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ABSTRACT 

 

Android is an open source platform based on Linux kernel; it is one of the first operating systems that use a 

permission mechanism to control access to resources. The permission mechanism is fine gained and can 

control what a particular process could and could not perform. Therefore, these permissions should be 

monitored closely to make sure they are not assigned to the wrong application. This study is not intended to 

create an anti-malware solution, instead it uses the permissions to classify and categorize android 

applications. This paper is offering a novel way of using the self-organizing map to study a set of malware 

application and try to find a pattern of permission requests. This pattern could be used to analyze the 

application and compare it against the pattern identified earlier using the self-organizing map. 
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1. INTRODUCTION  

     This paper will focus on unsupervised learning 

techniques and in self-organizing maps in 

particular. The first part of this paper will be a brief 

about the android operating system and its security 

model, the second part will be an illustration of a 

novel theoretical method of analyzing permissions 

in android applications. The main objective of this 

study is to investigate which permissions are most 

popular in Android malware applications. We 

believe this study could reveal permission pattern 

usage, and could identify correlations between 

different requested permissions in malware 

applications. 

2. ANDROID OPERATING SYSTEM  

     The Android operating system was designed to 

offer unrestricted use of the device without 

neglecting the security side of it. It is an open 

source platform that supports third party 

applications [1]. The Android security model is 

built on a very solid foundation, however it still 

pose drawbacks [2]. 

2.1 Android Security Model 

     The Android system is designed as a multi 

process system where each application is running 

on its own and has no access to other applications. 

Each application has its own space and its own 

resources and has zero interaction with the rest of 

the processes or applications. Generally speaking, 

Linux enforce security between application and the 

system at the process level [3]. The Android system 

has permission mechanism that determines whether 

grant access to an application or not. However, the 

android operating system doesn’t assign 

permissions to each application, but it leaves the 

approval to the user who grants the permission to 

the application at the time of installation. This 

process make the system vulnerable to user’s 

knowledge which is usually limited and not 

technical oriented. Therefore, Android doesn’t have 

any security measures to determine which 

permission should be granted and which one should 

be denied, and it the application needs the 

permission to function properly or not. 

2.2 Android Permissions 

     The security by permission mechanism is poorly 

documented and usually misused by third party 

developers. None of the application has permission 

to perform any operation that could harm other 

applications, the user or the operating system. All 

Applications are required to use a certificate whose 

private key is kept by the party that created the 

application. Those certificates are used to identify 

the party who developed the application; however, 
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certificates could be self-signed what makes it 

untraceable with no possible link to the developer. 

Permissions are the primary form of security used 

by the Android Operating system to assure that no 

application is granted access to more re-sources 

than what it actually needs. 

According to google, Android 4.4 offers 152 per-

missions, 62 of them are either “signature 

permissions” or “signature Or System permissions” 

which are available only to application signed with 

the same certificate as the installed Android 

operating system. The rest of the permissions are 

either “Normal Permissions” or “Dangerous 

Permissions” and they are available to third party 

developers to use to access the device resources. 

Normal permissions are granted to any application, 

they can’t harm the device or the user, but they 

could annoy them [4]. 

2.3 Malware Attacks on Android Systems 

     Threats to mobile phones are increasing at an 

alarming rate, according to [5] over two hundred 

million malicious program was created in 2010. 

The below table shows the most used malicious 

programs that affect smart-phones. 

 
Table 1: Most Used Malware Applications 

Malware 

type 

Example Description 

Spyware Stuxnet Collect, use, spread 

sensitive information 

without the consent of the 

user. The information 

could be used for legit 

activities as 

advertisement or illegal 

activities as social 

engineering. 

Worm  XXshenqi.

apk 

Malware that self-

replicates and spreads via 

mobile network (MMS, 

SMS) and usually does 

not require any user 

interaction. 

Botnet Aurora Also known as a zombie 

army, it is composed of 

many devices that have 

been set up to forward 

spam and viruses to other 

devices. 

Toolkit Phoenix 

toolkit 

An application that is 

used to lunch a 

widespread attack on 

networked mobile 

devices [5]. 

Trojan  Gingerma

ster 

Applications that pose as 

a legit app, it needs the 

user interaction to be 

activated. 

3. MACHINE LEARNING 

     Machine learning is a subfield of computer 

science that research and study learning systems, 

the application could be applied to many 

engineering fields. Machine Learning is an 

algorithm that could study and learn from data 

without any human interaction [6]. It could be 

identified as an intersection between statistics, 

computer science, engineering and optimization [7]. 

Until late fifties, scholars believed that to estimate 

an unknown functional dependency, a finite number 

of parameters are needed, however, during the 

sixties, scholars were able to discover that using 

some general properties of a set of functions to 

which a an unknown dependency belongs could 

solve the problem. A statistical learning theory 

could be used to estimate the best approximation of 

the dependency [8]. There is two types of Machine 

learning, the super-vised learning, and the 

unsupervised learning.  The supervised approach 

needs pre-classified data to permit learning [9]. The 

machine is given inputs and its outputs to let the 

machine learn how to produce the outputs, then the 

machine is given an input and expected to predict 

the output. This could be equivalent to regression 

analysis in statistics. In unsupervised Learning, the 

machines analysis the input, and try to come up 

with a patterns in the data to predict a category 

without any supervised target. Clustering, Self-

organizing maps, and Vector quantization are 

considered unsupervised learning techniques. In 

this study we are going to focus on the Self-

Organizing Maps. 

4. SELF-ORGANIZING MAPS 

     Self-Organizing maps also known as the 

Kohonen maps are a class of neural networks 

invented by Teuvo Kohonen for the purpose of data 

classification [10]. It is considered a vector 

quantization method that places the prototype 

vector on a low dimensional grid in an ordered 

fashion [11]. The Self Organizing map use 

unsupervised training, in with the network learn to 

generate its own classifications without any 

external help [12]. This assumes the inputted data is 

broadly defined by common features, and that the 

network will be able to identify those features 

across the range of input patterns [13]. 
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4.1 Structure of the Self-Organizing Maps 

     The structure of the self-organizing map 

typically has 2 dimensions, and depending on the 

dimensions of the node lattice, each neuron will 

have a variable number of connected neurons, but 

in our case (two dimensions) it would be 4 

immediately connected neurons. However, each 

neuron is fully connected to all the source unites in 

the input layer as shown in figure 1 below. 

 
 

Figure 1: Structure Of The Self-Organizing Map 

 

The structure of the self-organizing map is affected 

by the neighborhood relations that connect neurons 

to each other’s, which dictates the topology or the 

structure of the map [11]. While working with a 2-

dimensional case, the neurons of the map can be 

arranged on either a rectangular or a hexagonal 

lattice as displayed in Figure 3.2 below. However, 

hexagonal is suggested because of its effective 

visual display [10]. 

 
Figure 2: Two Example Of Topological 

Neighbrhood [11] 

 

As explained by [11] the self-organizing map could 

be explained as a net that is spread to the data 

cloud. The algorithm dislocates the weight vectors 

so they cover the data cloud and the map gets 

organized. As shown in figure 3.3, when the data is 

presented to the Self organizing Map, the new 

weight vectors are weighted averages of the data 

vectors. As shown in Figure 3, the best matching 

unit and its neighbors gets updated towards the 

input sample marked with x.  

 
Figure 3: The Solid And Dashed Lines Correspond To 

Situation Before And After Updating, Respectively [11]. 

4.2 The Self-Organizing Maps Algorithm 

     The self-organizing map is achieved by mapping 

the input vectors with similar values onto neigh-

boring output neurons [14].  

The input layer represents input vector data. 

Usually the network has one layer of n units 

arranged in lattice; the prototype vector could be 

represented as: 

The self-organizing map is achieved by mapping 

the input vectors with similar values onto neigh-

boring output neurons [14]. 

The input layer represents input vector data. 

Usually the network has one layer of n units 

arranged in lattice; the prototype vector could be 

represented as:   

The output layer is usually a one or two 

dimensional map with a possibility of a higher 

dimension. In our case we will be using the one 

dimensional map. A weight vector is associated 

with every neuron; every output neurons is 

connected to the input neuron with that weight 

vector. 

The first step is going to be initializing the neuron 

weight as shown in (1):   

 

����� � ������, �����,…������          (1) 

 

The output layer is usually a one or two 

dimensional map with a possibility of a higher 

dimension. In our case we will be using the one 

dimensional map. A weight vector is associated 

with every neuron, every output neurons is 

connected to the input neuron with that weight 

vector.  

The first step is going to be initializing the neuron 

weight as shown in (2): 
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	���� � 
	�����,	�����,…	������		       (2) 

���	� � �1, 2, 3,… , ��	 
The self-organizing maps use a competitive 

learning algorithm (Sun, 2000), at each step it 

choose the winning neuron on the map according to 

its distance measures. At each output neuron, the 

Euclidean distance is used as the criterion to 

compare the input vector and the weight vector. 

The Euclidean distance could be defined using the 

formula (3): 

�|���� �	����|� � �∑ � ! ���!"��!#� 		  (3) 

���	� � �1, 2, 3… , �� 
The winning neuron of the competition is selected 

using the following equation (4): 

 

�|���� �	$���|� � %���&�|���� �	����|�'		   
(4) 

���	� � �1, 2, 3… , �� 
After the winning neuron c has been selected, the 

weight vector neuron is updated in addition to its 

neighboring neurons. The weight update function is 

shown below (5): 

	�	�� ( 1� � 	���� ( )���*$����
���� � 	����+(5) 

 

For (t) is the learning rate parameter, and h_ci (t) is 

the neighborhood function defined below (6): 

 

*$���� � *��|�$ � ��|�, ��)���           (6) 

 

The learning rate function (t) is a decreasing 

function of time. The neighborhood function on the 

Gaussian form is (7): 

 

*$���� � exp/� �|01203|�4
�54�6� 7)���                 (7) 

 

In summary the self-organizing maps algorithm 

could be presented in the pseudo-code below: 

 

 

 

 

 

Do  

{     Adjust the neighborhood radius 

            Adjust the learning rate 

            Randomize the presentations order of the 

data 

            For each data item  

           {      Find the closest matching prototype 

                        For all cells within the 

neighborhood radius  

                       {       Adjust prototype weights of 

each  

neuron based on distance  and learning rate 

                        }  
            }  

             evaluate the termination criteria  
} 

While ( Termination criteria is not met ) 
A Pseudo-Code Of The Self Organizing-Maps Algorithm 

5. METHEDOLOGY AND DATA 

COLLECTION 

     In this work we are going to define each android 

application as an input pattern. The application is 

represented in a string of bits as shown below: 

Where n is the total number of permissions found in 

the data set and, permission is either equal to 0 or 1.  

As an example let’s suppose the Android 

application App_Example is represented as fellow: 

899: �9;�%�<<�����, 9;�%�<<�����, … . 9;�%�<<������ 
Formatting our dataset as such will make us able to 

use the self-organizing map to create a 2 

dimensional visualization of permissions used in 

the data set. The algorithm will give us an idea on 

which permissions are used most, and could give us 

an idea on which permissions are usually used in 

combination. The algorithm will cluster the 

applications using the same permissions into the 

same region. A Unified Distance Matrix (U-Matrix) 

is going to be used to display the cluster structure. 

The representation uses the Euclidean distance 

explained earlier in section 3.2 to visualize the data 

in a 2 dimensional space. A sample U-matrix is 

showing on figure 5 below. 
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Figure 4: An Empty U-Matrix 

 

Malwares were collected from different android 

market stores and forums. We successfully 

collected 1241 applications. To make sure the apps 

are malicious we run all apps through three 

commercial anti-viruses, Kaspersky, Avira, and 

Avast. 100 applications got identified as malicious 

by all three anti-viruses, only those were used in 

our study. To extract the permissions from our 

dataset, a predefined tool “aapt” was used. 

6. RESULT AND DISCUSSION 

     Our malware set contains 77 different 

permissions, most of the permissions are either 

Dangerous or Normal permissions, 10% of the 

permission requested were labeled as System or 

signature and are prohibited to use by third party 

developers. Four special permissions were used; 

those permissions do not behave like dangerous and 

normal permissions, and should not be used in most 

applications [15]. 

 

 

Figure 5: Permission Used In The Dataset 

 

The most 20 used permissions were mostly 

dangerous permissions, the first and most used per-

mission is the internet permission which is 

considered a normal permission but widely used by 

malware application to steal data from infected 

devices. 

 
Figure 6: Most Used Permisions 

 

Figure 6 above shows how the first 20 most re-

quested permissions are divided between malware 

applications. It is found that the most used 

permissions are considered dangerous, and only 3 

normal permissions were requested; the internet, 

vibrator, and Received_Boot_Completed. 

Seven of the most requested permissions were 

chosen to cluster using the self-organizing maps, 

MatLab 7.0 was used to train and print SOMs. 

Figure 7 below shows the SOM for the Internet 

permission, light shades indicate that the 

permission was requested in that region; in contrary 

the dark shades indicate no use of the permission. 

The light shades cover most of the SOM what 

means that the internet permission was requested by 

most of the malware in our dataset (93%). The 

internet permission allows applications to send 

HTTP requests to all domains and allows the device 

to connect to all ports (Felt et al, 2010) what makes 

the permission suitable for malicious applications. 

 

 
Figure 7: Component Plane Visualization Of The Internet 

Permission 

 

10% 

41% 
43% 

5% 1% System or

Signature
Dangerous

Normal

Special

Self Defined

0% 50% 100%

INTERNET
WRITE_EXTERNAL_STORAGE

READ_PHONE_STATE
ACCESS_NETWORK_STATE

ACCESS_WIFI_STATE
GET_TASKS

RECEIVE_BOOT_COMPLETED
ACCESS_COARSE_LOCATION

WAKE_LOCK
INSTALL_SHORTCUT

SEND_SMS
ACCESS_FINE_LOCATION

VIBRATE
MOUNT_UNMOUNT_FILES…
SYSTEM_ALERT_WINDOW

RECEIVE_SMS
READ_LOGS

WRITE_SETTINGS
RESTART_PACKAGES

CHANGE_WIFI_STATE
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Write_External_storage allows the malware to 

write to external storage as an SD card. This 

permission is considered dangerous. As shown in 

figure 8, most malicious apps requested this 

permission (87%). 

 

 
Figure 8: Component Plane Visualization Of The 

Write_External_Storage Permission 

 

Understanding the permission request pattern in 

malicious applications is a very complicated task 

and could help the researcher find an efficient way 

of detecting that malware. The correlation we found 

between different permissions are specific to our 

malware dataset, however, the dataset contains 

different malware from different regions of the 

world and different families, and we believe the 

result could be generalized on the whole Android 

malware population.     

Figure 9 below represent SOM representation for 

all 77 permissions found in our dataset. When 

overlooking at the whole output, it is very 

noticeable that some outputs are very similar to 

each other what can reveal a correlation between 

different permissions. If different permissions are 

correlated, it is most likely to be requested together 

most of the time. 

 

 
Figure 9: SOM Representations Of All Permissions In 

The Dataset, The Light Areas Represent The Area Where 

Permissions Were Requested. 

 
Looking at different outputs, we easily identified 5 

different correlations between our set of 

permissions. Similar component plane 

visualizations mean the permissions are correlated.  

As shown in figure 10 there is a clear correlation 

between the four different permissions. This 

implies that those permissions usually get requested 

together. Any applications having access to those  

permissions will be able to receive MMS (RE-

CEIVE_MMS), monitor and delete messages 

without showing it to the user (RE-

CEIVE_WAP_PUSH), Also it change and enforce 

APN setting to be able to send messages in case 

APN is disabled and allows its activities to be 

persistent (PERSISTANT_ACTIVITY). 

Applications that have capabilities of managing, 

sending, and reading messages without the 

knowledge of the user are considered dangerous 

[2]. 
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Figure 10: Four Different Permissions Showing Similar 

Component Plane Visualizations 

 

Figure 11 shows different 3 permissions commonly 

requested together, the WRITE_SETTING per-

mission is considered a signature permissions and 

should only be used by system applications, the 

same applies for the UP-

DATE_PHONE_STATISTICS, however finding 

those applications in a 3rd party application should 

raise a flag. 

Figure 11: Three Different Permissions Showing Similar 

Component Plane Visualizations 
 

The most used permissions in our dataset conclude 

also that there is a clear correlation between those 

four permissions. If we look closely at figure 12 

below, we conclude that the yellow shades are 

mostly present at the same spots; the same applies 

for the black and darker shades. 

 

 
Figure 12: Four Different Permissions Showing Similar 

Component Plane Visualizations For The Most Used 

Permissions 

7. CONCLUSION 

     In this paper we present a method of classifying 

or characterizing android malicious application 

based on permissions requested, the method could 

be used to identify malware application or to 

classify them into categories. This method could be 

used to analyze different android market-places to 

determine how dangerous its applications are. Also, 

it is a suitable method to find correlations between 

different permissions and identify dangerous 

combinations. The analysis in this study helped 

identifying permissions used by malicious 

applications using a real world dataset. It did as 

well show the correlation between different 

permission requested. 

Although this research was carefully prepared, we 

are still aware of its limitations.. The research was 

conducted on a relatively small dataset of one 

hundred samples, and the malicious applications 

used were not classified into different malware 

families, and were treated as one set of data. Future 

research could consider separating the dataset into 

different malware families, and analyze each family 

separately. 
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