
Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

423

DYNAMIC MEMORY ALLOCATION USING FREE BLOCKS

1
ALEKSANDR BORISOVICH VAVRENYUK,

2
IGOR VLADIMIROVICH KARLINSKY,

3
ARKADY PAVLOVICH KLARIN,

4
VIKTOR VALENTINOVICH MAKAROV,

5
VIKTOR ALEKSANDROVICH SURIGIN

1
National Research Nuclear University MEPhI

(Moscow Engineering Physics Institute)

Kashirskoe Highway, 31, Moscow, 115409, Russia
2
Karlsruhe Institute of Technology (KIT)

Kaiserstraße, 12, Karlsruhe, 76131 Germany
3
National Research Nuclear University MEPhI

(Moscow Engineering Physics Institute)

Kashirskoe Highway, 31, Moscow, 115409, Russia
4
National Research Nuclear University MEPhI

(Moscow Engineering Physics Institute)

Kashirskoe Highway, 31, Moscow, 115409, Russia
5
National Research Nuclear University MEPhI

(Moscow Engineering Physics Institute)

Kashirskoe Highway, 31, Moscow, 115409, Russia

ABSTRACT

Algorithms for the dynamic allocation of RAM (Random Access Memory) to the operating system when

multiprogramming have a significant impact on the efficiency of the operating system as a whole. Memory

Manager (allocator) of GNU C Library UNIX standard library, which claims universality, is ineffective in

some cases. This article describes the allocator algorithm with a list of clear areas, proposed by the authors,

which allows achieving a higher efficiency of the RAM usage. The test methodology is proposed for the

developed allocators, and the results of the comparison of the proposed allocator with the allocator of the

GNU C Library UNIX standard library are provided.

Keywords: Allocator, Memory Manager, The Process Of Memory Allocation, Memory Fragmentation,

Operating Systems

1. INTRODUCTION

In any operating system, the issue of the rational

use of RAM is one of the most important. But, as

practice shows, designing the universal algorithm of

the RAM management is fundamentally impossible.

The desire to fully use the available storage

capacity will inevitably lead to additional costs of

CPU time in the performance of the respective

memory manager ("allocator") and, on the contrary,

faster algorithms require additional memory

consumption for storing their own data structures.

Many works by Russian and foreign authors [17],

[1], [7], [2], [5] are devoted to the study of memory

allocation algorithms in operating systems. The

result of the collective efforts made by many

authors was the standard allocator glibc of the GNU

C Library [2]. This allocator uses many modern

ideas of memory allocation and deallocation, such

as, for instance, "paired tags algorithm", "doubles

system", the use of "bitmaps" [6].

A fight with memory fragmentation is one of the

main issues for any allocator [9]. CPU time

expenditures for servicing the allocator data

structures are another important issue [3].

There are also publications on the memory

allocation for real-time systems [10], [11], which

require, above all, to reduce the CPU time

expenditures for the memory allocation and

deallocation.

 Some authors [15] suggest an automatic

optimization technique for memory managers, but

this technique has not received widespread

attention.

 However, in practice, in the modern operating

systems, it is sometimes necessary to quickly

change allocators adjusting to the current needs of

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

424

the computational process, depending on the

characteristics of the issues being solved in the

system.

This paper presents the research results of one of

the possible allocation algorithms proposed by the

authors, and the RAM deallocation using list of the

clear areas.

2. ALLOCATOR DEVELOPMENT WITH

THE FREE BLOCKS

One of the ways to implement a memory

manager (allocator) is to use a list of the clear areas.

The main problem is the correct organization of the

list items. The list item shall keep, at a minimum, a

size of the item and a pointer to the next list item. If

the list is doubly linked, a pointer is also stored at

the previous list item. If the list is implemented

separately from the blocks (information about the

list item is not stored in the free block), then in each

list element the pointer to the free block shall be

stored. For sufficiently small size of the allocated

memory blocks, the size of the service list item

information may be quite large relative to the size

of the allocated block. Also, there is the list storage

issue in the list organization separately from the

blocks. It is necessary to monitor not only the

allocation and deallocation of blocks to application

program, but also the correct placement of the list

items.

Based on these considerations, the list items shall

be placed directly in the free blocks, and each item

shall contain minimum information for the block

size, and the pointer to the next item. But this raises

the issue of the detection of related areas, as for the

determination of the related areas, it is necessary to

cycle through all the list items by comparing the

boundary addresses of each area. If the list is sorted

by the address ascending, the operation of

determining the related areas becomes a little bit

easier. If the related block is not found and the

address of the current block is longer than the

address of the free one when iterating the items

from the beginning of the list, the list view can be

completed. But any ordered list requires the

insertion of a new item in a certain place, which

makes is necessary to view the entire list in part

from the beginning. In a non-ordered list, the insert

of the new item can be performed in one step; the

new item can be placed at the beginning or end of

the list.

For quicker determination of the related clear

areas, "paired tags" described in [3] are used. The

size of each block will be stored at its beginning

and end, and it will be negative for free blocks, and

positive for occupied blocks. Having defined the

information stored in the list, the minimum size of

the allocated block can be calculated; it is equal to

the size necessary to store the pointer to the next

block (Figure 1).

Figure 1. Block State Change

Figure 1 shows that each block has two tags at

the edges; in case of the block status change, the

sign in the tags also changes. If the block is

deallocated, the pointer is still entered to the next

free block in the list. Figure 2 shows the overall

picture of the location of the free and occupied

memory blocks.

Figure 2. Examples Of The Block Layouts In Memory

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

425

The memory allocation to the application

program begins with the free block search in the list

of the clear areas. If the list is empty, or there is an

appropriate block on it, the allocator asks the

additional memory to accommodate the block from

the RAM. The appropriate block search in the free

blocks list is made by one of the methods: first-fit,

best-fit or worst-fit. If the list of the clear areas

contains a free block, there may be two options for

further action.

• If the free block size is equal to the

requested size, or if during the block

division into two parts the size of the

remaining part does not allow to arrange

another free block, the free block is

completely given to the application program,

despite the possibility of internal

fragmentation. The tags of the free block are

inverted, and the free block is removed from

the list.

• If the free block can be divided in half so

that the remaining part size is sufficient for

the organization of the free block, the one

half is back to the application program, and

the other half forms a new free block and

placed in the list.

 A general chart of the memory block allocation

to the application program is shown in Figure 3.

Figure 3. Memory Allocation To The Application Program Algorithm Chart

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

426

The deallocation procedure of the occupied block

begins with the definition of the related area status

using the paired tags. There are four options for the

placement of the free and occupied blocks next to

the deallocated block (Figure 4).

Figure 4. Occupied Block Allocation Available Chaining Options

a) Left and right blocks are missing or

occupied. If the deallocated block is the first in the

memory allocator, the left block is missing, and

therefore there is no paired tag. To eliminate the

error when checking the tag on the left, it is

necessary to check the equality of the addresses of

the allocator memory beginning and deallocated

block. But when there are a large number of blocks

in the allocator memory, the possibility that the

deallocated block is the first is rather small, and the

address verification in most cases is a superfluous

action. To avoid unnecessary testing operations in

the blocks deallocation, the pointer to the list of the

clear areas is stored at the beginning of the allocator

memory. The pointer may receive a null or positive

value, and when checking it as a tag, it will

correspond to the occupied block (as the negative

value of the tag corresponds to the free blocks).

This approach solves the issue of the superfluous

address validation and determines the exact position

of the pointer on the list of the clear areas. A similar

approach is used to determine the missing of the

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

427

right block, but the null tag is stored instead of the

pointer at the end of the allocator memory area.

b) After the block deallocation with such

"neighbors", the deallocated block is entirely

marked as free and added to the list of the clear

areas as an independent item.

c) The left block is free, and the right one is

missing or occupied. In this situation, there is an

association of the deallocated block and the left

block. The left tag of the left free block and the

right tag of the deallocated block are the paired tags

of the new block. After adjusting the paired tags

(the final size is equal to the sum of the sizes of

each block, plus the size of the area to store two

tags), the list adjustment is not required, since the

left area has already been included in the list, and

the increase in the area size does not affect the

position of the list items.

d) The right block is free, and the left one is

missing or occupied. Similar to the situation

described in the paragraph "a", it is necessary to

find the previous list item with respect to the right

block and change the pointer of the next item at the

beginning of the resulting block only after the block

chaining.

e) The left and right blocks are free. In this

case, three blocks are combined into one. The left

tag of the left block and the right tag of the right

block are the paired tags of the new block, and the

size value is equal to the sum of the sizes of each

block, plus the size of the area for storing four tags.

After combining all the blocks in one, the right

block should be excluded from the list to maintain

the correct state of the list. Since on the list of the

free blocks, all blocks are arranged in the address

ascending order, the left block pointer to the next

item will be equal to the initial address of the right

block. The exclusion of the right block is made by

replacing the left block pointer to the right block

pointer to the next element.

f) The blocks deallocation algorithm is

shown in Figure 5.

Figure 5. Block Deallocation Algorithm Chart

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

428

The developed allocator, unlike the allocator of

the standard C library, has a smaller allocated block

size and makes it possible to use different methods

of searching for a free block; the change of the

search method can be performed during the

allocator operation.

3. ALLOCATOR IMPLEMENTATION AND

DEBUGGING

In different frameworks, the data types can have

different sizes; for example, on one framework the

pointer may take four bytes, while on the other it

will take eight bytes. To avoid possible errors when

compiling source code on different frameworks,

native data types have been used, such as size_t or

ssize_t. Features of the allocator implementation in

C are given in [19] in more detail.

The allocator debugging is quite a difficult task,

as it is a work with dynamic items. During each

start of the program there are various options of the

data organization and location in memory. The

debugging is offered to be made in two steps.

The first step is to promote consistency of

various memory requests (e.g. to determine the

correctness of combining the related blocks in the

allocator with a list of the clear areas), and view

memory dumps for checking the allocator work

(Figure 6).

Figure 6. Example Of The Memory Dump For The Allocator Debugging. The Rectangles Mark The Clear Areas. The

Ovals Circle The Pointers To The Next Items

The study of the memory dumps at this step is

not difficult, because there are usually few requests

for the memory allocation, the allocator area size is

small, and it is easy to predict the expected results.

In case of error situations, it is possible to use the

debuggers to step through the program. The main

errors are wrong type casting, incorrect address or

displacement calculation, as well as an algorithm

error.

After debugging the allocator, its testing is

required using a special test program that generates

random requests for memory allocation and

deallocation. Using the test program the errors,

which have not been detected at the first step, are

found and fixed. In this case, the debugging is quite

difficult, since the sequence of the allocator calls is

random, and the errors occur each time at different

steps of the test program implementation.

Step by step implementation of the program in

the debugger before the error may take a long time.

Browsing the dumps is also ineffective as the

allocator memory area is quite big and tracking all

the changes is very difficult in this area.

At this step, it is necessary to understand the

possible cause of the error based on the logic of the

allocator. The most common errors identified at this

step are the lack of prior reset of any variables or

areas, as well as errors in rarely running program

hosts (in the allocator using the memory returns

lists to the operating system when deallocating the

last block with chaining with the penultimate

block).

4. ALLOCATORS PARALLEL TESTING

The main criteria for comparison are operation

speed and memory efficiency (availability of

external and internal fragmentation). Here the

operation speed is a block allocation and

deallocation time (ideally, it is necessary to

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

429

compare the number of the executed processor

instructions). The memory efficiency is a ratio of

the requested memory size to the size of the entire

memory area used by the allocator, including

control footing. There are works that offer different

allocators preliminary modeling to identify the most

suitable one for a given application [13, 14].

However, most developers come down to

possibilities of the standard allocator.

Since the operation of each allocator depends on

many factors (a hardware framework, a sequence of

requests for the memory allocation and

deallocation, sizes of the requested block, etc.), the

parallel testing mentioned above shows only the

most common elements, and in different tasks and

different frameworks the results may differ from

those obtained by the authors. In addition, for any

allocator, which does not displace the occupied

blocks, there are sequences of requests for the

memory allocation and deallocation, resulting in the

inability to allocate memory for a sufficiently large

amount of memory due to the external

fragmentation issue. Thus, there may be situations

when the allocator is suitable in all parameters of

performance and memory efficiency on the basis of

common tests, but in a particular task, it is not only

ineffective, but even useless.

In this study, the testing of all developed

allocators and the standard library allocator was

carried out with the help of one test program

described in the book [6].

First, it is necessary to check the correctness of

the operation of an allocator. To this end, a certain

value of one byte is randomly selected, and the

entire selected area is filled with this value. Before

removing the selected area, the content of this area

is checked to meet the previously recorded value. If

at least one discrepancy is found, it means that the

data in the selected area have been changed during

the allocator operation; the allocator algorithm has

an error.

The test involves the performance of a

predetermined number of iterations. On each such

iteration, the following actions are performed.

• If possible, there is an allocation of

memory block of a certain size. The

lifetime is defined for the selected block

(a number of the general iterations).

• If there are blocks, the lifetime of which

has expired, their deallocation occurs.

• The lifetime of the remaining blocks

decreases.

The size of the selected block is randomly

selected from a predetermined range. The block

lifetime is randomly selected from a predetermined

range too.

The maximum block lifetime, the maximum

number of the occupied blocks, the maximum block

size, and the number of iterations are set before the

test start.

After performing all the iterations of the main

loop, a number of blocks is occupied in the program

memory. The memory efficiency is calculated as a

ratio of the total size of the occupied blocks to the

allocator memory size. The working time is defined

as a difference of the time tags obtained before the

start of the main loop, and after its completion.

Further, all the remaining occupied blocks are

deallocated, and the allocator memory area is

checked again for return of the deallocated memory

to the operating system.

With this testing algorithm after a certain number

of iterations, the system comes to "equilibrium"

when the number of the allocated blocks to every

iteration is approximately equal. Therefore,

increasing the number of iterations at the same

values of the maximum number of the allocated

blocks, the maximum lifetime, and the maximum

size can only lead to an increase of the external

fragmentation, but not to an increase in the number

of the occupied blocks, and the memory used by

them. For the simulation of continuous running

programs in a real operating system, a sufficiently

large number of iterations of the test program are

performed.

This program makes it possible to get only an

approximate idea of the testing allocator, but does

not guarantee the same behavior of the allocator in

specific tasks and specific frameworks.

The general scheme of the testing algorithm is

shown in Figure 7.

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

430

Figure 7. General Testing Algorithm Scheme

4.1. Random Size (x86) Block Allocation Test

The main results of this test are the following:

• Test time is necessary to compare the

allocators’ performance.

• A number of the occupied blocks at the

test end.

• A summarized size of the occupied blocks.

• The allocator memory area size.

• The memory efficiency is necessary to

compare the effectiveness of the allocators.

• The allocator memory area size after the

deallocation of all occupied blocks reflects the

allocator capacity to return unused memory to the

operating system.

Each allocator has passed several tests with the

x86 architecture in the library of glibc 2.13 edition,

and the average results have been derived.

To have a general idea about each allocator, a

test with the following input data was carried out:

• Number of iterations:

 50,000

• The maximum number of allocated blocks:

 5,000

• The maximum lifetime of an allocated

block: 5,000

• The maximum size of an allocated block:

 256 bytes

The test results of the standard library allocator

(malloc) are presented in Table 1.

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

431

Table 1. Malloc Test Results

Test

No.

Execution

time (ms)

Number of

blocks

Block size

(bytes)

Area size

(bytes)

Efficiency

(%)

Area size after

deallocation (bytes)

1 7,260 2,484 316,046 385,024 82.08 385,024

2 8,220 2,499 321,815 376,832 85.40 376,832

3 8,330 2,508 321,546 385,024 83.51 385,024

4 8,150 2,485 321,927 376,832 85.43 376,832

5 8,290 2,502 321,835 376,832 85.41 376,832

6 7,450 2,538 324,550 376,832 86.13 376,832

7 8,080 2,466 312,753 376,832 83.00 376,832

8 8,280 2,497 318,959 376,832 84.64 376,832

9 7,270 2,506 319,688 376,832 84.84 372,832

10 7,310 2,533 326,046 385,024 84.68 385,024

Total: 7,864 2,502 320,517 379,290 84.51 378,890

The allocator test results with the lists of clear

areas (lsalloc) with the free block search by best-fit

method are presented in Table 2.

Table 2. Lsalloc Test Results (Best-Fit Method)

Test

No.

Execution

time (ms)

Number of

blocks

Block size

(bytes)

Area size

(bytes)

Efficiency

(%)

Area size after

deallocation (bytes)

1 9,040 2,550 327,727 381,292 85.95 8

2 9,220 2,525 334,644 391,359 85.51 8

3 9,230 2,497 328,889 383,122 85.84 8

4 9,390 2,479 317,949 376,636 84.42 8

5 9,410 2,508 315,058 379,662 82.98 8

6 9,180 2,513 317,707 376,540 84.38 8

7 9,380 2,451 313,902 369,685 84.91 8

8 9,350 2,547 333,657 388,548 85.87 8

9 9,270 2,505 328,771 389,211 84.47 8

10 9,100 2,496 316,608 373,516 84.76 8

Total: 9,257 2,507 323,491 380,957 84.91 8

The allocator test results with lists of the clear

areas (lsalloc) with the free block search by first-fit

method are presented in Table 3.

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

432

Table 3. Lsalloc Test Results (First-Fit Method)

Test

No.

Execution

time (ms)

Number of

blocks

Block size

(bytes)

Area size

(bytes)

Efficiency

(%)

Area size

after

deallocation

(bytes)

1 9,000 2,511 323,396 385,132 83.97 8

2 8,240 2,512 323,510 381,282 84.85 8

3 9,260 2,498 328,197 385,539 85.13 8

4 9,160 2,476 317,757 377,199 84.24 8

5 9,310 2,502 317,421 376,487 84.31 8

6 9,250 2,508 321,822 379,369 84.83 8

7 9,610 2,499 325,263 385,166 84.45 8

8 9,170 2,513 325,777 386,530 84.28 8

9 9,260 2,463 313,504 389,704 80.45 8

10 9,170 2,496 320,795 379,688 84.49 8

Total: 9,143 2,498 321,744 382,610 84.10 8

The allocator test results with lists of the clear

areas (lsalloc) with the free block search by worst-

fit method are presented in Table 4.

Table 4. Lsalloc Test Results (Worst-Fit Method)

Test

No.

Execution

time (ms)

Number of

blocks

Block size

(bytes)

Area size

(bytes)

Efficiency

(%)

Area size after

deallocation

(bytes)

1 9,240 2,572 334,662 390,721 85.65 8

2 9,190 2,487 319,781 380,975 83.94 8

3 7,690 2,436 317,932 392,598 80.98 8

4 7,810 25,39 322,042 390,277 82.52 8

5 8,360 2,509 318,102 376,541 84.48 8

6 7,920 2,536 332,655 386,316 86.11 8

7 7,850 2,502 325,626 393,256 82.80 8

8 8,210 2,471 317,236 384,794 82.44 8

9 7,850 2,510 328,182 385,110 85.22 8

10 7,840 2,559 330,391 385,740 85.65 8

Total: 8,196 2,512 324,661 386,633 83.98 8

Final results of the tests are presented in charts in

Figures 8, 9 and 10.

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

433

Figure 8. Test Execution Time Chart

Figure 9. Allocators Memory Efficiency Chart

Figure 10. Allocators Memory Return To Operation

System Chart

On the basis of the test results, the following

conclusions can be made:

• While increasing the memory efficiency, the

allocator operation speed is significantly

reduced.

• The pointer "size of the returned memory to

the operating system after all blocks

deallocation" is very important. For

example, if the program makes extensive use

of dynamic memory allocation in the initial

stage of implementation, and then

deallocates all the allocated blocks and

continues to implement without the use of

the dynamic memory, the "holding" of the

allocated memory is impractical, and in

addition, such applications may have a

negative impact on the operating system as a

whole. The test results show that the

standard library allocator does not always

return the entire memory to the operating

system.

The results of these tests cannot be considered as

entirely objective, as they were carried out with a

small number of iterations, and the execution time

also depended on the operating system load during

the test. In order to obtain more accurate results, it

was necessary to test with a large number of

iterations.

For further testing, the allocators are selected

using the free blocks lists and the standard library

allocator; the number of iterations has been

increased to 5,000,000.

The test results of the standard library allocator

(malloc) are presented in Table 11.

Table 11. Malloc Test Results

Test

No.

Execution

time (ms)

Number of

blocks

Block size

(bytes)

Area size

(bytes)

Efficiency

(%)

Area size after

deallocation

(bytes)

1 752,120 2,502 317,836 393,216 80.83 393,216

2 799,010 2,519 327,373 393,216 83.26 393,216

3 841,330 2,535 324,419 393,216 82.50 393,216

4 839,210 2,535 323,231 393,216 82.20 393,216

5 840,680 2471 313,815 393,216 79.81 393,216

Total: 814,470 2,512 321,335 393,216 81.72 393,216

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

434

The allocator test results with the lists of clear

areas (lsalloc) with the free block search by best-fit

method are presented in Table 12.

Table 12. Lsalloc Test Results (Best-Fit Method)

Test

No.

Execution

time (ms)

Number of

blocks

Block size

(bytes)

Area size

(bytes)

Efficiency

(%)

Area size

after

deallocation

(bytes)

1 854,870 2,488 317,207 384,405 82.52 8

2 812,810 2,479 320,419 385,656 83.08 8

3 930,460 2,524 318,268 378,336 84.12 8

4 938,480 2,522 320,720 385,017 83.30 8

5 925,700 2,453 311,862 382,169 81.60 8

Total: 892,464 2,493 317,695 383,117 82.93 8

The allocator test results with the lists of clear

areas (lsalloc) with the free block search by first-fit

method are presented in Table 13.

Table 13. Lsalloc Test Results (First-Fit Method)

Test

No.

Execution

time (ms)

Number of

blocks

Block size

(bytes)

Area size

(bytes)

Efficiency

(%)

Area size

after

deallocation

(bytes)

1 822,200 2,478 316,324 380,748 83.08 8

2 810,460 2,512 329,606 385,256 85.56 8

3 933,530 2,535 320,683 381,121 84.14 8

4 929,800 2,495 319,975 384,734 83.17 8

5 932,310 2,486 326,239 386,161 84.48 8

Total: 885,660 2,501 322,565 383,604 84.09 8

Final results of the tests when the number of

iterations is 5,000,000 are presented in charts in

Figures 11 and 12.

Figure 11. Test Execution Time Chart

 Figure 12. Allocators Memory Efficiency Chart

The tests show that the increase in the number of

iterations has quite a strong effect on the final

results. This is not surprising, as the main

deficiencies of the allocators appear in applications

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

435

that are implemented without interruption for a long

time, for hours, days, months. One of the ways of

getting rid of the fragmentation during runtime is to

restart the application; after restarting, the memory

manager area is re-initialized, and in the initial

stages the fragmentation is minimized. But there are

applications where a restart for some reason cannot

be performed or is performed infrequently.

In longer tests performing, a reduction in the

difference of test execution time can be observed.

For example, in the first tests (when the number of

iterations equals to 50,000), the allocator test

execution time with the clear areas list by the best-

fit method was 15% more than time necessary to

perform the allocator standard library test, and in

the last tests, it is more up to 9%.

Also, there is a significant difference in memory

efficiency. If in early tests the difference is only a

few tenths of a percent, in that case the difference is

almost three percent more. The fact is interesting

that in the case of longer execution time using the

first-fit method under the free block searching in

the allocator with the clear areas list gives

significantly better results in performance and

memory efficiency compared to the best-fit method.

4.2. Random Size (x64) Block Allocation Test

Using the x64 architecture, the testing was

carried out similar to the testing presented in the

previous paragraph. The following allocators were

tested: malloc, lsalloc (first-fit), lsalloc (best-fit).

The standard library glibc 2.13 edition was used.

The input data for the test:

• Number of iterations:

 5,000,000

• The maximum number of allocated blocks:

 5,000

• The maximum lifetime of an allocated

block: 5,000

• The maximum size of an allocated block:

 256 bytes

The test results of the standard library allocator

(malloc) are presented in Table 14.

Table 14. Malloc Test Results

Test

No.

Execution

time (ms)

Number of

blocks

Block size

(bytes)

Area size

(bytes)

Efficiency

(%)

Area size after

deallocation

(bytes)

1 574,810 2,512 319,260 434,176 73.53 434,176

2 580,320 2,500 325,368 425,984 76.38 425,984

3 733,770 2,528 325,017 425,984 76.30 425,984

4 575,010 2,510 327,593 425,984 76.90 425,984

5 614,470 2,493 325,721 425,984 76.46 425,984

Total: 615,676 2,509 324,592 427,622 75.92 427,622

The allocator test results with the lists of clear

areas (lsalloc) with the free block search by best-fit

method are presented in Table 15.

Table 15. Lsalloc Test Results (Best-Fit Method)

Test

No.

Execution

Time (ms)

Number of

Blocks

Block Size

(byte)

Area Size

(byte)

Efficiency

(%)

Area Size

After

Deallocation

(byte)

1 594,520 2,543 327,719 415,052 78.96 16

2 594,300 2,453 315,876 409,323 77.17 16

3 588,780 2,467 321,395 410,127 78.36 16

4 593,110 2,452 314,674 412,397 76.30 16

5 593,370 2,480 317,793 399,583 79.53 16

Total: 592,816 2,479 319,491 409,296 78.07 16

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

436

The allocator test results with the lists of clear

areas (lsalloc) with the free block search by first-fit

method are presented in Table 16.

Table 16. Lsalloc Test Results (First-Fit Method)

Test

No.

Execution

time (ms)

Number of

blocks

Block size

(bytes)

Area size

(bytes)

Efficiency

(%)

Area size

after

deallocation

(bytes)

1 589,070 2,500 322,498 409,535 78.75 16

2 593,790 2,525 327,116 407,251 80.32 16

3 594,480 2,450 317,471 405,964 78.20 16

4 593,010 2,496 321,755 408,961 78.68 16

5 592,040 2,452 317,858 404,222 78.63 16

Total: 592,478 2,485 321,340 407,187 78.92 16

Final results of the tests are presented in charts in

Figures 13, 14 and 15.

Figure 13. Test Execution Time Chart

Figure 14. Allocators Memory Efficiency Chart

Figure 15. Allocators Memory Return To Operation

System Chart

5. CONCLUSION

The test results of the x64 architecture are quite

different from the test results in the x86

architecture. The main cause is the size of the

pointers in each architecture. There shall be 4 bytes

to store the addresses in a computer with x86, and 8

bytes to store the addresses in a computer with x64.

At first glance, the difference is not so great, but if

it is considered that the dynamic memory allocation

algorithms in addition to the data store a large

number of the pointers for the lists organization, as

well as the intermediate pointers, the difference in

the total memory amount for storing the pointers

becomes noticeable.

On the average, for all algorithms, the memory

efficiency fell by seven per cent.

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

437

The comparison of the performance shall be

carried out within the architecture, where the tests

have been conducted. The allocator with the clear

areas lists is somewhat more efficient in the use of

memory than the standard library allocator,

although it loses in performance a little. Using the

best-fit method is justified for a small number of the

requested blocks, or for a small number of memory

allocation and deallocation loops. In other cases, the

best-fit method has a better performance when

searching for the free blocks. Though, the best-fit

method did not show outstanding results, but its

testing may also be of interest to the developers.

The return of almost all memory to the operating

system is an important advantage of the allocator

with the clear areas lists during the deallocation of

all the occupied blocks.

In this paper, different algorithms for dynamic

memory allocation have been considered, and based

on them the allocator with the free blocks list has

been developed and implemented in the

programming language C.

All the developed allocator options have been

tested using the test program. The test results have

showed that the developed allocators are able to

compete with the memory manager of the C

standard library, and the benefits of each allocator

are manifested in different tasks. Also, the test

results have revealed that the memory performance

and efficiency of the allocators depend not only on

their algorithms, but also on many other factors,

such as the architecture of a computer system, the

size of the allocated blocks, the duration of the

memory allocation and deallocation. Therefore, it is

not clear that one allocator is better than another.

When choosing the allocator for a specific task, it is

necessary to hold a series of tests and to identify the

most appropriate one.

The developed allocators are not ideal for all

memory dynamic allocation tasks, and can be

improved for specific tasks due to insignificant

changes in algorithms or optimizing the program

code for a specific architecture. Moreover, the

developed allocators can be applied not only in the

family of UNIX operating systems, but also in other

frameworks with minor changes of the source code.

The developed allocators provide a choice to the

application programmers, and their source codes

may be useful for the system programmers in

dealing with dynamic memory allocation issues.

REFERENCES:

 [1] Glass, G. and K. Eybls, 2004. UNIX for

Programmers and Users (3rd ed., revised and

enlarged). Saint Petersburg: BHV-Petersburg.

[2] GNU C Library Source Code, n.d. Date Views

03.05.2011 http://ftp.gnu.org/gnu/glibc/glibc-

2.13.tar.gz.

[3] Hasan, Y. and M. Chang, 2005. A Study of

Best-Fit Memory Allocators. Computer

Languages, Systems & Structures, 31(1): 35-48.

Date Views 10.02.2016

dx.doi.org/10.1016/j.cl.2004.06.001.

[4] Irtegov, D., 2008. Introduction to Operating

Systems (2nd ed.). Saint Petersburg: BHV-

Petersburg.

[5] Jones, M.T., 2009. Anatomy of Linux Dynamic

Libraries. Date Views 03.05.2011

www.ibm.com/developerworks/ru/library/l-

dynamic-libraries/index.html.

[6] Knuth, D.E., 2005. Art of Computer

Programming: Vol. 1. Basic Algorithms (3rd

ed.: Trans. from English). Moscow: Williams

Publishing House.

[7] Lea, D., 1996. A Memory Allocator.

Date Views 10.04.2011

http://gee.cs.oswego.edu/dl/html/malloc.html.

[8] Love, R., 2008. Linux. System Programming.

Saint Petersburg: Peter.

[9] Mamagkakis, S., C. Baloukas, D. Atienza, F.

Catthoor, D. Soudris and A. Thanailakis, 2006.

Reducing Memory Fragmentation in Network

Applications with Dynamic Memory Allocators

Optimized for Performance. Computer

Communications, 29(13-14): 2612-2620. Date

Views 10.02.2016

dx.doi.org/10.1016/j.comcom.2006.01.031.

[10] Masmano, M., I. Ripoll, J. Real, A. Crespo

and A.J. Wellings, 2008. Implementation of a

Constant-Time Dynamic Storage Allocator.

Software: Practice and Experience, 38(10): 995-

1026.

[11] Masmano, M., I. Ripoll, P. Balbastre and A.

Crespo, 2008. A Constant-Time Dynamic

Storage Allocator for Real-Time Systems. Real-

Time Systems, 40(2): 149-179.

[12] Rezaei, M. and K.M. Kavi, 2006. Intelligent

Memory Manager: Reducing Cache Pollution

due to Memory Management Functions.

Journal of Systems Architecture, 52(1): 41-55.

Date Views 10.02.2016

dx.doi.org/10.1016/j.sysarc.2005.02.004.

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

438

[13] Risco-Martín, J.L., J.M. Colmenar, D. Atienza

and J.I. Hidalgo, 2011.

Simulation of High-Performance Memory

Allocators. Microprocessors and Microsystems,

35(8): 755-765.

[14] Risco-Martín, J.L., J.M. Colmenar, D. Atienza

and J.I. Hidalgo, 2011.

Simulation of High-Performance Memory

Allocators. Microprocessors and Microsystems,

35(8): 755-765.

[15] Risco-Martín, J.L., J.M. Colmenar, J.I. Hidalgo,

J. Lanchares and J. Díaz, 2014. A Methodology

to Automatically Optimize Dynamic Memory

Managers Applying Grammatical Evolution.

Journal of Systems and Software, 91: 109-123.

Date Views 10.02.2016

dx.doi.org/10.1016/j.jss.2013.12.044.

[16] Robachevsky, A.M., S.A. Nemnyugin and O.L.

Stesik, 2008. UNIX Operating System (2nd ed.,

revised and enlarged). Saint Petersburg: BHV-

Petersburg.

[17] Tanenbaum, E., 2010. Modern Operating

Systems (3rd ed.). Saint Petersburg: Peter.

[18] The GNU C Library. Virtual Memory

Allocation and Paging, n.d. Date Views

22.04.2011

http://www.gnu.org/software/libc/manual/html_

node/Memory.html.

[19] Vavrenyuk, A.B., I.V. Karlinskiy, A.P. Klarin,

V.V. Makarov and V.A. Shurygin, 2015.

Dynamic Allocation of Memory Blocks of the

Same Size. Journal of Theoretical and Applied

Information Technology, 80(3): 419-430.

