
Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

397

QUERY SYSTEM OF GENERATED ONTOLOGICAL
MODELS FROM TRADITIONAL DATA SOURCES

1WIDAD JAKJOUD, 2MOHAMED BAHAJ
1,2Univ Hassan 1, Laboratory LITEN, 26000 Settat, Morocco

E-mail: 1jakjoudw@gmail.com, 2mohamedbahaj@gmail.com

ABSTRACT

The cooperation of ontologies, as sources of knowledge, and traditional data sources are used to defeat the
heterogeneity of information systems in terms of integration of information. Also, this cooperation allows
the exploitation of classic web resources by inference agents. In this paper, we focus on ontologies
generated from traditional data sources. Our goal is to query an ontological model without having to
populate ontologies with instances from data source. The proposed system adds an intermediate level of
abstraction between the ontological model and the data source schemas, this level can generate partially and
temporarily the data in XML format. The system also provides a SPARQL-XQUERY mapping which
rewrites any SPARQL query at XQUERY query in order to be executed on already generated data.

Keywords: SPARQL, XQUERY, mapping, model, ontology, data source

1. INTRODUCTION

Data sources, being the physical implementations
of information systems are heterogeneous because
they are designed by different communities and for
different circumstances. This heterogeneity is
manifested in terms of data storage formats (XML,
Relational, Object Oriented,), languages of queries
(XQUERY, SQL, OQL ...), access protocols (HTTP
...) and schema's formalisms of data.

The interest of creating ontologies from data
sources is particularly due to the need for
integration of information from multiple
heterogeneous information systems and other hand
to the main goal of the Semantic Web to extend the
resources of classic web by establishing semantic
links between data to make it handled by agents of
inferences.

To use a data source with an ontology, we can
create instances and relationships using data from
the data source and store them in a suitable format
for the ontology (Semantic Database [1] Text Files ,
...) which requires a change of data structure and
storage formalism.

This solution is intuitive which affects the two
levels (schema and data), but it does not represent
any optimization at the persistence level because
the data will be stored in their source of origin and
in the proper format to ontology. Thus, for each
data schema and storage format (data source) the
specific algorithms for generating instances and
relations of the ontology must be defined. Another
drawback is that the instances must be regenerated
after each update at the level of data source. We cite

the work of [2] and the three transitional systems
from RDB to OWL: DataMaster1 [3], and
RDBToOnto3 Kaon2 with these formalisms for
mapping D2RQ [4] and R 2 O [5].

Another solution would be keeping the data in
the data source and define, for each data source, the
mapping rules between its query language and
SPARQL the language of the ontological model [6]:
Each ontology query is implicitly mapped in the
appropriate query language of data source. Already
at this stage, the redundancy in data storage is
avoided [7]. This solution seems intuitive but is not
simple to implement or optimize because of several
types of mapping which have to be defined. In
addition, it is difficult to exploit all the data models.

2. THE STUDY CONTEXT
This study concerns the ontologies generated

from data sources. In [8] and [9] we have proposed
a method based on model engineering for the
automatic generation of ontological model from a
data source (RDB, OODB, XML): The reverse
engineering of a data source generates a software
model (schema of data) that will undergo
transformations to generate an ontological model.
In order to interrogate the ontological resulting
model, we propose, through this paper, a system
which maps queries of generated ontological
models to queries of data sources schemas.

The ontology model is generated from one of the
data sources (RDB, OODB, or XML), the idea is to
interrogate the ontology without populate this one
in order to eliminate the double storage of the same
data but in different formalisms. This solution

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

398

defines one mapping between SPARQL and
XQUERY.

At the time of execution of XQUERY request
[10], we generate partially the data of the data
source in XML format. This solution facilitates the
optimization of the system because it doesn’t need
to define multiple mapping between multiple query
languages of data: a unique mapping is defined
since data will be loaded into a unique format.

3. THE PROPOSITION

Each SPARQL request would be interpreted and
mapped at a XQUERY request whatever the format
of the data source. The interpretation determine,
even partially, the sets of data involved by the
request, only these data will be loaded as XML
collections on which the XQUERY request will be
executed:

Figure 1 Schematic Illustration Of The Approach

Every query on the ontological model (a) is a
SPARQL request which will be interpreted (b) to
determinate partially the concerned set of data (c).
At the translation level (d), the SPARQL request
will be translate to a XQUERY request.

The step (c) is not performed if the original
data source is an XML-DB database: Data in data
generation level will be generated as XML
collections just time to execute query. This will
prevent the duplication of data in data sources and
ontology.

The result of the query XQUERY will be
deployed in XML format.

2.1 Translation Level
2.1.1 SPARQL request

The SPARQL Language (Simple Protocol and
RDF Query Language) is a W3C standard for
querying triplets of a given ontology. Its grammar
can be summarized as:
Request :: = PREFIX [name spaces definitions]
 SELECT [Selection Variables]
 WHERE {Group Graph Pattern}
 OREDER BY [variables]

The WHERE clause is composed of Group Graph
Patterns (GGP):

GGP ::= ’{‘ TriplesBloc ?
[(GraphPatternNotTriples|Filter)’.’?Triples
Bloc]* ‘}’

TriplesBloc::=TriplesSameSubject(‘.’TriplesBloc?)
?
Triples ::=IRIs(International Resources Identifiers)

 | litterals (strings in quotes)
 | selection variables prefixed by ?
 | white nodes.

GraphPatternNotTriple ::=OptionalGraphPattern
|GroupOrUnionGraphPattern
|GraphGraphPattern.

OptionalGraphPattern::=‘OPTIONAL’GroupGraph
Pattern
GraphGraphPattern::= ‘GRAPH’ varOr|R|ref GGP
GroupOrUnionGraphPattern::=GGP(‘UNION’GGP
)*
FILTER ::=‘FILTER’ Constraint

Initially, we will be limited to two kind of
SPARQL queries: simple query and query with
FILTER.

2.1.2 Interpretation of the SPARQL query:
The interpretation of the SPARQL query

identifies the classes involved in the request. This
will enable the Data Generation Module to generate
partial data as XML collections.

2.1.3 Query Translation:SPARQLtoXQUERY
Module

Several studies have already discussed the
mapping of SPARQL to XQUERY. We quote the
SPARQL2XQUERY framework [11] a W3C
standard which offers: processing modules RDF to
XML (RDF-XML transformation), XMLSchema to
OWL (XS2OWL). Translation module (Query
Translation) which transforms each SPARQL query
in XQUERY query that will be resolved from the
XML data. We also quote XSPARQL [12] a hybrid
scripting language that combines multiple
languages including XQUERY, SPARQL and SQL.

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

399

The problem with these frameworks is that
they adopt their own mapping of data schemas in
order to translate the SPARQL queries by
XQUERY.

In our case, the ontology model is
automatically generated from the schema of the
data source. To use the existing solutions, schema
of data and the model of ontology must be mapped
to the formats of these Frameworks!

The module that we propose
(SPARQLtoXQUERY) can handles at the moment,
two types of queries:
Simple queries:

SELECT [Selection Variables]
 WHERE ‘{‘ GGP ’}’

Queries with filter:
SELECT [Selection Variables]
WHERE ‘{‘ GGP
 FILTER constraint’}’

We define the latter as follows:
SELECT [Selection Variables]
 WHERE ‘{‘ GGPF ’}’

The proposed module is composed of three sub
modules:

Figure 1: The Mapping Process Of A SPARQL Query

- SPARQL Query Analysis: the analysis of the
SPARQL query retrieves three lists: a list of

selected variables, a list of Triples's variables
and a list of triples of block “WHERE".

- Triples Analysis: We consider that a triple
SPARQL can be in one of three forms: Tvar
rdf :type class, TVar dataTypeProperty SVar,
and TVar dataTypeProperty TVar

- Building the query XQUERY: the building of
the final XQUERY query which can be either a
simple query or a query with the WHERE
clause.

Simple query
For [variable] in doc(….)//RootOfGraph
Let [Selection Variables] :=path
Return [selection variable]

Query with WHERE clause
For [variable] in doc(….)//RootOfGraph
Let [Selection Variables] :=path
Where [constraints]
Return [selection variables]

MappingGGP2BasicXQUERY{
//Mapping Group Graph Pattern to

simpleXQUERY
List TRIPLES � ExtractingTriples()
HashTable Hash�NULL
String XQUERY�NULL
For i ϵ TRIPLES { // Building the paths of the LET
clause
 If (TVar2Class(i) == true)
 Hash�(TVar,Class)
 Else if(TVar2SVar(i) == true)
 if (TVar Hash)
 Hash�(SVar,TVar+”/”+DataProperty)
 Else
 Hash�(SVar,Hash(TVar)+”/”+DataProperty)
 Endif
 Else if(TVar2TVar(i) ==true)
 If(TVar1 Hash)
 Hash�(TVar2,TVar1+”/”+DataProperty)
 Else
 Hash�(TVar2,Hash(TVar1)+”/”+DataProperty)
 EndIf
 EndIf
 EndIf
 EndIf
 }
 //Building the FOR and LET clauses
 String varFor=NULL ;
 String var=NULL ;
 String Path =NULL;
 //Get the node that is the root graph
 XQUERY� ”FOR” + varFor + “/”+root
 For(i ϵ ExtractingSelectionVar()) {
 var�”?” + ExtractingSelectionVar(i)
 Path�varFor+”/”

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

400

 For(j ϵ Hash){
 If(Hash(j) == var)
 Path� Path + Hash(j)
 EndIf
 }
 var � var.Replace(“?”,”$”)
 XQUERY�XQUERY+“\n”+”LET”+var+”:=”+Path
 }
}
MappingGGPF2XQUERY{
String XQUERY�MappingGGP2BasicXQUERY()
String FilterClause �
ExtractFilterClause(SPARQLQUERY)
FilterClause � FilterClause.Replace(“?”,”$”)
XQUERY �XQUERY + “\n” + FilterClause
}

2.2 Data Generation Level:

Interpreting the SPARQL query identifies the
classes of the ontological model involved in the
interrogation. As the ontological model is
automatically generated from the UML model [8]
[9], it can be inferred entities of the data source
(classes or tables) necessary to the execution of the
XQUERY query.

In the case of a relational data source, several
studies have focused on the migration of RDB to
XML, we quote [13] [14] [15] [16] and [17]. Most
of the proposals were based on hypotheses,
simplify the migration process, but with gaps [18].
These proposals focus on the mapping schema level
rather than data level (RDB to XML Schema or
RDB to DTD), and ignore the data migration
process.

We opt for an RDB data migration algorithm in
XML that is based on the following rules:

Rule 1: the relations, records and relational
attribute are converted to three levels of XML
elements: An element to represent the relation, an
element for the record and an element for the
attribute.

Rule 2: For associations (1, n), we use an
embedded data representation.

Rule 3: For associations (n, n), it generates the
corresponding documents to the relations (not yet
generated) that constitute the association and the
algorithm will be responsible for calculating the
data.

The following example illustrate this
generation:

- Customer
idCustomer Name Adress
12 C1 A1
15 C3 A5

- Order
idOr Date idCust
250 12/02/2015 12
286 25/03/2015 15
301 28/03/2015 12

- Product
IdP Description Price
Prd1 Screen 500.0
Prd2 Printer 1200.0
Prd3 HardDisk 250.0

- OrderProduct

IdOr IdP Quantity
250 Prd1 2
250 Prd3 1
286 Prd1 3
301 Prd2 2

Figure 2 : RDB example

The generated XML collection of this RDB:

<Costumers> //level 1 : the relation
<Customer> //level 2 :the records

<idCustomer> 12 </idCustomer>
 //livel 3 :the attributs
<Name> C1 </Name>
<Adress> A1 </Adress>
<Order>
 <idOr>250</idOr>
 <Date>12/02/2015</Date>
</Order>
<Order>
 <idOr>301</idOr>
 <Date>28/03/2015</Date>
</Order>

</Customer>
<Customer>

<idCustomer> 15 </idCustomer>
<Name> C3 </Name>
<Adress> A5 </Adress>
<Order>
 <idOr>286</idOr>
 <Date>25/03/2015</Date>
</Order>

</Customer>
</Customers>
<Products>

<Product>
 <idP>Prd1</idP>
 <Description>Screen</Description>
 <Price>500.0</Price>

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

401

</product>
<Product>
 <idP>Prd2</idP>
 <Description>Printer</Description>
 <Price>1200.0</Price>
</product>
<Product>
 <idP>Prd3</idP>
 <Description>HardDisk</Description>
 <Price>250.0</Price>
</product>

</Products>
<OrderProducts>

<OrderProduct>
<idOr>250</idP>
<idP>Prd1</Description>
<Quantity>2</Quantity>

</OrderProduct>
<OrderProduct>

<idOr>250</idOr>
<idP>Prd3</idP>
<Quantity>1</Quantity>

</OrderProduct>
<OrderProduct>

<idOr>286</idOr>
<idP>Prd1</idP>
<Quantity>3</Quantity>

</OrderProduct>
<OrderProduct>

<idOr>301</idOr>
<idP>Prd2</idP>
<Quantity>2</Quantity>

</OrderProduct>
</OrderProducts>

For an Oriented Object Data source, we keep
the same approach:

Rule 1: the classes, objects and properties of
the data source will be converted into three levels
of XML elements as in the case of relational.

Rule 2: The methods are not mapped.
Rule 3: For associations (1, n) and

compositions, we use an embedded data
representation.

Rule 4: for associations (n, n) and
aggregations, we proceed as in the relational case.

4. IMPLEMENTATION

We consider the schema of the following XML-
DB data source

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element id="0" name="dbperson">
<xs:complextype>

<xs:sequence>
 <xs:element id="1" name="person">
 <xs:complextype>
 <xs:sequence>
 <xs:element id="2" name="LName"
type="xs:string"> </xs:element>
 <xs:element id="3" name="FName" type=
"xs:string" maxOccurs="unbounded">
</xs:element>
 <xs:element id="4" name="adress"
maxOccurs="unbounded">
 <xs:complextype>
 <xs:sequence>
 <xs:element id="5"
name="number" type="xs:int"></xs:element>
 <xs:element id="6"
name="street" type="xs:string"></xs:element>
 </xs:sequence>
 </xs:complextype>
 </xs:element>
</xs:sequence>
</xs:complextype>
</xs:element>
</xs:sequence>
</xs:complextype>
</xs:element>
</xs:schema>

The generated ontology after the conversion
process at the model level expressed in OWL
(ontology Web Language) is as follow:
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-
ns#"
 xmlns:genOnto="file://D:/genOnto.owl#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
>
 <rdf:Description rdf:about="genOnto:number">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#an
yURI"/>
 <rdfs:domain rdf:resource="genOnto:owl_adress"/>
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#Datatype
Property"/>
 </rdf:Description>
 <rdf:Description rdf:about="genOnto:owl_adress">
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
 </rdf:Description>
 <rdf:Description rdf:about="genOnto:street">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#an
yURI"/>
 <rdfs:domain rdf:resource="genOnto:owl_adress"/>

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

402

 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#Datatype
Property"/>
 </rdf:Description>
 <rdf:Description rdf:about="genOnto:FName">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#an
yURI"/>
 <rdfs:domain rdf:resource="genOnto:owl_person"/>
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#Datatype
Property"/>
 </rdf:Description>
 <rdf:Description rdf:about="genOnto:LName">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#an
yURI"/>
 <rdfs:domain rdf:resource="genOnto:owl_person"/>
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#Datatype
Property"/>
 </rdf:Description>
 <rdf:Description rdf:about="genOnto:owl_person">
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
 </rdf:Description>
 <rdf:Description rdf:about="file://D:/genOnto.owl#">
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#Ontology
"/>
 </rdf:Description>
</rdf:RDF>

 The system take in input the SPARQL query,
with the SPARQL2XQUERY button, this query
will be mapped at XQUERY query. The
RDB2XMLCOLLECTION button generates the
data as XML Collection in an XML-DB data source
(Exist-db), the query will be executed by the
EXECUTION button.

Figure 3 : Data Generation And SPARQL2XQUERY

Mapping Prototype

We consider the schema of the following RDB
named dbPerson :

person(idPerson, FName, LName, age, #idAdd)
idPerson FName LName age idAdd
1 Aya Durond 9 A1
2 Joseph Zalanado 37 A2
address(idAdd,street,number)

idAdd street number
A1 Anas street 15
A2 Riad street 27

Figure 4 : dbPerson database

The Data Generation Module generates a data
source (dbPerson) in XML-DB (db-exist): Then an
XML document will be generated in this data
source: xml_gen.xml.
<dbPerson>

<person>
<idPerson>1</idPerson>
<FName>aya</FName>
<LNAME>Durond</LNAME>
<age>9</age>
<adress>

<street>Anas
street</street>

<number>15</number>
</adress>

</person>
<person>

<idPerson>2</idPerson>
<FName>joseph</FName>
<LNAME>Zalanado</LNAME>
<age>37</age>
<adress>

<street>Riad
street</street>

<number>27</number>
</adress>

</person>
</dbPerson>

5. CONCLUSION AND PERSPECTIVES:

Our goal is querying an ontological model

generated from a traditional data source (RDB,
OODB, XML-DB) without having to populate the
ontology; the data will remain in the data source.

The system we propose in this paper allows the

mapping of any query that interrogates the ontology
to interrogate the data in their original storage
format. The SPARQL query on the model of
ontology will be interpreted to determine the
concerned classes, which will be, generate
temporarily in XML format, then the query will be

Journal of Theoretical and Applied Information Technology
 29

th
 February 2016. Vol.84. No.3

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

403

mapped at a XQUERY query and executed on
already generated data.

The system provides the optimization of data
persistence level: data will not be restructured and
re-stored in the ontology; they will be temporarily
generated in XML format.

The system also provides the optimization of
the mapping between the languages of interrogation
of data and SPARQL: indeed, the mapping
SPARQL to XQUERY rewrite each SPARQL
query at XQUERY that will be executed on the data
already generated in XML.

In perspective, we aim to extend the mapping
algorithm SPARQLtoXQUERY to include other
cases of SPARQL queries. We also aim to optimize
the data generation algorithm.

RÉFÉRENCES:
[1] Mbaiossoum, B., Bellatreche, L., Jean, S., &

Baron, M. (2013). Comparaison théorique et
empirique de systèmes de bases de données
sémantiques. Ingénierie des Systèmes
d'Information, 18(3), 39-63.

[2] Krivine, S., Nobécourt, J., Soualmia, L. F.,
Cerbah, F., & Duclos, C. (2009). Construction
automatique d'ontologies à partir d'une base de
données relationnelles: application au
médicament dans le domaine de la
pharmacovigilance. In Actes d'IC (pp. 73-84)

[3] de Laborda, C. P., & Conrad, S. (2005,
January). Relational. OWL: a data and schema
representation format based on OWL.
In Proceedings of the 2nd Asia-Pacific
conference on Conceptual modelling-Volume
43 (pp. 89-96). Australian Computer Society,
Inc.

[4] Bizer, C. (2003). D2r map-a database to rdf
mapping language.

[5] Barrasa Rodríguez, J., Corcho, Ó., & Gómez-
Pérez, A. (2004). R2O, an extensible and
semantically based database-to-ontology
mapping language.

[6] http://www.w3.org/TR/rdf-sparql-query/
[7] Diallo, G. (2006). Une Architecture à base

d'Ontologies pour la Gestion Unifiées des
Données Structurées et non
Structurées (Doctoral dissertation, Université
Joseph-Fourier-Grenoble I).

[8] Jakjoud, W., Bahaj, M., & Bakkas, J. (2015,
March). Generic transposition from data source
toward ontology. In Electrical and Information
Technologies (ICEIT), 2015 International
Conference on (pp. 205-211). IEEE.

[9] Jakjoud, W., Bahaj, M., & Bakkas, J.
Automatic Generation of Ontology from Data
Source Directed by Meta Models.

[10] http://www.w3.org/TR/xquery/
[11] Bikakis, N., Tsinaraki, C., Stavrakantonakis, I.,

Gioldasis, N., & Christodoulakis, S. (2013).
The SPARQL2XQuery interoperability
framework.World Wide Web, 18(2), 403-490.

[12] Lopes, N., Bischof, S., Decker, S., & Polleres,
A. (2011, October). On the semantics of
heterogeneous querying of relational, XML
and RDF data with XSPARQL. In Proceedings
of the 15th Portuguese Conference on Artificial
Intelligence (EPIA 2011), Lisbon, Portugal.

[13] Fong, J., & Cheung, S. K. (2005). Translating
relational schema into XML schema definition
with data semantic preservation and XSD
graph. Information and software
technology, 47(7), 437-462.

[14] Kleiner, C., & Lipeck, U. W. (2001,
September). Automatic Generation of XML
DTDs from Conceptual Database Schemas.
In GI Jahrestagung (1) (pp. 396-405).

[15] Vela, B., & Marcos, E. (2003, June). Extending
UML to Represent XML Schemas. In CAiSE
Short Paper Proceedings (Vol. 74).

[16] Du, W., Lee, M. L., & Ling, T. W. (2001,
December). XML structures for relational data.
In Web Information Systems Engineering,
2001. Proceedings of the Second International
Conference on (Vol. 1, pp. 151-160). IEEE

[17] Lee, D., Mani, M., Chiu, F., & Chu, W. W.
(2002, November). Net & Cot: Translating
relational schemas to XML schemas. In ACM
CIKM.

[18] Maatuk, A., Ali, A., & Rossiter, N. (2008,
January). Relational database migration: A
perspective. In Database and Expert Systems
Applications (pp. 676-683). Springer Berlin
Heidelberg.

