
Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

287

PROVIDING SECURITY IN CLOUD BASED NETWORKS

THROUGH SOFTWARE DEFINED NETWORKS

1
Dr.CHINTHAGUNTA MUKUNDHA,

 2
Dr.I.SURYA PRABHA,

3
KARNAM SREENU

1
Associate Professor, IT Department,SNIST, Hyderabad -501301,Telangana, India

2
 Professor, IT Department,IARE, Hyderabad -500043, Telangana, India

3
Assistant Professor ,IT Department,SNIST,Hyderabad -501301,Telangana, India

 E-mail:
1
mukundhach@gmail.com,

2
 ipsurya17@gmail.com,

3
karnam.sreenu@gmail.com

ABSTRACT

Now days we have observed that the fast change in the cloud network by the Software Defined Networking

(SDN) paradigm that differentiate the control plane from the data plane to give the flexibility for

programmability and centralized control of the cloud networks, SDN networks not only provide

simplification of cloud network management it also provides more security with SDN by implementing

firewalls with in the SDNs. The demand of cloud increased day by day with the increasing of usage of

cloud. The SDN is provided with OpenFlow network, cloud network states are dynamically updated and

configurations are frequently changed. Open Flow accepts various Field actions that can dynamically

change the packet headers. A firewall embedded in SDN can immediately enforce updated rules in the

firewall policy to check security violations. Cloud computing allows all categories of users to use

applications without installation and access their personal files at any system with internet access .Here we

present that the way forward is to integrate SDN and fully utilize its feature to solve the security problems

in cloud networks. We focus on the security aspect and investigate how to enhance the security with SDN

firewalls for the cloud networks.

Keywords: Cloud Network, Software Defined Networks,Firewalls,Security,Cloud Computing.

1. INTRODUCTION

The Software Defined Networking (SDN) is a

advanced and innovative force in the networking

industry that change almost every player including

network organizers, manufactures, ISPs and cloud

service providers. With SDN, the low-level device

configuration and management can be handled by

the centralized software controller which

facilitates the upgrade of operation and

controllability. By Organizing and distributing the

network state with a system perspective, SDN

provides the administrators to mining the complex

protocol specifications with agility and flexibility

to control the networks. The SDN-enabled

Network Functions makes it possible for the

Internet and cloud service providers to deliver

their services in the market through improving the

service in terms of security and Quality of Service

(QoS) .

OpenFlow not only shows tremendous

opportunities to networking, but also gets great

challenges for building SDN firewalls as

follows:

• Examining Dynamic Network Policy

Updates: In an OpenFlow network,

network states are effectively changed and

configurations are periodically changed.

Thus, simply checking flow packet

violation by monitoring the packets in

behaviors in a firewall application is not

effective, since flow policy abuse, which

indicates exiting flow policies violate the

firewall policy induced by the changes of

network levels and configurations such as

updating flow entries and firewall rules,

should be detected and resolved in real time

as well.

• Checking Indirect Security Violations:
OpenFlow allows different Set-Field

actions that can dynamically change the

packet headers. Adversaries could take

advantage of this feature to strategically

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

288

enable flow conditions that would evade

security mechanisms (e.g.

firewalls). In addition, flow rules may overlay

each other in a flow table, indicating intra-

table dependency of flow rules. The rules in a

firewall policy may also overlay each other.

These terms dependencies could also be

leveraged by malicious OpenFlow

applications to ignore firewalls.

• Architecture Option: A Unify SDN firewall

can immediately enforce updated rules in the

firewall policy to check security abuse.

However, when a flow policy violation is

find, it can only reject the new flow policy or

flush resident flow policy that causes the

violation.

•

• If only partial packets matching a flow policy

disrupt the firewall policy, eliminating the flow

policy may drop fair traffic. A distributed SDN

firewall may directly resolve flow policy

violations by propagating and enforcing the

firewall policy at each individual entry of the

flow in the network. However, a distributed

firewall needs a complicated abrogation and

repropagation mechanism to handle dynamic

policy updates.

• Stateful Monitoring: At present, OpenFlow

only afford very limited access to packet-

level data in the controller. In addition, the

OpenFlow forwarding plane is stateless and

unable to actively monitor flow status without

the involvement of the controller. Therefore,

it is impose to fully support stateful packet

inspection in SDN firewalls.

Behind the SDN structure that differentiates the

control and data plane, SDN delivers four visible

features to the networking field:

• Central control and coordination: The

logically centralized Control model is an

important part of the SDN architecture which

mitigates the overhead from the classical

distributed mechanisms based on protocols.

Although the centralized approach is often

questioned for its scalability, it can deliver the

state and policy changes more comfortably

than the distributed methods in a managed

domain. The coordination feature also makes

it feasible that when one of the controllers

fails, other standby ones can take over the

management tasks to escape service breakage,

which poses a great challenge for the

distributed approach.

• Programmability: For both the control

plane and the data plane, SDN makes

implementation and deployment of the new

functionality faster and easier, and hence

speeding up the innovation at both

hardware and software level. This agility

can reduce the cost for service and network

providers in terms of Operational

Expenditure (OPEX) as the management

can be powered by SDN applications in an

automatic manner. By avoiding the

unnecessary replacement of the underlying

hardware through software update, it can

also bring down the Capital Expenditure

(CAPEX) and facilitate the adoption by the

cloud providers.

• Virtualized abstraction: The layered

design of SDN hides the complexity of

hardware devices from the control plane

and SDN applications. Through virtualized

abstraction, SDN allows the managed cloud

network to be divided into virtual networks

that share the same infrastructure but are

governed by different policy and security

requirements. Such flexibility greatly

promotes the sharing, aggregation and

management of available resources and

enables dynamical reconfiguration and

changes of policy.

• Openness: The open standards of SDN

such as OpenFlow help build and develop

open sourced communities that attract brain

power and speed up the innovation. Such

openness combined with programming

APIs can promote the networking research

by allowing researchers to experiment with

novel ideas through fast prototyping and

testing. It also benefits the interoperability

with the legacy infrastructure and allows

different operators and providers to

collaborate through the SDN framework.

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

289

 Fig1 : SDN Architecture with fire wall in

Cloud

 Networks

As illustrated in Fig:1 of an envisioned the current

trend of convergence in such networks can benefit

from SDN to enhance resource utilization,

network management and security in the

multiservice and multi-vendor environment. The

security of SDN deserves our special attention for

the challenges it brings and also the opportunities

to enhance the network security. In this article, we

review the recent work on SDN for cloud

networks and discuss how SDN solutions can

improve security in such a dynamic environment.

By surveying the SDN-based security solutions,

we identify the design goals and describe our

approach of utilizing SDN for security

enhancement in cloud networks.

2. THEORETICAL BASIS AND

ITERATURE REVIEW

In this section we discuss the latest research on

SDN security and categorize the selected

proposals in terms of their target environment into

four groups: enterprise networks, cloud & data

center, home & edge access, and general design.

As we focus on how to utilize SDN to enhance

network security, it is worth noticing that the

security concern for the SDN itself is also an

important topic where the existing study has

identified seven threat vectors that may enable the

exploit of SDN vulnerabilities and further propose

a design to achieve secure and dependable SDN

platform.

The work of presents the SDN-based

implementation of four algorithms for Anomaly

Detection System (ADS) and advocates that

such programmable solution deployed in a

home network environment can achieve more

accurate identification of malicious activity

comparing to the one that is deployed at the

ISP. Their SDN-based solution can also

alleviate the load of ISP from monitoring a

large number of networks and promote

collective detection of global network problems

by feeding the monitoring results to external

entities. This work requires modification of the

SDN control plane. It does not consider features

of local optimization, cloud network or cross-

domain interoperability.

One of the most important issues related to

cloud security risks is data integrity. The data

stored in the cloud may suffer from damage

during transition operations from or to the cloud

storage provider. Cachinetal gives examples of

the risk of attacks from both inside and outside

the cloud provider, such as the recently attacked

Red Hat Linux’s distribution servers. One of the

solutions that they propose is to use a Byzantine

fault-tolerant replication protocol within the

cloud. Hendricksetal. State that this solution can

avoid data corruption caused by some

components in the cloud. However,

Cachinetal.Claim that using the Byzantine fault

tolerant replication protocol within the cloud is

unsuitable due to the fact that the servers

belonging to cloud providers use the same

system installations and are physically located

in the same place.

According to Garfinkel, another security risk

that may occur with a cloud provider, such as

the Amazon cloud service, is a hacked password

or data intrusion. If someone gains access to an

Amazon account password, they will be able to

access all of the account’s instances and

resources. Thus the stolen password allows the

hacker to erase all the information inside any

virtual machine instance for the stolen user

account, modify it, or even disable its services.

Furthermore, there is a possibility for the user’s

email(Amazon user name) to be hacked (see for

a discussion of the potential risks of email), and

since Amazon allows a lost password to be reset

by email, the hacker may still be able to log in

to the account after receiving the new reset

password.

NetFuse is a new proposal for cloud and data

center environment to protect it against traffic

surges that origin from either security attacks,

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

290

operator errors, or routing misconfiguration.

NetFuse uses both passive listening and adaptive

active query to enable effective monitoring of

network status. It utilizes a multi-dimensional

aggregation to find the suspicious flow clusters.

To improve efficiency and responsiveness,

NetFuse further adopts a toxin-antitoxin

mechanism to adaptively shape the flow rate

according to application feedback. The design is

realized as a proxy

Between the OpenFlow switches and the

controller.NetFuse follows the OpenFlow

standard but does not modify the control and data

plane. It delivers local optimization by relieving

the heavy load from the controller such as flow

redirection, delay injection, and blocking. NetFuse

does consider the features of mobile and cross-

domain.

CloudWatcher utilizes the advantage of SDN to

build a framework that can efficiently monitor

services in large and dynamic cloud networks.

The proposed scripting language enables operators

to employ security monitoring as a service in a

convenient fashion. CloudWatcher includes four

routing algorithms to optimally reroute traffic to a

security monitoring node. The framework consists

of three key components: device and policy

manager, routing rule generator, and flow rule

enforcer. CloudWatcher does not demand changes

on control or data plane, and utilizes the routing

algorithms to optimize security monitoring.

However, it does not consider the features of

mobile and cross-domain.

3. ENHANCING SECURITY IN CLOUD

NETWORKS WITH SDN FIREWALLS

We propose a comprehensive framework called

FLOWGUARD to facilitate accurate detection as

well as flexible resolution of firewall policy

violations in dynamic OpenFlow networks along

with a variety of toolkits for visualization,

optimization, migration, and integration of SDN

firewalls.

The violation detection approach in

FLOWGUARD detects violations by examining

flow path space against firewall authorization

space, and is capable of tracking flow paths in the

entire network with respect to dynamic packet

modifications, and checking rule dependencies in

both flow tables and firewall policies. To support

network-wide access control in an OpenFlow

network, an SDN firewall needs to not only

check violations at the ingress switch of each

flow, but also track the flow path and then

clearly identify both the original source and

final destination of each flow in the network. As

a preliminary solution, we leverage NetPlumber

[3] as a baseline for building the flow tracking

mechanism, because it offers several features

that can fulfill some of our requirements for

tracking flows, such as support for arbitrary

header modifications, automatic rule

dependency detection, and real-time response.

Fig 2: Flow Guard Violation Resolution Mechanism

To calculate flow path space, we abstract fields,

which are needed for checking firewall policy

violations, from the pattern expression of a flow

rule to represent the space of

corresponding flow path. In addition, we

reorganize these pair to specify a flow path

space. Then, we define three kinds of spaces for

representing a flow path space: (1) Incoming

Space represents original header spaces of

packets that can pass through the flow path; (2)

Outgoing Space represents final header spaces

of packets after the packets pass through the

flow path; and (3) Tracked Space represents

original source address and final destination

address of header spaces of packets that can

pass through the flow path. For accurately

detecting firewall policy violations, the

dependency relations between “allow” rules and

“deny” rules in the firewall policy should be

decoupled. We propose a concept of firewall

authorization space, which represents a

collection of all packets either allowed or

denied by the firewall rules. We then introduce

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

291

a space partition approach, which represents rules

with header space and performs various set

operations on rules, to convert a list of firewall

rules into two disjoint authorization sub-spaces,

denied authorization space and allowed

authorization space.

Once the space of a flow path and the firewall

authorization space of the firewall policy are

calculated, we identify violations through

checking the tracked space of the flow path

against the denied authorization space of the

firewall policy. If these two spaces overlap each

other, we call the overlapping space as the

violated space, which indicates a firewall policy

violation. There are two kinds of violations:

Entire Violation (the denied authorization space

includes the whole tracked space); and Partial

Violation (the denied authorization space partially

includes the tracked space).

For resolving various firewall policy violations in

real time, we introduce a flexible and effective

violation resolution mechanism. Figure 2

demonstrates how FLOWGUARD adopts various

violation resolution strategies to resolve different

firewall policy violations in terms of new flows

and various update operations on both flow and

firewall policies in OpenFlow-based networks.

Since a firewall application can directly reject the

new flows which violate

the firewall policy, it would be straightforward to

resolve

flow packet violations.

There are four resolution strategies used for

handling flow policy violations: 1. Dependency

Breaking: When a new flow policy is being added

into the network switches, this single flow policy

may not violate the firewall policy. However, the

rules in this new flow policy may overlap with the

rules of other existing flow policies. Since rule

dependencies could cause unexpected changes in

packet headers of flows, they may lead to new

firewall policy violations. Note that such kind of

violations can be also incurred by other changes

of network states, such as modifying flow entries

and updating firewall rules. We introduce two

alternative mechanisms, Flow Rerouting and Flow

Tagging, for breaking rule dependencies that

cause violations. 2. Update Rejecting: Adding a

new flow policy, or changing or deleting an

existing flow policy, can cause new entire

violations. Applying this strategy, the update

operation is rejected directly.3. Flow Removing:

When updating (adding, changing, or deleting)

a rules in the firewall policy, the firewall

application examines all existing flow policies

applying the updated rules and detect new entire

violations. Using this strategy, all flow entries

associated with a flow path, which entirely

violates the firewall policy, are removed from

the network switches and 4. Packet Blocking:

For any partial violation detected by the firewall

application, this strategy can be applied. There

may exist two ways to block packets of a flow.

First, if the flow is a new flow, the firewall

application only needs to block it in the ingress

switch of the flow. Second, if the flow is an old

flow, the firewall application needs to block the

packets in both ingress and egress switches.

4. CHALLENGES AND REQUIREMENTS

Based on different environments we identify the

different challenges and requirements.

• Monitoring Overhead: The OpenFlow-based

monitoring

Schemes suffer from limitation in terms of high

overhead and incomplete sample information.

FleXam provides a good example toward this

challenge.

• Multi-Access: The operational environment

consists of different technologies and cloud

operators leading to complex negotiation

process, privacy concern, and potential

conflicting policy and QoS requirement that

pose a challenge to the security enforcement.

• Deployment: Although SDN has openness in

its nature, any solution deployed needs to face

the challenge of backward compatibility and

interoperability as cloud operators need to

maintain different generations of technologies

and intercommunicate with other providers.

For a sound SDN design for security

enhancement, we need

to meet several requirements:

• Interoperability: Handling information

exchange between different elements are crucial

for SDN security design for

Wireless mobile environment. The recent trend

of cellular

offloading also makes this relevant since WiFi

and Cellular

management are used to be separate, especially

the security part. Traditional distributed

protocol is incapable for this due to the

complexity and privacy issues.

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

292

• Responsiveness: Processing events in wireless

mobile Networks should be timely, either in

reactive or proactive

Manner. Efficient triggering and local

optimization are valuable.

• Compatibility: To maximize the value of

openness, using

a standard API is required, such as OpenFlow.

• Adaptation: Due to mobility and network

condition changes, a design should be adaptive by

monitoring and efficiently detecting events both in

the network and from

User activities.

5. SYSTEM DESIGN AND USE CASES

To illustrate how to enhance security in wireless

mobile networks, we propose a SDN-based

framework as depicted

in Figure 1. The key elements in our framework

include central controller, and security layer for

cloud networks. The local agents are deployed

close to the wireless edge access to meet the

requirements of responsiveness, adaptation,

simplicity Optimization techniques are employed

by local agents including flow sampling, tracking

client records and mobility profile. Instead of

inserting actuation triggers in the data plane, local

agents take the responsibility to adaptively query

information from the underlying devices

and report to the controller. This provides

transparency to both data plane and controller and

hence all eviating the monitoring load on the

central controller.

The central controller is the management entity

running OpenFlow to control switches and

OpenFlow-enabled cloud devices. To improve

compatibility and simplicity, our design

adopts only the mature and open standards to

manage the

network.The security layer resides on top of the

control plane and aims to meet the requirements

of interoperability,

compatibility, and simplicity.

Our framework aims at the wireless mobile

environment.

We enhance the scalability by using local agents

to process the local events. Since reaction must be

fast in the wireless mobile environment, the local

progressing reduces the latency from data plane to

controller and therefore delivers

better performance. We further utilize the

security layer to

achieve interoperability across different access

domains that

are managed by different operators.

We highlight three potential use cases for our

design.

• Complementing an Intrusion Detection

System (IDS) - The local servers will regulating

monitoring tasks by using triggers and flexible

sampling to fetch necessary information from

edge network and end host and feeding such

information to IDS service such as Snort.

• Prevention of DoS - avoiding resource waste

such as spectrum, if the malicious traffic are

only dropped in the core network switches

rather than dropped as early as possible. The

local agent coordinates the operation by

installing rules to drop packets and inform the

central controller.

• Secure handoff for mobility - Proactively

deliver security

keys and credentials to target networks to

improve efficiency for handoff.

6. FEATURE WORK

We will further develop and integrate stateful

packet inspection and analysis modules in the

FLOWGUARD framework to support the

implementation of stateful SDN firewalls.

Furthermore, we plan to integrate our conflict

detection and resolution solution into popular

SDN controllers to build a robust security

enforcement kernel for the controllers. We aim

to provide a framework to supply a secure cloud

database that will guarantee to prevent security

risks facing the cloud computing community.

This framework will apply multi-clouds and the

secret sharing algorithm to reduce the risk of

data intrusion and the loss of service availability

in the cloud and ensure data integrity. In

relation to data intrusion and data integrity,

assume we want to distribute the data into three

different cloud providers, and we apply the

secret sharing algorithm on the stored data in

the cloud provider. An intruder needs to retrieve

at least three values to be able to find out the

real value that we want to hide from the

intruder. Regarding service availability risk or

loss of data, if we replicate the data into

different cloud providers, we could argue that

the data loss risk will be reduced.

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

293

7. CONCLUSION

The maturity of OpenFlow standards and fast

development

of SDN have made the concept of SDN widely

accepted by the mobile industry. For the

advantages of SDN such as programmability,

abstraction, and openness, we advocate

that SDN can enhance security in cloud networks

through novel design. Based on our investigation

of existing solutions, we highlight the key

elements and sketch out our design. As part of our

on-going work for the security enhancement

framework, we believe this study can shed light

on how we use SDN to improve network security

and promote the adoption of SDN to the future

wireless mobile networks.

REFERENCES:

[1] Sivaraman, Anirudh, et al. No silver bullet:

extending SDN to the data plane.

Proceedings of the Twelfth ACM Workshop

on Hot Topics in Networks. ACM, 2013.

[2] Kephart J O, Chess D M. The vision of

autonomiccomputing[J]. Computer, 2003,

36(1): 41-50.

[3] Miller. B. The autonomic computing edge:

Can you CHOP up autonomic computing?

Technical report, IBM, 2008.

http://www.ibm.com/developerworks/autono

mic/library/ac-edge4.

[4] EFIPSANS project. http://www.efipsans.org/.

[5] ANA (Autonomic Network Architecture)

Project.

 http://www.ana-project.org/.

[6] HAGGLE Project.

http://www.haggleproject.org

[7] CASCADAS project. http://www.cascadas-

project.

 org.

[8] BIONETS project. http://www.bionets.eu/.

[9] OpenFlow Specification 1.3.0. https://www.

opennetworking.org/images/stories/download

s/sdn-resources/onf-

specifications/openflow/openflow-spec-

v1.3.0.pdf.

[10] L. E. Li, Z. M. Mao, J. Rexford. Toward

Software-Defined Cellular Networks. In

Proceedings of IEEE EWSDN 2012.

[11] X. Jin, L. E. Li, L. Vanbever, J. Rexford.

SoftCell: Scalable and Flexible Cellular Core

Network Architecture. In Proceedings of

ACM CoNEXT

 2013.

[12] Gudipati, D. Perry, L. E. Li, S. Katti.

SoftRAN: Software Defined Radio Access

Network. In Proceedings of ACM HotSDN

2013.

[13] M. Bansal, J. Mehlman, S. Katti, P. Levis.

OpenRadio: A Programmable Wireless

Dataplane. In Proceedings of ACM

HotSDN 2012.

[14] K. Yap, et al. Blueprint for Introducing

Innovation into Wireless Mobile Networks.

In Proceedings of ACM VISA 2010.

[15] Floodlight:Open SDN Controller.

http://www.projectfloodlight.org.

[16] S. Ioannidis, A. D. Keromytis, S. M.

Bellovin, and J. M. Smith. Implementing a

distributed firewall. In Proceedings of CCS,

2000.

[17] P. Kazemian, M. Chang, H. Zeng, G.

Varghese, N. McKeown, and S. Whyte.

Real time network policy checking using

header space analysis. In Proceedings of

NSDI, 2013.

[18] A. Khurshid, X. Zou, W. Zhou, M. Caesar,

and P. B. Godfrey. Veriflow: verifying

network-wide invariants in real time. In

Proceedings of NSDI, 2013.

[19] C. Monsanto, J. Reich, N. Foster, J.

Rexford, and D. Walker. Composing

software-defined networks. In Proceedings

of NSDI, 2013.

[20] P. Porras, S. Shin, V. Yegneswaran, M.

Fong, M. Tyson, and G. Gu. A security

enforcement kernel for openflow networks.

In Proceedings of HotSDN, 2012.

[21] S. Shirali-Shahreza and Y. Ganjali.

Flexam: Flexible sampling extension for

monitoring and security applications in

openflow. In Proceedings of HotSDN,

2013.

[22] H. Song. Protocol oblivious forwarding:

Unleash the power of sdn through a future-

proof forwarding plane. In Proceedings of

HotSDN, 2013.

[23] L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su,

P. Mohapatra, and C. Davis. Fireman: A

toolkit for firewall modeling and analysis.

In Proceedings of IEEE S&P, 2006.

