
Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

283

COMPUTING ICEBERG QUERIES HAVING NON ANTI

MONOTONE CONSTRAINS WITH BIT MAP NUMBER

1
PALLAM RAVI,

2
 DR. D. HARITHA ,

3
 DR. NIRANJAN POLALA

1 PhD scholar, K L University ,Guntur, Andra Pradesh , India

2 Computer Science & Engineering, K L University ,Guntur, Andra Pradesh , India
3 Computer Science & Engineering, KITSWarangal, Telangana, India

E-mail:
1 satishpallam@gmail.com ,2 haritha_donavalli@kluniversity.in ,3 pnr.cse@kitsw.ac.in

Abstract

Computing aggregation values of user interesting attributes are important in decision and knowledge

discovering systems .In real world the users are interested only view to the aggregation values which meet some

constrain this type of queries are call iceberg queries. We can optimize memory requirement and CPU time for

computing iceberg Queries having anti monotone constrains by eliminating non target set, but for Non anti

monotone constrains we cannot eliminate non target sets, so it requires huge memory for answering the query,

we propose a algorithm which produce target results using minimum memory and CPU time for computation by

bit map numbers, explain with a sample iceberg query

Keywords: Non Anti Monotone, Iceberg Query, Anti Monotone , Bit Map Numbers

1. INTRODUCTION

The iceberg queries are very important in data

mining association rule generation which produce

small set of results for example super market

analyst find the relationships between products

and regions which having total sales above 20

Lakhs from sales data base, this particular query is

“SELET product ,region, sum(sales) FROM sales

GROUP BY product, region where HAVING

SUM(sales)>20 Lakhs” ,the name iceberg query

introduced by Fang et al.in[1].The general form of

an iceberg query on a relation R(A1,A2,A3,…An)

is

SELECT A1,A2,A3,…Am ,AGG(*) FROM R

GROUP BY A1,A2,A3,…Am

HAVING AGG(*) >= T

A1,A2,A3,…Am represents subset of attributes in

relation R and referred grouping attributes, AGG

represents an aggregation function such as

MAX,MIN,SUM ,COUNT AVERAGE and T

represents threshold, in this paper , we computing

iceberg queries having. Non anti monotone

aggregation [2] function such as AVERGE,

Anti monotone property is if a attribute value

cannot meet the constraint, its none of its supper

sets can meet the constraint, we are explaining

with an example on relation R (Table1)

Table 1: Relation R

Tid A B C

1 A1 B1 7

2 A1 B1 3

3 A1 B2 1

4 A1 B3 3

5 A2 B3 2

6 A2 B2 3

7 A2 B2 5

8 A2 B1 5

9 A3 B2 1

10 A3 B1 7

11 A3 B1 1

12 A3 B3 2

Let us take aggregate attribute is C, anti monotone

constraint SUM(*)>8 ,for attribute B3,

SUM(B3)=7 (3+2+2) ,

it will not meet the constrain, none of its super

sets SUM(B3 ,A1),=3,SUM(B3 ,A2)=2,

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

284

SUM(B3 ,A3),=2 will not meet the constraint, this

is advantage ,there is no need of computing all

super sets of B3 by this we can reduce memory

requirement, for Non anti monotone constraint like

AVG(*)>4, for attribute A1,AVG(A1)= 3.5

[(7+3+1+3)/4] even thought it not meet the

constrain its supersets like AVG(A1,B1)=5

[(7+3)/2] may meet the constrain

The iceberg query produce small result set due to

the constrain, because of the small result set ,

iceberg queries can potentially be answered

quickly even over a very large data set. the

relational database systems nowadays (eg

DB2,Oracle,SQL Server, etc) are all using general

aggregation algorithms [3].[4],[5] to answer

iceberg queries by aggregating all tuples and then

evaluating the HAVING clause to select the

iceberg results .full aggregate results cannot fit in

memory for large data set

Iceberg queries algorithm are hybrid ,

multibuckets ,which are extending the probabilistic

techniques proposed in[6].sampling/bucketing

method is used to predict valid groups, which

possible false positive and false

negative .then ,efficient strategies are designed to

efficiently correct false positive and false negatives

to retrieve the exact result .Bae and Lee [7]design

a partitioning algorithm for computing a specific

type of iceberg queries computing average of

aggregate values .All these techniques are tuple-

scan based , Bin He et al[8] proposed compressed

bitmap index technique ,but it does not works Non

anti monotone constrains ,we are reducing

memory requirement and computation time by bit

map numbers for computing iceberg queries

having Non anti monotone property.

The remaining section of this paper are structured

as follows: we discuss bit map number in section 2,

section 3 describe Non anti monotone algorithm ,

2. BIT MAP NUMBERS

We introduce new bit map numbers ,this number

represent the tuple attribute values unlike bit map

index represent only one attribute values in

different tuples, this calculate the assign different

binary numbers to attribute values of a discrete

Attribute(no of bits require represent maximum

cardinality of attribute) , concatenate all this

binary number with some order, this same order

used for all tuples, and calculate number using

binary system, which reparsent in algorithm Bit

Map_ Numbers()

Example2.1 find bit map Number of Tcid=1 of

relation R in Table 1 as follows

Maximum cardinality discrete Attribute (B)=3 ,2

bits required to represent the 3 different values ,

the order is A, B.

Assign binary numbers to Attribute Values

A1=01 B1=01

A2=10 B2=10

A3=11 B3=11

Tid A B

1 A1 B1

 01 01

Bit map Number of Tcid=1 is (0101)2 = 5

All bit map Number of realtion R in table 1 is in

Table 2

Table 2: Bit Map Number of Relation R

Tid
A B C

Bit Map

Number

1 A1 B1 7 (0101)2 = 5

2 A1 B1 3 (0101)2 = 5

3 A1 B2 1 (0110)2 =6

4 A1 B3 3 (0111)2 =7

5 A2 B3 2 (1011)2 =11

6 A2 B2 3 (1010)2 =10

7 A2 B2 5 (1010)2 =10

8 A2 B1 5 (1001)2 =9

9 A3 B2 1 (1110)2 =14

10 A3 B1 7 (1101)2 =13

11 A3 B1 1 (1101)2 =13

12 A3 B3 2 (1111)2 =15

The advantage of this Bit map number are :1)

Easily identify the possible combinations of tuple

to calculating aggregation functions with the same

bit map number 2)Representing database

information with this numbers

Assume size of Attributes Tcid,A,B,C in Realtion

R are 2bytes ,3bytes ,4 bytes, 1 bytes respectively,

the discrete attributes A, B represents bit map

numbers require 4*12 =48 bits means 6bytes only

instead of 12*(3+4)=84 bytes.

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

285

3. NON –ANTI MONOTONE ALGORITHM

The algorithm contain three phases

Phase I: calculate Bit Map Numbers for Discrete

Attributes Algorithm1 :Bit Map_ Numbers()

Phase II: calculate the Non anti monotone

Aggregate

values and eliminate the which are not meet the

constrain

Algorithm2: Clac_aggrigate()

Phase III: decode Bit Map Numbers into

Attribute Values Algorithm 3: Decode_ BitMap()

This algorithm explain which below iceberg query

on relation R (Table 1)

SELECT A,B ,AVG(C) FROM R GROUP BY

A,B HAVING AVG(C)>=4

Algorithm 1: Bit Map_ Numbers(R,od)

Input :R:raltion ,od:order of attributes

Out put:Bit map Numbers

1, find m for require bits represent higest

cordinality of attribute values

2, for each discrete attribute do

3, assign binary number to each attribute

values using m bits

4, for each T tuple in R do

5, c=concat(all Attribute binary values)

6, n=(c)2

7, stored n along with aggregate attributes: r1

Algorithm 2:Clac_aggrigate(r1)

Input:r1 bitmapnumber with aggregate values

Output:target bit map numbes: rs

1,for same values of r1.bimapnumber:Tr do

2, v=AGG (Tr)

3, if v meet constrain C

4, store (tr.bitmapnumber ,AGG())in rs

Algorithm 3:Decode_ BitMap(rs,m,od)

Input:rs result set

Output: decodes the bitmap number

1,for each rs.bitmapnumber do

2, group m bits(g) in rs.bitmapnumber

3, decode (g)2 value in od order

3.1 Phase I

Answer the above query using Non –anti

monotone algorithm the phase is explained in

section 2 , the output of this phase is r1 is show in

table3

Table 3

C
Bit Map

Number

7 (0101)2 = 5

3 (0101)2 = 5

1 (0110)2 =6

3 (0111)2 =7

2 (1011)2 =11

3 (1010)2 =10

5 (1010)2 =10

5 (1001)2 =9

1 (1110)2 =14

7 (1101)2 =13

1 (1101)2 =13

2 (1111)2 =15

3.2 Phase II

Algorithm clac_aggrigation need only same

values of bitmapnumber tuble in table 3 ,so we

compute the aggregate values with minimal

memory and increase the computation time also.

Table:4

Iteratio

n
C

Bit Map

Number
AVG(c)

1
3 (0101)2 = 5

5
7 (0101)2 = 5

2 1 (0110)2 =6 1

3 3 (0111)2 =7 3

4 5 (1001)2 =9 5

5
3 (1010)2 =10

4
5 (1010)2 =10

6 2 (1011)2 =11 2

7
1 (1101)2 =13

4
7 (1101)2 =13

8 1 (1110)2 =14 1

9 2 (1111)2 =15 2

Clac_aggrigate() compute aggregation in each

iteration for the same values of bitmapnumber

which shown in table 4,the final output of this

phase is

Bit Map Number AVG(C)

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

286

(0101)2 = 5 5

(1001)2 =9 5

 3.3 Phase III

 This is decoding the bitmap numbers in results set

,it down as follows, group the bits(m bits), find its

decimal equal and find appropriate attribute values

based on encoding Attribute order

In our example query m=2,encoding order id A ,B

(left to light)

0101 01=A1 , 01 B1

1001 10=A2 ,01 B1

The final results of iceberg query are

A1 B1 5

A2 B1 5

4. COMPARISON WITH BIT MAP INDEX

Computing iceberg queries using bit map index[7]

1)the size of Bit map index of a attribute values is

depending on number of tuple in data set ,our bit

map number is depending on cardinality of

attributes only it is very smaller compare to

bitmap index, 2)the memory required in bit map

index , attributes (at least two) bit map indexes and

aggregate attribute values ,in our method only need

aggregate attributes and one bit map number 3)

multi pull times need to computation of

aggregate function but in our algorithm only one

time

5. OPTIMIZATION

In Bit Map_ Numbers algorithm can use decimal

number for assigning attribute values,a compute

Bit map numbers

as n= A1*(2
m
)

n-1
+ B1*(2

m
)

n-2
+……

in over example m=2 ,n=2

A1=1 B1=1

A2=2 B2=2

A3=3 B3=3

A1B2=A1*(2
m
)

1
+ B2*(2

m
)

0

 =
1*(2

2
)

1
+ 2*(2

2
)

0

 =1*4 +2*1

 =6 (0110)2

In Decode_ BitMap D is bit map numbers in rest

set in our example decoding is as follows

m=2,n=2

A=D/(2
m
)

n-1
B=D/(2

m
)

n-2 …..

6. CONCLUSIONS

This paper present an efficient algorithm saving

computation and memory requirement by void

multi pull times computing aggregate functions, it

need only one time aggregation value computing

and direct point the tuple for computing

aggregate values

Our algorithm is not sensitive to iceberg query

constrain, it give better performance for high

cardinality attributes than low cardinality

attributes, it works on anti monotone constrains

also

REFERENCES:

[1] M. Fang, N. Shivakumar, H. Garcia-Molina, R.

Motwani, and J.D. Ullman, “Computing Iceberg

Queries Efficiently,” Proc. Int’l Conf. Very Large

Data Bases (VLDB), pp. 299-310, 1998..

[2] R. Agrawal, T. Imielinski, and A.N. Swami,

“Mining Association Rules between Sets of Items in

Large Databases,” Proc. ACM SIGMOD Int’l Conf.

Management of Data, pp. 207-216, 1993

[3] G. Graefe, “Query Evaluation Techniques for Large

Databases,” ACM Computing Surveys, vol. 25, no.

2, pp. 73-170, 1993.

[4] W.P. Yan and P.-A. Larson, “Data Reduction

through Early Grouping,” Proc. Conf. Centre for

Advanced Studies on Collaborative Research

(CASCON), p. 74, 1994.

[5] P.-A. Larson, “Grouping and Duplicate Elimination:

Benefits of Early Aggregation,” Technical Report

MSR-TR-97-36, Microsoft Research, 1997.

[6] K.-Y. Whang, B.T.V. Zanden, and H.M. Taylor, “A

Linear-Time Probabilistic Counting Algorithm for

Database Applications,” ACM Trans. Database

Systems, vol. 15, no. 2, pp. 208-229, 1990.

[7] Bin He, Hui-I Hsiao “Efficient Iceberg Query

Evaluation Using Compressed Bitmap Index”, ieee

transactions on knowledge and data engineering,

VOL. 24, NO. 9, september 2012

