper

explores the applicability of capability analysis metrics for defect prevention and how it can be used as

technique for upgrading software quality.

Keywords: Metrics, Organization Baselines, Process Capability Analysis, AD GoF tests, Quality

1. INTRODUCTION

Presence of defects is a common phenomenon

that occurs during software development process.

The defects have various consequences by affecting

the delivery of product. It may cause even failure of

product due to improper defect removal techniques.

It becomes important to intelligently manage

these defects. When defects are detected in the

initial phases of its development, it has many

benefits like saving time as compared to the time

involved in defect detection in later phases,

preventing extra cost and rework resources. Also,

this avoids the defects penetration in later phases.

Two most common approaches in Defect

Management [29] are Defect Detection and Defect

Prevention. Former is a technique of identifying

defects whereas, later deals with minimizing and

preventing defects from reoccurring.

 An effective defect removal technique can

minimize the time taken for development and result

in better quality of software. With increase in

complexities in software and hardware, and

increased competition, organization demand for

high quality software. Therefore, it is advisable for

organizations to undergo defect detection during

initial stages of software development.

 A proper identification of defects is important as

it affects the standard already set by organization.

Therefore, in order to quantify the performance and

check whether ongoing process is considerable, use

of metrics is highly encouraged. Software Process

control is achieved by a thorough Process capability

analysis (PCA) and Six Sigma methodologies. This

paper deals with PCA, a methodology used to

upgrade software processes for maintaining

satisfaction level about the product.

The paper is empirically based research

conducted on one of the software organizations of

India, which is involved in testing and development

of software. The paper first presents some of the

commonly used metrics and later highlights use of

metrics in process capability for enhancing the

quality of software under development. A brief

Literature Review is presented in Section 2. Section

3 discusses the objectives of research. Organization

profile is given in Section 4. Section 5 presents

influence of using Process Capability metrics.

Results and discussions on findings are presented in

Section 6. Section 7 deals with conclusions and

future scope. Section 8 highlights the limitation of

work conducted.

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

280

2. LITERATURE REVIEW

Software defect prediction is a process involved

in improving software quality and testing efficiency

by developing predictive classification models [1].

An intensive work is required to find and fix a

software problem after delivery than doing the

same during requirements and design phase. Also,

about 80% of the avoidable rework is from 20% of

software defects [2]. Many questions [3] regarding

defect detection techniques are undertaken which

were based on a survey of empirical studies on

testing and inspection techniques.

A leading software company [4] provided

information on various methods and practices

supporting defect detection and prevention and

found that on an average 13 % to 15% of inspection

and 25% - 30% of testing out of whole project

effort time is required for 99% - 99.75% of defect

elimination. The authors [5] observed after

analyzing data from a progressive software

company, that the defect prevention technique

involved proactive, reactive and retrospective

moves to uncover 70% of defects during

inspections and developer unit testing. The

validation testing uncovered about 29% of defects.

The importance of life cycle modeling for defect

detection and prevention [6] developed a set of

concrete, proven methods to be used for

optimization of defect detection and prevention.

The results was discussed on work on a series of e-

Workshops on software defect reduction [7] leading

to the reformulation of heuristics.

Statistical method is proposed in [8] to control

the software defect detection process together with

further defect prevention analysis. In order to

improve effectiveness of inspection and testing

approaches for 99% defect-free product by

analyzing defect patterns [9] ‘depth of inspection

(DI)' metric is proposed to indicate productivity and

quality levels for software process.

The first level of Orthogonal Defect

Classification (ODC) [10] of defects and finding

root causes of the defects was based on the learning

preventive ideas from these projects. Fang Chenbin

[11] introduced a tool called Bug Tracing System

(BTS) for defect tracing for improves the accuracy

of tracking the identified defects.

Improvement in software quality and productivity

[12] by defect analysis prevented their reoccurrence

in later stages. A framework [13] for software

defect prediction supporting unbiased and

comprehensive comparison between competing

prediction systems was proposed and evaluated.

An extensive research [14] was conducted for

identification of factors that influence defect

injection and defect detection. The role of Object

Oriented design complexity [15] was empirically

supported using metrics for determining software

defects. A static analysis tool, FindBugs [16] was

used to know more about the kinds of warnings and

provided insight into why static analysis tools often

detect true but trivial bugs. Ceiling effect [17]

discussed for the lower useful bound on the number

of training instances. The Defect Based Process -

Defect Casual Analysis (DCA) [18] helped in

process improvement and addressing an identified

opportunity for further investigation by integrating

organizational learning mechanisms. An

experiment [19] compared defect detection

efficiency of exploratory testing (ET) and test case

based testing (TCT). A defect prediction model was

proposed [20] and observed that it is enough to

inspect 32% of the code on the average, for

detecting 76% of the defects. PCA (Process

Capability Analysis) has widely been accepted as

the measure of performance to evaluate the ability

of a process to satisfy customer requirements in

terms of specification limits [21] [22].

3. OBJECTIVES OF STUDY

After studying literatures, the objective of the

paper is first to have a closer understanding about

the metrics used in various defect detection and

removal within the organization. For this, data from

past nine projects are used. Later, it attempts to

explore use of control chart for controlling and

monitoring the process performance. Control chart

is used as a tool for plotting of the process

parameter over time to identify causes of any

abnormal variation. The capability of an ongoing

process is measured to check whether ongoing

software development process is meeting the

organization baseline and quality standards. Finally,

the results are validated using Normal Probability

plots.

4. ORGANIZATION PROFILE

The organization is an Indian based SEI-CMMi

Level 5 organization, having development centers

serving global businesses. The organization deals

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

281

with development and testing of software projects.

The organization has been lucratively handling the

development of projects within cost and schedule

frame, producing more contented clients.

5. RESEARCH METHODOLOGY

5.1. LSL, USL, COQ

The reason we chose to use control chart as it is

useful technique in gauging the capability of the

process, than just the stability. The USL(Upper

Specification Limit) and LSL(Lower Specification

Limit) are requirement standards set by the

customers’ and these are the variation that

customers’ will accept from the process. The

UCL(Upper Control Limit) and LCL (Lower

Control Limit) are limits set by process based on

the actual amount of variation of the process. The

figure 1 [23] explains this concept.

Figure 1: USL and LSL of a project

Continuous improvement essentially involves

improving the performance of the process so that

the specification limits are satisfied and the process

becomes more capable. After the specification

limits are satisfied, more strong specification limits

can be defined and another cycle of continuous

improvement can begin. Organizational baselines

(LSL, USL and target) for the projects under

consideration with respect to DD (Effort), DD

(Size), COQ and DRE is shown in Table 1.

Table 1: Organization baseline.

B
A

S
E

L
IN

E

S

D
D

 (
E

ff
o

rt
)

D
D

 (
S

iz
e)

C
o

Q

D
R

E

LSL 3.8 5.5 16.3 59.9

USL 6.8 29.3 34.5 80.0

TARGET 5.2 18.1 30.6 70.2

Cost of Quality metric is used for assessing the

loss from a defined process. It is important to keep

COQ at minimum. COQ can be used to track

modification or up-gradation over time for a

particular process. COQ is shown as in figure 2

[24].

Cost of poor quality and Cost of good quality are

the two variations of COQ. Cost of poor quality

term is used for the cost incurred when something

wrong happens with project. It is the cost of

delivering poor quality product or services suffered

due to internal failure and costs due to external

failure. Cost of good quality which includes

prevention costs and appraisal costs is actually the

cost of achieving good quality. COQ is given as in

equation 1.

COQ = ∑ (((E+I+A+P) / S) * 100 % (1)

Where: E = External Failure Costs

 I = Internal Failure Costs

 A= Appraisal Costs

 P = Prevention Costs

 S = Sales

Figure 2[24] depicts COQ.

Figure 2: Cost of Quality (COQ)

 Table 2: Comparative Study of Metrics used

for various projects in organization.

P
ro

je
ct

 I
d

D

D

(E
ff

o
rt

)

D
D

 (
S

iz
e)

D
R

E

O
T

D

C
o

Q

1 5.77 9.08 15.15 Yes 17.42

2 5.03 12.48 16.19 Yes 15.11

3 5.24 12.96 17.78 Yes 16.06

4 5.51 15.85 11.91 Yes 12.53

5 5.27 14.00 0.00 No 18.62

6 5.33 11.56 17.78 Yes 16.94

7 5.45 8.33 0.00 No 10.10

8 5.13 9.52 100.00 Yes 12.60

 9 4.57 4.76 25.00 Yes 18.43

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

282

Table 2 (above), shows the empirical data for

nine projects developed by the organization. These

projects have been tested and delivered to the

clients. Out of 9 projects, two of these projects

(Project 5 and Project 7) do not have On Time

Delivery (OTD) to the clients. A summarized

description of these metrics is discussed as below.

DD (Size), the first metric under analysis, is the

ratio of the numbers of defects occurred during

development of the software product to the size of

the software developed. This metric can be

beneficial in improving the software by reducing

the coding defects. DD is given in by equation 2 as:

 DD (Size) = (Total number of defects detected) /

Code Size (2)

DD (Effort) metric, widely used in the

organization is the ratio of the numbers of defect

occurred during software development to the effort

involved in the production of desired software. It is

given by the equation 3 as:

DD (Effort) = (Total number of defects detected) /

(Effort involved in development)

 (3)

 A high value for this metric

means more effort is involved in resolving defects

found in software development process.

The use of these metrics is encouraged to be used

in organizations because of their tremendous

advantages. Measuring Defect Density (DD)

enables comparison of relative number of defects in

different components, which allows concentration

of limited resources into areas with the highest

potential return on the investment. Another benefit

of Defect Density is in comparison of subsequent

releases of a product to track the impact of defect

reduction and quality improvement activities.

Defect Removal Effectiveness is an effective

measurement of software. A good defect removal

process promotes the release of products with lower

latent defects, generating high customer confidence.

The Defect Removal Efficiency (DRE) estimates

the development team ability to remove defects

prior to release. DRE is the ratio of defects resolved

or removed to total number of defects found.

Mathematically, it is represented as in equation 4

below:

DRE = (Total number of defects corrected or

removed) / (Total number of defects found)

 (4)

 This metric proves to be beneficial for any

organization while measuring the effectiveness of

their quality assurance process based on the number

of defects found in the product before and after its

release using DRE.

5.2. Comparative Analysis Of Data

The data from organization is analyzed using

various comparative methods to find the relation

among these metrics. Table 2 provides information

about project data with the Defect Density (DD)

recorded in terms of effort and size of the projects.

The table shows that Defect Density (Effort) is

much lower for all of the nine projects in

comparison to DD (Size). The difference between

these two DD is observed to be highest for Project

4; while Project 9 shows a relative less variation.

The range of DD (Effort) varies in the limit of 4.57

to 5.77; while for DD (Size) is 4.76 to 15.85.

5.3. Metrics in Process Capability Analysis

Process capability examines the variability in

process characteristics by determining the process

capability in developing products which conforms

to specifications. The comparison is done by

forming the ratio of the area spread between the

process specifications to the spread of the process

values, as measured by six process standard

deviation units.

The research encourages use of metric - Process

Capability (Cp) index to compare the given sample

to its specification limits by using capability

indices. A process capability index works with

both the process variability and the process

specifications to determine whether the process is

"capable". Equation 5 represents the mathematical

formula for Cp.

Cp = (allowable range) / 6σ

 = Tolerance (T) / 6σ

 = (USL – LSL) / 6 X Standard Deviation (5)

Cp metric determines ability of a process to meet

specifications. A higher value of this index

indicates a more capable process. The process is

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

283

centered at the midpoint of the specification limits

if Cp=Cpk. The process if off-centered and can be

accepted as lower capability than the case that the

process is centered if Cpk<Cp. If Cpk=0, the

process mean is exactly equal to one of the

specification limits. If Cpk<0, the process mean

lies outside the specification limits, that is for

μ>USL or μ<LSL, Cpk<0. If Cpk<-1, the entire

process lies outside the specification limits. It

should be noted that some authors define Cpk to be

non-negative so that values less than zero are

defined as zero [21]. 1<Cpk<1.33 means that the

process is barely capable. If Cp>1.50, it shows the

variables are critical. Automotive industry uses

Cpk=1.33 as a benchmark in accessing the

capability of a process [25]. The data of the past

projects of organization is illustrated in Table 3.

Process Performance Index (PPI), is a capability

index metric that considers only the spread of the

characteristic in relation to specification limits

assumes two-sided specification limits. The product

can be unworthy if the mean is not set

appropriately. The Process Performance Index

takes account of the mean (µ) and is given as in

equation 6:

Cpk = min [(USL - µ)/3σ, (µ - LSL)/3σ] (6)

The PPI can also accommodate one sided

specification limits. For upper and lower

specification limit, it is given by equation 9 and 10.

Cpk = (USL - µ)/3σ (7)

Cpk = (µ - LSL)/ 3σ (8)

Cpu and Cpl are the next two metrics that are

explored next. Cpu measures the capability of the

upper half of the process; Cpl measures the

capability of the lower half of the process. The Cpu

and Cpl metrics are given by equation 9 and 10.

Cpu = (USL – Mean) / (3 * Standard Deviation)

 (9)

Cpl = (Mean - LSL) / (3 * Standard Deviation)

 (10)

Cpk, Cpu, and Cpl indicate the ideal performance

of the process. If these potential indices are

compared to benchmarks in the field, it can be

helpful to determine whether to improve the

process or not.

Next, the research drives towards fitting of the

data using Anderson Darling (AD) Goodness of Fit

(GoF) test. There are two main approaches [26]

[27] [28] for checking distribution assumptions.

One is empirical based approach, which is easy to

understand and implement. These are intuitive

based graphical properties. Another approach is

GoF (Goodness of Fit) test. These tests are more

formal, statistical procedures for assessing

underlying distribution of data. The results are

more quantifiable and reliable than those of

empirical based approach. Anderson-Darling (A-D)

and Kolmogorov-Smirnov (K-S) tests are two most

commonly used tests. The correct implementations

of statistical procedures require establishing

underlying distribution of data-set. Firstly, it

requires whether normal applies before we can

implement statistical procedures.

In GoF, two distribution elements are basically

considered; Cumulative Distribution Function (cdf)

and Probability Distribution Function (pdf). AD test

is selected because of two characteristics. Firstly, it

is one of the best distance tests that can be applied

to both small samples and large samples of data.

Also, various statistical packages are available for

applying AD and KS tests.

 To implement distance tests, firstly it is assumed

that there is normal (pre-specified) distribution.

Next, distribution parameters; mean and variance

are estimated from the data. This process builds

distribution hypothesis, known as null hypothesis

(H0). Then the assumed or hypothesized

distribution is tested using data set. Finally, H0 is

rejected, if any of the elements composing H0 is

not supported by data.The A-D test has the form as

in equation 11:

Where F0 : assumed distribution with sample

estimated parameters (µ,σ);
 Zi: the standardized sorted ith sample value

n: the sample size
ln : the natural logarithm taking values from

1 to n.

At significance level of α =0.05, the null hypothesis

is rejected if AD statistic is greater than the AD*.

This is given by equation 12.

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

284

The steps followed in the AD GoF test for

Normality is summarized as:

• Sort original X sample and standardized

 Z = [(x-µ) / σ] (13)

• Establish the null hypothesis

• Obtain the distribution parameters µ,σ

• Obtain the F(Z) cumulative probability

• Obtain logarithm of the above.

• Sort cumulative probability in descending order

• Find values of 1- F(Z)

• Find logarithm of the result of above step

• Evaluate test statistics i.e. AD and AD*

• Reject null hypothesis if AD* < AD

The research next performs AD GoF test on

Defect Density (Effort) by following the above

steps. Table 4 shows the descriptive statistic for DD

(Effort).

Table 4: Descriptive Statistic of Probable Defect Density

(Effort) Data for AD GOF test.

For the smallest element, we have the normal

probability of smallest variable within estimated µ

and σ as in equation 14:

 Pµ=5.25, σ = 0.34 = Normal ((4.57-5.25) / 0.34)

 = F0 (Z) = F0 (-2) = 0.022

 (14)

 In this case, AD value obtained is 0.25, whereas

AD* calculated from equation 14 is 0.67. Table 5

shows intermediate values for AD GoF test for

Normality.

Table 5: Intermediate values for AD GoF test for

Normality with Defect Density (Effort)

Dataset

Similarly, for Defect Density Table 6 and 7

shows the AD statistic and intermediate values for

AD GoF test for Normality with Defect Density

(Size) Dataset.

Table 6: Descriptive Statistic of Probable Defect Density

(Size) Data for AD GoF test

Variable

N

Mean (µ)

Median(σ)

Data Set 9 10.95 11.56

DD

(Effort)

i

Sorted

F(Xi)

1-F(Xi)

1-F(Xn-i+1)

5.77 1 4.57 0.02 0.97 0.06

5.03 2 5.03 0.25 0.74 0.22

5.24 3 5.13 0.35 0.64 0.28

5.51 4 5.24 0.48 0.51 0.41

5.27 5 5.27 0.51 0.48 0.48

5.33 6 5.33 0.58 0.41 0.51

5.45 7 5.45 0.71 0.28 0.64

5.13 8 5.51 0.77 0.22 0.74

4.57 9 5.77 0.93 0.06 0.97

Variable

N

Mean (µ)

Median(σ)

Data Set 9 5.25 5.27

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

285

Table 7: Intermediate values for AD GoF test for

Normality with Defect Density (Size) Dataset

 AD value obtained is 0.17 and AD* is 0.19.

Table 8 and 9 shows statistic data for DRE and

COQ and similar test is conducted for DRE and

COQ and the results are given as in Table 10 and

11.

Table 8: Descriptive Statistic of Probable DRE Data for

AD GoF test

Table 9: Intermediate values for AD GoF test for

Normality with DRE Dataset

Table 10: Descriptive Statistic of Probable COQ Data

for AD GoF test

DD

(Size)

i

Sorted

F(Xi)

1-

F(Xi)

1-F(Xn-

i+1)

9.08 1 4.76 0.03 0.96 0.07

12.48 2 8.33 0.21 0.78 0.18

12.96 3 9.08 0.28 0.71 0.27

15.85 4 9.52 0.33 0.66 0.32

14 5 11.56 0.57 0.42 0.42

11.56 6 12.48 0.67 0.32 0.66

8.33 7 12.96 0.72 0.27 0.71

9.52 8 14 0.81 0.18 0.78

4.76 9 15.85 0.92 0.07 0.96

Variable

N

Mean (µ)

Median(σ)

Data Set 9 15.31 16.05

DRE

i

Sorted

F(Xi)

1-F(Xi)

1-F(Xn-

i+1)

15.15 1 0 0.22 0.77 0.00

16.19 2 0 0.22 0.77 0.46

17.77 3 11.90 0.36 0.63 0.56

11.90 4 15.15 0.40 0.59 0.56

0 5 16.19 0.41 0.58 0.58

17.77 6 17.77 0.43 0.56 0.59

0 7 17.77 0.43 0.56 0.63

100 8 25 0.53 0.46 0.77

25 9 100 0.99 0.00 0.77

Variable

N

Mean (µ)

Median(σ)

Data Set 9 22.64 16.19

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

286

Table 11: Intermediate values for AD GoF test for

Normality with COQ Dataset

The AD and AD* for DRE are 1.41 and 1.57; and

for COQ, it is 0.33 and 0.37 respectively. The

normal probability curve for the above results is

shown below as in figure 3-

6.

 Figure 3: Normal Probability Plot for AD GoF

test for DD (Effort)

Figure 4: Normal Probability Plot for AD GoF test for

DD (Size)

Figure 5: Normal Probability Plot for AD GoF test for

DRE

DD

(COQ)

i

Sorted

F(Xi)

1-

F(Xi)

1-F(Xn-

i+1)

17.42 1 10.1 0.03 0.96 0.13

15.11 2 12.53 0.17 0.82 0.14

16.05 3 12.59 0.18 0.81 0.23

12.53 4 15.11 0.47 0.52 0.29

18.62 5 16.05 0.59 0.40 0.40

16.93 6 16.93 0.70 0.29 0.52

10.1 7 17.42 0.76 0.23 0.81

12.59 8 18.43 0.85 0.14 0.82

18.43 9 18.62 0.86 0.13 0.96

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

287

Figure 6: Normal Probability Plot for AD GoF test for

COQ

6. RESULTS AND ANALYSIS

Results from Table 3 shows that for DD (Effort),

Cp metric has a value of 1.48, which can be

interpreted to be satisfactory for existing process.

The value of Cp metric for DD (Size) is 1.17

interpreted to be adequate process. The Cp metric

values for COQ and DRE are obtained as 1.02 and

0.11, which is interpreted as adequate and

unsatisfactorily process respectively. The result of

Cp metric for DRE process can be improved by

first reducing the variation in the process and then

shifting the mean of the process towards the target.

In the case of GoF test for DD (Effort), AD

yields a value 0.25, which is less than AD* value of

0.67. The p-value observed is 0.64. Therefore, AD

GoF test doesnot reject the null hypothesis that

these samples have been drawn from a Normal

(5.25, 0.34) population and we can assume

normality of data. For DD (Size), the AD statistics

obtained is 0.17 and AD* is 0.19. Here also,

AD<AD* and observed p-value is 0.89, meaning

null hypothesis is accepted. AD statistics in the case

of DRE is 1.41 and AD* is 1.57, whereas p-value is

0. This condition rejects the null hypothesis as p-

value is less than 0.05. For GoF test on COQ, the

value of AD is 0.33 and AD* is 0.37. The p-value

is 0.425, which is more than acceptable value of

0.05.

7. CONCLUSIONS

The process capability metrics can be beneficial

in determining the effectiveness of software

development process. When the capability index of

the process is known, the areas that needs

improvement can be more efficiently be worked

upon. Software Process Control helps in monitoring

the performance of the metrics and bringing the

process under control. The continuous

improvement process involves reducing variance

where it matters and find breakthroughs to shift the

mean. This will make the process more capable as

well as will also aid in the process of defect

detection and removal; thereby advancing the

removal efficiency and quality of the software to be

delivered to expected customers.

The AD GoF Normality test is helpful in

determining the underlying distribution of data.

Various parameters are estimated and checked to

know about correct implementation of statistical

procedures.

8. LIMITATION OF STUDY AND FUTURE

SCOPE

The research conducted here is based on data

from nine projects only making the analysis

confined. Also, the study is restricted to only one

software organization, so a comparative analysis is

not possible to know about the trends in defect

detection and removal.

As a future work, the research can be extended in

the defect detection and removal of software during

various phases of software development. Also new

metrics can be proposed for early detection of the

defects that prevails during the software

development, thereby improving the software

quality.

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

288

 Table 3: Cp metrics

Organization Baselines

DD

(Effort)

Cp

Metric

for DD

(Effort)

DD

(Size)

Cp

Metric

for DD

(Size)

COQ

Cp

Metric

for

COQ

DRE

Cp

Metric

for

DRE

LSL
3.89

1.48

5.53

1.17

16.30

1.02

59.90

0.11

USL
6.88

29.31

34.50 80.04

TARGET
5.25 18.15 30.60 70.23

Process

Performance

Index Metrics

Cpk
0.154

1.81

0

0

Cpl
0.154

6.08

0 0

Cpu
1.59

1.81

2.15 0.65

REFRENCES:

[1] classification models for software defect

prediction: A proposed framework and novel

findings.", IEEE Transactions on Software

Engineering, Vol 34, issue 4, 2008, pp. 485-

496.

[2] Barry Boehm and Victor R. Basili, Software

Defect Reduction Top 10 List, Computer, Vol.

34, issue: 1, 2008, pp.135-137.

[3] Runeson, Per, et al. "What do we know about

defect detection methods? [Software testing]."

IEEE Software, Vol. 23, issue 3, 2006, pp.82-

90.

[4] Suma V, T R Gopalakrishnan Nair , “

Effective Defect Prevention Approach in

Software Process for Achieving Better Quality

Levels”, Proceedings of World Academy of

Science, Engineering and Technology, Vol 32,

2008

[5] Suma V., T R Gopalakrishnan Nair.

"Enhanced approaches in defect detection and

prevention strategies in small and medium

scale industries", IEEE The Third

International Conference on. Software

Engineering Advances,2008, pp. 389 – 393.

[6] Van Moll, J. H., et al. "The importance of life

cycle modeling to defect detection and

prevention", Proceedings. Of 10th

International Workshop on IEEE Software

Technology and Engineering Practice, 2002,

pp. 144-155.

[7] Shull, Forrest, et al. "What we have learned

about fighting defects", IEEE Proceedings of

Eighth Symposium on Software Metrics, 2002,

pp. 249.

[8] Hong, G. Y., M. Xie, P. Shanmugan. "A

statistical method for controlling software

defect detection process", Computers &

industrial engineering, Vol 37, issue 1, 1999

pp.137-140.

[9] Suma, V., T. R. Gopalakrishnan Nair. "Better

defect detection and prevention through

improved inspection and testing approach in

small and medium scale software industry."

International Journal of Productivity and

Quality Management, Vol 6, issue 1, 2010, pp.

71-90.

[10] Kumaresh, Sakthi, R. Baskaran. "Defect

analysis and prevention for software process

quality improvement." International Journal

of Computer Applications, Vol 8, issue 7,

2010.

Journal of Theoretical and Applied Information Technology
 31st March 2016. Vol.85. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

289

[11] Pan Tiejun, Zheng Leina, Fang Chengbin,

“Defect Tracing System Based on Orthogonal

Defect Classification”, Computer Engineering

and Applications, Vol 43, 2008, pp. 9-10.

[12] Pankaj Jalote, Naresh Agarwal, “Using Defect

Analysis Feedback for Improving Quality and

Productivity in Iterative Software

Development” In proc- IEEE ITI 3rd

International Conference on Information and

Communications Technology, 2005, pp. 703-

713.

[13] Song, Qinbao, et al., "A general software

defect-proneness prediction framework",

IEEE Transactions on Software Engineering,

Vol 37, issue 3 , 2011, pp. 356-370.

[14] Jacobs, Jef, et al., "Identification of factors

that influence defect injection and detection in

development of software intensive products",

Information and Software Technology, Vol 49,

issue 7, 2007, pp. 774-789.

[15] Subramanyam, Ramanath, Mayuram S.

Krishnan, "Empirical analysis of ck metrics

for object-oriented design complexity:

Implications for software defects", IEEE

Transactions on Software Engineering, Vol

29, issue 4, 2003, pp. 297-310.

[16] Ayewah, Nathaniel, et al. ,"Evaluating static

analysis defect warnings on production

software", 7th ACM Proceedings of the

SIGPLAN-SIGSOFT workshop on Program

analysis for software tools and engineering,

2007, pp. 1-8.

[17] Menzies, Tim, et al., "Implications of ceiling

effects in defect predictors" , ACM

Proceedings of the 4th international workshop

on Predictor models in software engineering,

2008.

[18] Kalinowski, Marcos, Guilherme H. Travassos,

David N. Card , "Towards a defect prevention

based process improvement approach", IEEE

34th Euromicro Conference Software

Engineering and Advanced Applications,

2008.

[19] Itkonen, Juha, Mika V. Mantyla, Casper

Lassenius, "Defect detection efficiency: Test

case based vs. exploratory testing", IEEE

First International Symposium on Empirical

Software Engineering and Measurement, 2007

[20] Tosun, Ayse, Burak Turhan, and Ayse Bener,

"Ensemble of software defect predictors: a

case study", Proceedings of the Second ACM-

IEEE international symposium on Empirical

software engineering and measurement, 2008.

[21] Montgomery D. C, Statistical Quality

Control- A Modern Introduction, Wiley.,

ISBN: 978047233979, USA, 2009

[22] English, J. R. , Taylor G. D, “Process

capability analysis- a robustness study”,

International Journal of Production Research,

Vol 31, issue 7, 1993, pp.1621-1635.

[23] http://lecturehub.ie/2013/10/24/the-difference-

between-usllsl-and-ucllcl/

[24] www.hcltech.com/sites/default/files/Defect_Pr

evention_Whitepaper.pdf

[25] Automotive Industry Action Group (AIAG) ,

Measurement system analysis, 3rd ed.

Southfield, 2002

[26] Jorge Luis Romeu, Christian E. Grethlein, “A

Practical Guide to Statistical Analysis of

Material Property Data”, AMPTIAC, 2000

[27] V. K. Rohatgi, “An introduction to probability

theory and mathematical statistics”, Wiley

NY, 1976

[28] Nancy R. Mann, Ray E. Schafer, Nozer D.

Singpurwalla, “Methods for statistical

analysis of reliability and life data”, Wiley,

1974

[29] Suma V and Gopalakrishnan Nair T.R.,

“Defect Management Strategies in Software

Development”, InTech Recent Advances in

Technologies, Maurizio A Strangio (Ed.),

2009

