
Journal of Theoretical and Applied Information Technology
 10

th
 March 2016. Vol.85. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

104

 PERMISSION BASED MALWARE ANALYSIS FOR

ANDROID APPLICATIONS USING SELF-ORGANIZING

MAPS

1
AHMED BEN AYED

1
Colorado Technical University, Department of Engineering and Computer Science

E-mail:
1
aben@my.bellevue.edu

ABSTRACT

Android is an open source platform based on Linux kernel; it is one of the first operating systems that use a

permission mechanism to control access to resources. The permission mechanism is fine gained and can

control what a particular process could and could not perform. Therefore, these permissions should be

monitored closely to make sure they are not assigned to the wrong application. This study is not intended to

create an anti-malware solution, instead it uses the permissions to classify and categorize android

applications. This paper is offering a novel way of using the self-organizing map to study a set of malware

application and try to find a pattern of permission requests. This pattern could be used to analyze the

application and compare it against the pattern identified earlier using the self-organizing map.

Keywords: Android Permissions, Machine Learning, Self-Organizing Map, Android Security

1. INTRODUCTION

 This paper will focus on unsupervised learning

techniques and in self-organizing maps in

particular. The first part of this paper will be a brief

about the android operating system and its security

model, the second part will be an illustration of a

novel theoretical method of analyzing permissions

in android applications. The main objective of this

study is to investigate which permissions are most

popular in Android malware applications. We

believe this study could reveal permission pattern

usage, and could identify correlations between

different requested permissions in malware

applications.

2. ANDROID OPERATING SYSTEM

 The Android operating system was designed to

offer unrestricted use of the device without

neglecting the security side of it. It is an open

source platform that supports third party

applications [1]. The Android security model is

built on a very solid foundation, however it still

pose drawbacks [2].

2.1 Android Security Model

 The Android system is designed as a multi

process system where each application is running

on its own and has no access to other applications.

Each application has its own space and its own

resources and has zero interaction with the rest of

the processes or applications. Generally speaking,

Linux enforce security between application and the

system at the process level [3]. The Android system

has permission mechanism that determines whether

grant access to an application or not. However, the

android operating system doesn’t assign

permissions to each application, but it leaves the

approval to the user who grants the permission to

the application at the time of installation. This

process make the system vulnerable to user’s

knowledge which is usually limited and not

technical oriented. Therefore, Android doesn’t have

any security measures to determine which

permission should be granted and which one should

be denied, and it the application needs the

permission to function properly or not.

2.2 Android Permissions

 The security by permission mechanism is poorly

documented and usually misused by third party

developers. None of the application has permission

to perform any operation that could harm other

applications, the user or the operating system. All

Applications are required to use a certificate whose

private key is kept by the party that created the

application. Those certificates are used to identify

the party who developed the application; however,

Journal of Theoretical and Applied Information Technology
 10

th
 March 2016. Vol.85. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

105

certificates could be self-signed what makes it

untraceable with no possible link to the developer.

Permissions are the primary form of security used

by the Android Operating system to assure that no

application is granted access to more re-sources

than what it actually needs.

According to google, Android 4.4 offers 152 per-

missions, 62 of them are either “signature

permissions” or “signature Or System permissions”

which are available only to application signed with

the same certificate as the installed Android

operating system. The rest of the permissions are

either “Normal Permissions” or “Dangerous

Permissions” and they are available to third party

developers to use to access the device resources.

Normal permissions are granted to any application,

they can’t harm the device or the user, but they

could annoy them [4].

2.3 Malware Attacks on Android Systems

 Threats to mobile phones are increasing at an

alarming rate, according to [5] over two hundred

million malicious program was created in 2010.

The below table shows the most used malicious

programs that affect smart-phones.

Table 1: Most Used Malware Applications

Malware

type

Example Description

Spyware Stuxnet Collect, use, spread

sensitive information

without the consent of the

user. The information

could be used for legit

activities as

advertisement or illegal

activities as social

engineering.

Worm XXshenqi.

apk

Malware that self-

replicates and spreads via

mobile network (MMS,

SMS) and usually does

not require any user

interaction.

Botnet Aurora Also known as a zombie

army, it is composed of

many devices that have

been set up to forward

spam and viruses to other

devices.

Toolkit Phoenix

toolkit

An application that is

used to lunch a

widespread attack on

networked mobile

devices [5].

Trojan Gingerma

ster

Applications that pose as

a legit app, it needs the

user interaction to be

activated.

3. MACHINE LEARNING

 Machine learning is a subfield of computer

science that research and study learning systems,

the application could be applied to many

engineering fields. Machine Learning is an

algorithm that could study and learn from data

without any human interaction [6]. It could be

identified as an intersection between statistics,

computer science, engineering and optimization [7].

Until late fifties, scholars believed that to estimate

an unknown functional dependency, a finite number

of parameters are needed, however, during the

sixties, scholars were able to discover that using

some general properties of a set of functions to

which a an unknown dependency belongs could

solve the problem. A statistical learning theory

could be used to estimate the best approximation of

the dependency [8]. There is two types of Machine

learning, the super-vised learning, and the

unsupervised learning. The supervised approach

needs pre-classified data to permit learning [9]. The

machine is given inputs and its outputs to let the

machine learn how to produce the outputs, then the

machine is given an input and expected to predict

the output. This could be equivalent to regression

analysis in statistics. In unsupervised Learning, the

machines analysis the input, and try to come up

with a patterns in the data to predict a category

without any supervised target. Clustering, Self-

organizing maps, and Vector quantization are

considered unsupervised learning techniques. In

this study we are going to focus on the Self-

Organizing Maps.

4. SELF-ORGANIZING MAPS

 Self-Organizing maps also known as the

Kohonen maps are a class of neural networks

invented by Teuvo Kohonen for the purpose of data

classification [10]. It is considered a vector

quantization method that places the prototype

vector on a low dimensional grid in an ordered

fashion [11]. The Self Organizing map use

unsupervised training, in with the network learn to

generate its own classifications without any

external help [12]. This assumes the inputted data is

broadly defined by common features, and that the

network will be able to identify those features

across the range of input patterns [13].

Journal of Theoretical and Applied Information Technology
 10

th
 March 2016. Vol.85. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

106

4.1 Structure of the Self-Organizing Maps

 The structure of the self-organizing map

typically has 2 dimensions, and depending on the

dimensions of the node lattice, each neuron will

have a variable number of connected neurons, but

in our case (two dimensions) it would be 4

immediately connected neurons. However, each

neuron is fully connected to all the source unites in

the input layer as shown in figure 1 below.

Figure 1: Structure Of The Self-Organizing Map

The structure of the self-organizing map is affected

by the neighborhood relations that connect neurons

to each other’s, which dictates the topology or the

structure of the map [11]. While working with a 2-

dimensional case, the neurons of the map can be

arranged on either a rectangular or a hexagonal

lattice as displayed in Figure 3.2 below. However,

hexagonal is suggested because of its effective

visual display [10].

Figure 2: Two Example Of Topological

Neighbrhood [11]

As explained by [11] the self-organizing map could

be explained as a net that is spread to the data

cloud. The algorithm dislocates the weight vectors

so they cover the data cloud and the map gets

organized. As shown in figure 3.3, when the data is

presented to the Self organizing Map, the new

weight vectors are weighted averages of the data

vectors. As shown in Figure 3, the best matching

unit and its neighbors gets updated towards the

input sample marked with x.

Figure 3: The Solid And Dashed Lines Correspond To

Situation Before And After Updating, Respectively [11].

4.2 The Self-Organizing Maps Algorithm

 The self-organizing map is achieved by mapping

the input vectors with similar values onto neigh-

boring output neurons [14].

The input layer represents input vector data.

Usually the network has one layer of n units

arranged in lattice; the prototype vector could be

represented as:

The self-organizing map is achieved by mapping

the input vectors with similar values onto neigh-

boring output neurons [14].

The input layer represents input vector data.

Usually the network has one layer of n units

arranged in lattice; the prototype vector could be

represented as:

The output layer is usually a one or two

dimensional map with a possibility of a higher

dimension. In our case we will be using the one

dimensional map. A weight vector is associated

with every neuron; every output neurons is

connected to the input neuron with that weight

vector.

The first step is going to be initializing the neuron

weight as shown in (1):

����� � ������, �����,…������ (1)

The output layer is usually a one or two

dimensional map with a possibility of a higher

dimension. In our case we will be using the one

dimensional map. A weight vector is associated

with every neuron, every output neurons is

connected to the input neuron with that weight

vector.

The first step is going to be initializing the neuron

weight as shown in (2):

Journal of Theoretical and Applied Information Technology
 10

th
 March 2016. Vol.85. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

107

	���� �
	�����,	�����,…	������		 (2)

���	� � �1, 2, 3,… , ��	
The self-organizing maps use a competitive

learning algorithm (Sun, 2000), at each step it

choose the winning neuron on the map according to

its distance measures. At each output neuron, the

Euclidean distance is used as the criterion to

compare the input vector and the weight vector.

The Euclidean distance could be defined using the

formula (3):

�|���� �	����|� � �∑ � ! ���!"��!#� 		 (3)

���	� � �1, 2, 3… , ��
The winning neuron of the competition is selected

using the following equation (4):

�|���� �	$���|� � %���&�|���� �	����|�'		
(4)

���	� � �1, 2, 3… , ��
After the winning neuron c has been selected, the

weight vector neuron is updated in addition to its

neighboring neurons. The weight update function is

shown below (5):

	�	�� (1� � 	���� ()���*$����
���� � 	����+(5)

For (t) is the learning rate parameter, and h_ci (t) is

the neighborhood function defined below (6):

*$���� � *��|�$ � ��|�, ��)��� (6)

The learning rate function (t) is a decreasing

function of time. The neighborhood function on the

Gaussian form is (7):

*$���� � exp/� �|01203|�4
�54�6� 7)��� (7)

In summary the self-organizing maps algorithm

could be presented in the pseudo-code below:

Do

{ Adjust the neighborhood radius

 Adjust the learning rate

 Randomize the presentations order of the

data

 For each data item

 { Find the closest matching prototype

 For all cells within the

neighborhood radius

 { Adjust prototype weights of

each

neuron based on distance and learning rate

 }
 }

 evaluate the termination criteria
}

While (Termination criteria is not met)
A Pseudo-Code Of The Self Organizing-Maps Algorithm

5. METHEDOLOGY AND DATA

COLLECTION

 In this work we are going to define each android

application as an input pattern. The application is

represented in a string of bits as shown below:

Where n is the total number of permissions found in

the data set and, permission is either equal to 0 or 1.

As an example let’s suppose the Android

application App_Example is represented as fellow:

899: �9;�%�<<�����, 9;�%�<<�����, … . 9;�%�<<������
Formatting our dataset as such will make us able to

use the self-organizing map to create a 2

dimensional visualization of permissions used in

the data set. The algorithm will give us an idea on

which permissions are used most, and could give us

an idea on which permissions are usually used in

combination. The algorithm will cluster the

applications using the same permissions into the

same region. A Unified Distance Matrix (U-Matrix)

is going to be used to display the cluster structure.

The representation uses the Euclidean distance

explained earlier in section 3.2 to visualize the data

in a 2 dimensional space. A sample U-matrix is

showing on figure 5 below.

Journal of Theoretical and Applied Information Technology
 10

th
 March 2016. Vol.85. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

108

Figure 4: An Empty U-Matrix

Malwares were collected from different android

market stores and forums. We successfully

collected 1241 applications. To make sure the apps

are malicious we run all apps through three

commercial anti-viruses, Kaspersky, Avira, and

Avast. 100 applications got identified as malicious

by all three anti-viruses, only those were used in

our study. To extract the permissions from our

dataset, a predefined tool “aapt” was used.

6. RESULT AND DISCUSSION

 Our malware set contains 77 different

permissions, most of the permissions are either

Dangerous or Normal permissions, 10% of the

permission requested were labeled as System or

signature and are prohibited to use by third party

developers. Four special permissions were used;

those permissions do not behave like dangerous and

normal permissions, and should not be used in most

applications [15].

Figure 5: Permission Used In The Dataset

The most 20 used permissions were mostly

dangerous permissions, the first and most used per-

mission is the internet permission which is

considered a normal permission but widely used by

malware application to steal data from infected

devices.

Figure 6: Most Used Permisions

Figure 6 above shows how the first 20 most re-

quested permissions are divided between malware

applications. It is found that the most used

permissions are considered dangerous, and only 3

normal permissions were requested; the internet,

vibrator, and Received_Boot_Completed.

Seven of the most requested permissions were

chosen to cluster using the self-organizing maps,

MatLab 7.0 was used to train and print SOMs.

Figure 7 below shows the SOM for the Internet

permission, light shades indicate that the

permission was requested in that region; in contrary

the dark shades indicate no use of the permission.

The light shades cover most of the SOM what

means that the internet permission was requested by

most of the malware in our dataset (93%). The

internet permission allows applications to send

HTTP requests to all domains and allows the device

to connect to all ports (Felt et al, 2010) what makes

the permission suitable for malicious applications.

Figure 7: Component Plane Visualization Of The Internet

Permission

10%

41%
43%

5% 1% System or

Signature
Dangerous

Normal

Special

Self Defined

0% 50% 100%

INTERNET
WRITE_EXTERNAL_STORAGE

READ_PHONE_STATE
ACCESS_NETWORK_STATE

ACCESS_WIFI_STATE
GET_TASKS

RECEIVE_BOOT_COMPLETED
ACCESS_COARSE_LOCATION

WAKE_LOCK
INSTALL_SHORTCUT

SEND_SMS
ACCESS_FINE_LOCATION

VIBRATE
MOUNT_UNMOUNT_FILES…
SYSTEM_ALERT_WINDOW

RECEIVE_SMS
READ_LOGS

WRITE_SETTINGS
RESTART_PACKAGES

CHANGE_WIFI_STATE

Journal of Theoretical and Applied Information Technology
 10

th
 March 2016. Vol.85. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

109

Write_External_storage allows the malware to

write to external storage as an SD card. This

permission is considered dangerous. As shown in

figure 8, most malicious apps requested this

permission (87%).

Figure 8: Component Plane Visualization Of The

Write_External_Storage Permission

Understanding the permission request pattern in

malicious applications is a very complicated task

and could help the researcher find an efficient way

of detecting that malware. The correlation we found

between different permissions are specific to our

malware dataset, however, the dataset contains

different malware from different regions of the

world and different families, and we believe the

result could be generalized on the whole Android

malware population.

Figure 9 below represent SOM representation for

all 77 permissions found in our dataset. When

overlooking at the whole output, it is very

noticeable that some outputs are very similar to

each other what can reveal a correlation between

different permissions. If different permissions are

correlated, it is most likely to be requested together

most of the time.

Figure 9: SOM Representations Of All Permissions In

The Dataset, The Light Areas Represent The Area Where

Permissions Were Requested.

Looking at different outputs, we easily identified 5

different correlations between our set of

permissions. Similar component plane

visualizations mean the permissions are correlated.

As shown in figure 10 there is a clear correlation

between the four different permissions. This

implies that those permissions usually get requested

together. Any applications having access to those

permissions will be able to receive MMS (RE-

CEIVE_MMS), monitor and delete messages

without showing it to the user (RE-

CEIVE_WAP_PUSH), Also it change and enforce

APN setting to be able to send messages in case

APN is disabled and allows its activities to be

persistent (PERSISTANT_ACTIVITY).

Applications that have capabilities of managing,

sending, and reading messages without the

knowledge of the user are considered dangerous

[2].

Journal of Theoretical and Applied Information Technology
 10

th
 March 2016. Vol.85. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

110

Figure 10: Four Different Permissions Showing Similar

Component Plane Visualizations

Figure 11 shows different 3 permissions commonly

requested together, the WRITE_SETTING per-

mission is considered a signature permissions and

should only be used by system applications, the

same applies for the UP-

DATE_PHONE_STATISTICS, however finding

those applications in a 3rd party application should

raise a flag.

Figure 11: Three Different Permissions Showing Similar

Component Plane Visualizations

The most used permissions in our dataset conclude

also that there is a clear correlation between those

four permissions. If we look closely at figure 12

below, we conclude that the yellow shades are

mostly present at the same spots; the same applies

for the black and darker shades.

Figure 12: Four Different Permissions Showing Similar

Component Plane Visualizations For The Most Used

Permissions

7. CONCLUSION

 In this paper we present a method of classifying

or characterizing android malicious application

based on permissions requested, the method could

be used to identify malware application or to

classify them into categories. This method could be

used to analyze different android market-places to

determine how dangerous its applications are. Also,

it is a suitable method to find correlations between

different permissions and identify dangerous

combinations. The analysis in this study helped

identifying permissions used by malicious

applications using a real world dataset. It did as

well show the correlation between different

permission requested.

Although this research was carefully prepared, we

are still aware of its limitations.. The research was

conducted on a relatively small dataset of one

hundred samples, and the malicious applications

used were not classified into different malware

families, and were treated as one set of data. Future

research could consider separating the dataset into

different malware families, and analyze each family

separately.

REFRENCES:

[1] Ben Ayed, A., 2015, A literature Review on

Android Permission System, International

Journal of Advanced Research in Computer

Engineering & Technology, Volume 4, Issue 4,

pages 1520-1523.

Journal of Theoretical and Applied Information Technology
 10

th
 March 2016. Vol.85. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

111

[2] Enck, W., Ongtang, M., McDaniel, P., 2009,

Understanding Android Security, Security &

Pri-vacy IEEE, Volume 7. Issue 1, Pages 50-57.

[3] Dawson, M., Wright, J., Omar, M., 2015, Mobile

Computing and Wireless Networks: Concepts,

Methodologies, Tools, and Applications, Infor-

mation Science Reference, pages 1103-1123.

[4] Felt, A., Chin, E., Hanna, S., Song, D., Wagner,

D., 2011, Android permissions demystified, In

Proceedings of ACM Conference on Computer

and Communications Security, pages 627-637.

[5] Symantec, Inc., 2011, Internet Security Threat

Report, Retrieved from

http://www.symantec.com/content/en/us/enterpr

ise/other_resources/b-

istr_main_report_2011_21239364.en-us.pdf

[6] Kohavi, R., Provost, F., 1998, Glossary Of

terms: Special Issue on Applications of

Machine Learning and the knowledge discovery

process, Kluwer Academic Publishers, pages

271-274.

[7] Jain, A.K., Murty, M.N, Flynn, P.J, 1999, Data

Clustering: A review, ACM Computing

Surveys, Volume 31, Issue 3, pages 264-323.

[8] Vapnik, V., 1995, The nature of Statistical

Learning Theory, Springer.

[9] Hodge, V., Austin, J., 2004, A survey of Outlier

Detection Methodologies, Artificial Intelligence

Review, Volume 13, Issue 18, Pages 1-43.

[10] Kohonen, T., 1998, The Self Organizing Map,

Neurocomputing, Volume 21, Issue 3, pages 1-

6.

[11] Vesanto, J., Himberg, J., Alhoniemi, E., Par-

hankanges, J., 1999, Self-Organizing Map in

Matlab: The SOM Toolbox, Procedings of the

matlab DSP conference, pages 35-40.

[12] Thomson., R., Emery, W., 2004, Data Analysis

Methods in Physical Oceanography, 2nd

Edition, Elsevier.

[13] Bulinaria, J., 2004, Introduction to Neural

Networks, retrieved from

http://www.cs.bham.ac.uk/~jxb/NN/l1.pdf

[14] Corttrell, M., Fort, J., Pages, G., 1995, Two or

three things that we know about the Kohonen

algorithm, Proceedings of European

Symposium on Artificial Neural networks

Brussels, Belgium, pages 235-244.

[15] Android, 2015, System Permissions, Retrieved

from

http://developer.android.com/guide/topics/secur

ity/permissions.html#normal-dangerous

