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ABSTRACT 

 

The solutions of Kolmogorov’s equations for the probabilities of state for a discrete-time Markov process 

with a linear function of birth-death intensities were obtained. We also found expressions for the 

distribution laws of kth point arrival in birth-death processes and their basic numerical characteristics. 
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1. INTRODUCTION  

 

We consider a discrete Markov stochastic 

process in continuous time. If the intensities of all 

death flows are equal to zero, then it is called a pure 

birth process (PBP).  It permits only positive flux 

jumps at any given time [1-5]. If the intensities of 

all birth flows process are equal to zero, it is called 

a pure death process (PDP). It permits only 

negative flux jumps at any given time [1-5]. 

Currently, Markov PBP and PDP in various forms 

are widely used in the information systems 

modeling, using the queuing systems theory [1, 4 - 

8]. The solution of Kolmogorov’s equations for the 

probabilities of states for PBP and PDP are known 

only for some special cases, such as when the 

intensity of birth or death is a constant [1-5]. This 

significantly limits the scope of application use. 

However, to obtain solutions of Kolmogorov’s 

equations for probabilities of states for Markov 

continuous time processes with a finite number of 

states, allows to approach the solution of a number 

of modeling network-centric information systems 

problems. 

 

2. STATEMENT OF THE PROBLEM 

 

The purpose of the paper is to obtain solutions of 

Kolmogorov’s equations for probabilities of states 

for Markov continuous time processes with a finite 

number of states and a linear function of birth-death 

intensities, and find expressions for the distribution 

laws of the kth point arrival in birth-death processes 

and their basic numerical characteristics. We 

consider the expectation )(tm , dispersion )(tD  and 

the third central moment )(3 tM  or factor 

).()()( 3 tDtMtk =  as the main numerical 

characteristics of distribution laws.  

 

2.1 Solution of the problem 

2.1.1 Pure birth processes 

Pure birth processes )(tξ  satisfy the two 

conditions [3,5]: 

1) the process )(tξ  has a finite number of states 

;,,2,1,0 Nx K=  

2) states x change on )1(1 +→+ xx with intensity 

)(xλ . 
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The system of Kolmogorov’s differential 

equations for unconditional probabilities of states 

has the following form [3] 

( ) ( ) ( )
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It should be noted that for any t (including t = 0) 

normalization condition should be met  

( ) 1,

0

=∑
=

N

x

txp ,                          (4) 

and for 0=t  initial conditions 1)0,0( =p . 

Solution of equation (1) with the initial condition 

is [4] 

( ) ( )( )
.0

,0exp,0

=

−=

x

ttp λ
             (5) 

The solution of equations (2) can be found by 

variation of arbitrary constants in the form of the 

recurrence formula [9] 

( ) ( )( )

( ) ( ) ( )( )

.11

;exp,11

exp,

0

−≤≤

−−×

×−=

∫
Nx

dxxpx

txtxp

t

ττλτλ

λ

      (6) 

Taking into account the normalization condition 

(4) the solution of equation (3) is 

( ) ( )
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,,1,

1
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The solution of (6) with (5) for PBP can also be 

represented explicitly. Thus three cases are generic: 

 

2.1.2 PBP with intensity (Poisson PBP) 

Thus if λλ =)(x , then we obtain a Poisson 

distribution 

( ) ( ) ( )
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The main numerical characteristics of the 

Poisson distribution (8) are defined by the 

expression 
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In paper [2] it is shown that the distribution of 

the arrival of kth point of birth is subordinate to the 

Erlang distribution 
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with numerical characteristics 

332
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where  .1 Nk ≤≤  

 

2.1.3 PBP with intensity )()( xNx −= λλ  

(binomial PBP) 

If ,)()( xNx −= λλ it follows from the (6) 

binomial distribution 

( )
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( )( ) ( )
.0

,expexp1

!!

!
,

Nx

tt

xxN

N
txp

xNx

≤≤

−−−×

×
−

=

−λλ         (11) 

For it, the numerical characteristics are 

( ) ( )( )tNtm λ−−= exp1 ; 

( ) ( ) ( ),exp ttmtD λ−=  

( ) ( ) ,1exp2 −−= ttk λ  

( ) .10 << tk  

The distribution laws for the arrival of kth point 
of birth can be determined by [1] Erlang 

distribution in a similar way 
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Its main numerical characteristics, taking into 

account [6] are 
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2.1.4 PBP intensity (negative binomial PBP) 

If ,)()( xx += αλλ then from (6) follows that the 

negative binomial distribution 
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where )(zΓ is Gamma function. 

For the probability distribution (14) the 

numerical characteristics are 
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The distribution laws for the arrival of kth point 

of birth is determined by the Erlang distribution (9) 
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Its main numerical characteristics, taking into 

account [10] are 
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The analysis of the expressions for numerical 

characteristics of distributions (8), (11) and (14) 

shows that for the pure birth process .0)( >tk  

The density of the probability distribution of time 

intervals between consecutive events for considered 

PBP is exponential with parameter scale )(xλ . 

2.2 Pure death process 

Pure death processes )(tξ  satisfy the two 

conditions [3,5]: 

1) the process )(tξ  has a finite number of states 

;,,2,1,0 Nx K= ; 

2) states x change on )1(1 −→− xx  with 

intensity )(xµ . 

The system of Kolmogorov’s differential 

equations for unconditional probabilities of states 

has the following form [3]; 
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with the initial condition .1)0,( =Np  

The solution of equation (19) with the initial 

condition is  

( ) ( )( )
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,exp,
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Equation (18) can be found by any variations in 

the form of a constant recurrence formula [9] 
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Taking into account the normalization conditions 

similar to (4) for 0>t , the solution of equation 

(17) with ∞<N is 
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The solution (21) with (20) for PDP can also be 

represented explicitly. Thus three cases are 

characteristic: 

 

2.2.1 PDP with intensity (Poisson PDP) 

So if µµ =)(x , we get the Poisson distribution 
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Its main numerical characteristics are 
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In accordance with paper [2] it can be shown that 

the time of arrival of the kth point of death is 

subordinate to the Erlang distribution 
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2.2.2 PDP with intensity (binomial PDP) 

If ,)( xx µµ = then from (21) follows a binomial 

distribution 
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In this case, the numerical characteristics are 

defined by the relations 
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Distribution laws for the arrival of kth point of 

death is defined similarly by the Erlang distribution 
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Its main numerical characteristics, taking into 

account [6] are 
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2.2.3 PDP with intensity (negative binomial 

PDP) 

If the intensity of ,)()( xNx −+= αµµ then 

from (21) follows a negative binomial distribution 
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Its main numerical characteristics are 
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Distribution laws for the arrival of kth point of 

death is defined similarly by the Erlang distribution 

(9) 
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Its main numerical characteristics, taking into 

account [10] are 
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The analysis of the expressions for numerical 

characteristics of distributions (23), (26) and (29) 

shows that for pure death process .0)( <tk  

The density of the probability distribution of time 

intervals between consecutive events for considered 

PDP is exponential with parameter scale 

)1( +− xNµ . 

3. CONCLUSIONS 

Thus, solutions of Kolmogorov’s equations for 

unconditional probabilities of states of discrete 

Markov processes in pure birth-death processes 

with final number of states were obtained. In this 

case, birth and death intensities depend on linear 

functions. It was shown that the distributions for the 

Markov pure birth-death processes can be 

distinguished by the value of the coefficient. We 

also obtained expressions for the distribution laws 

of the arrival of k th point of birth or death and their 

basic numerical characteristics. 
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