
Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

260

INPUT SPLIT FREQUENT PATTERN TREE USING

MAPREDUCE PARADIGM IN HADOOP

1
GREESHMA L,

 2
PRADEEPINI G

1
CSE Department of K L University, Vaddeswaram, Andhra Pradesh, India

2
 CSE Department of K L University, Vaddeswaram, Andhra Pradesh, India

E-mail:
1
greeshma243@gmail.com,

2
pradeepini.gera@gmail.com

ABSTRACT

Big data has been attracted in information industry and in the society in the recent years, due to the wide

availability of huge amount of data in the Internet and the complexity of data is growing every day. Hence

distributed data mining algorithms has decided to exploit big data adaptable to current technology. Since

there exist some limitations in traditional algorithm for dealing with the massive volume of data set which

degrades the performance. So, thereby we require fast and efficient scalable frequent item sets for storing

and processing large data sets. Existing algorithm like apriori algorithm performs a multiple scans from

external storage, which leads to heavy burden for I/O devices. In this paper, we proposed Association Rule

Mining based on Hadoop Distributed File System for storing huge amount of data and implemented using

MapReduce object oriented programming paradigm for processing of a data.

Keywords: Big Data, Hadoop Distributed File System, MapReduce, Association Rule Mining, Distributed

Frequent Item set Mining.

1. INTRODUCTION

Big data is handling complex data sets where the

challenges are not only to save the data but also to

read, browse, cache and also in order to do

meaningful analytics on top of it [23]. Big data

plays a vital role in both private and public

organizations for storing massive amount of

domain-specific which also provides the essential

information about outlier analysis, predictive

analysis and also it helps to predict the future trends

in stock market and decision for making stock

investments where huge amount of data is

unsupervised and unlabeled. Industries are

embracing Big data in Retail, Financial services,

Manufacturing, Government, Advertising public

relations, Media and Telecommunications,

healthcare and life sciences [10]. The challenge in

big data analytics includes retrieving patterns from

massive volume of data, fast processing and

simplifying discriminant description, which are in

the form of a rule.

In traditional approach, an enterprise will get a

powerful computer and it will speed in whatever

data available in this computer. The computer will

do a good job unless there exist a certain point

where the computer will not be able to do

processing any more. Hence it is not scalable. Since

big data is growing rapidly. Thus a traditional

enterprise approach has its own limitations. The

limitation of an existing solution is data warehouse

is build on top of RDBMS. Data warehouse has

fixed schema of RDBMS, the cost of databases like

Oracle, MySQL has a commercial aspect and if the

file size is of 1Gigabytes the problem of saving

huge file and accessing becomes difficult [6] [32].

Data warehouse performs analytics only on small

portion of data but not on huge data sets. As

compared to traditional solutions, hadoop turns out

to be a good solution to the existing data analytics

problem because it does storage and processing at

same location. Hadoop is framework of tools that is

an open source. Big Data analytics and hadoop

open source projects are emerged as preferred

solutions to address business and the current

technology trends. The keyword behind hadoop is

big data. The big data creates challenging points

that hadoop address and the challenges are at 3

levels velocity, volume and variety. Lot of data

coming at very high speed, big volume of data is

gathered and data is all of heterogeneity. Hadoop is

a combination of Distributed File System and

Analytics algorithm. Distributed File System saves

the big data files and where as MapReduce

algorithm helps us to do analytics in quick time on

commodity machines as a set of clusters. The

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

261

hadoop takes different approach than the enterprise

approach [4]. It breaks the computational data into

smaller pieces. Thus why it is able to deal with big

data and these computations will be computed in

equal amount of time and the results are combined

together and sent back to application. Therefore, we

can say that hadoop has mainly two components.

First one is MapReduce and the second component

is file system that is termed as called Hadoop

Distributed File System (HDFS). Hadoop is a

framework of tools for managing and handling

distributed applications. Hadoop is a specially

designed File System for storing huge amount of

datasets with clusters of commodity hardware with

streaming access patterns which implies write once,

read any number of times without changing the

content of file once stored in HDFS. The

applications are executed using object oriented

programming paradigm called Map Reduce [2]

[4][5][6].

Map Reduce uses the parallel processing of large

data sets. The main aim is to build distributed

association rule mining for huge datasets but not for

a single portion of data. But in traditional algorithm

like Apriori [1] which suffers mainly from two

problems. One of the problem is main memory has

to handle multiple candidate item sets for massive

volume of data which will be a heavy weight

component for processor. Thereby degrades the

performance of an algorithm. Second problem,

requires multiple scans from huge amount of data

set [17]. Hence number of iterations will be more

and time complexity of an algorithm increases. So,

these reasons made researchers to be more

concerned with the parallel processing of massive

volume of a data set and implemented using Map

Reduce technique through a java based framework.

The Association Rule Mining using Map Reduce

paradigm and storing the data in HDFS. So this

distributed framework helps us to identity frequent

item sets from large data set. Therefore the

framework provides the efficiency and scalability

even if the size of data increases in database as

cloud resources are sourced from different service

providers. Related work is discussed in Section 2.

Section 3 outlines necessary prerequisites for

storing and processing using hadoop distributed file

system architecture, MapReduce and proposed

methods. Section 4 describes about experimental

results. Conclusion is given in Section 5.

2. RELATED WORK

Yahoo [25], Google [14], Facebook [7]

and Oracle [34] are introducing new tools for fast

storage and parallel processing of massive volume

of data. Apache hadoop has proposed MapReduce

2.0 (Y ARN)[18]. In Cloud computing, big data

provides data as service in the context of cost,

efficiency and scalability. In Cloud computing

environment big data analysis plays a vital role for

storing and processing the data [40]. Since the data

stored in hadoop is of unstructured format [33].

There are various issues for managing the data in

cloud computing environment. HDFS and

MapReduce provide efficient storage and

processing of big data. Teragen and tera sort

provides their performances in terms of storage and

parallel of data. In recent years Oracle has

published a white paper to provide big data solution

that incorporates hadoop, Oracle datawarehouse

and Oracle NoSQL [12]. In order to run multiple

applications in heterogeneous environment by

implementing MapReduce programming model

requires certain scheduling task such as LATE and

SAMR scheduler [9][27]. Nykiel and Potamisas

proposed an MRShare approach to share

information across job tracker in MapReduce [23].

Valvag and Oivos presented a system that

integrates storage distributed file system along with

its runtime environment [11][35]. However, none

of the above-proposed systems failed to provide

parallel data processing along with distributed

computing solution. This mechanism is termed as

static routing. Pasquier first proposed a classified

searching approach with the help of Apriori

properties over the subset of itemset termed as

CLOSE [29]. Pei proposed CLOSET using the

denser unit of data known as Frequent Pattern- Tree

[30]. Grahne and Zhu proposed subsequent version

of CLOSET+ [16]. J.Han proposed a Frequent

Pattern growth algorithm for mining frequent

patterns without generating a candidate keys [22].

J.Han and Holt proposed scalable and parallel

mining of association rules on clusters of

workstations [19][21]. Yu and Zhou proposed

parallel transactional identifiers based on FP

mining algorithm on PC cluster and grid computing

system [37]. The above-mentioned algorithms work

efficiently only on small or medium scale data sets

but not for large scale data sets. Our method

provides a solution to decrease the conflicts in

MapReduce, time and cost and also provides fast

processing and storing data using hadoop

architecture and MapReduce techniques even for

large volume of data sets.

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

262

3. PREREQUISITES AND PROPOSED

METHOD

Figures In this section, we discuss the

concept of Big Data [5], Hadoop Ecosystem [3],

architecture of Hadoop Distributed File System [2]

and Map Reduce programming paradigm [22],

which are required for proposing an algorithm.

3.1 Big Data and Hadoop Ecosystem

Sections Big Data is about terabytes or

petabytes of file. Day-by-day the size of a data is

increasing from megabytes to petabytes and also

increasing the data heterogeneity and the

complexity [6]. IBM has defined the Big Data in

three parameters.

(i) Volume: The scalability of data size.

(ii) Variety: Different forms of data such as

video, audio, posting the information,

images, structured, unstructured or

unsupervised data etc.,

(iii) Velocity: Analysis of streaming data in

terms of speed.

Figure 1: A Holistic View of a Big Data System

Flat Files, Database, Data warehouse,

Cloud Infrastructure, other information repositories

are set of databases Thee information is collected

from structured or an unstructured data. Collected

data may be represented as an inconsistent format.

So there is need to convert an inconsistent data into

a consistent data by using certain preprocessing

techniques like data cleaning, data integration, data

transformation, data reduction and concept

hierarchy generation. Data cleaning as a process

one of a data migration tool is ETL (Extraction,

Transformation, Loading). This tool allows simple

transformation through Graphical User Interface

(GUI).

Enterprise Data warehouse gathers all

information by spanning the entire organization

[32]. It collects the data from multiple data sources

especially from one or more operational systems or

from external providers. The data is summarized

and the size ranges from gigabytes to terabytes or

beyond. It is implemented using parallel

architecture or on mainframes. It is essential to

mine the data using various data mining algorithms

like characterization, classification, association and

correlation analysis, clustering, outlier analysis,

prediction and evolution analysis. One of data

mining algorithm used is association mining. By

using big data analytics the data is partitioned into

training and testing data set. Holdout, random

subsampling, cross validation and bootstrap are the

techniques that are used to estimate accuracy.

Hadoop is scalable fault tolerant

distributed system for data storage and processing.

Hadoop works on distributed model, which are low

cost computers [2]. Hive is similar to data

warehouse but the difference between Hive and

data warehouse is Hive uses entire population of

data where as data warehouse uses only a single

portion of data. Pig Latin Data Analytics is an

abstraction on top of an underlined Map Reduce

implementation. Mahout is an artificial intelligence

[3]. For example websites like amazon uses some

kind of search runs on top of it. Influences the end

customer to buy that product which are not done in

any previous website. These three components are

underlined above Hadoop Distributed File System

and Map Reduce. Apache Oozie is a workflow

helps to start and stop the jobs and run jobs at

specified intervals of time [2]. It also helps to

schedule Map Reduce, Hive, Pig Latin, Mahout

jobs are specified intervals of time [3]. The

frameworks include flume and sqoop. Sqoop pulls

the data from Online Transactional Processing

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

263

(OLTP) or RDBMS and puts it into Hadoop

implementations. The Flame is more about

unstructured or semi-structured data, which helps to

pull as well as push data from system to put into

Hadoop Distributed File System environment.

Hadoop consist of mainly two components HDFS

and Map Reduce.

Figure 2: Hadoop Ecosystem

3.2 HDFS Architecture and Map Reduce

Hadoop Distributed File System (HDFS)

part is typical cluster with collection of machines

and their will be one heavy due server called as

Admin Node and their will be collection of

commodity machine. Commodity machine is like

Personal Computer, Laptops of 8GB RAM,

1tetrabytes of hard disk and Intel i7 processing

power. A typical hadoop implementation could

have one Admin Node and 10 to 15 commodity

machines are spread across the clusters. HDFS

contains Master and Slave. Master (admin) Node

runs on two daemons. One is Job Tracker and

another is Name Node. Name Node directly

correlates to HDFS part of it.

The Name Node and Admin Node

manages everything with respect to storing,

managing and accessing huge data files. In contract

to that Job Tracker is more about Map Reduce

Algorithm implementation [8] [9]. They both run at

admin node levels and they both are daemons. The

role of Job Tracker component is to break higher

and bigger task into smaller pieces and to send each

small computation to task tracker and send result

back to Job Tracker as it combines the results and

sends final result to application and Node Name

running on master is responsible for storing

metadata information about name and replications.

A typical admin node is a heavy-duty machine with

64GB RAM kind of machine. Slave consist of set

of the commodity machines are those machines

which save data and trying to save on Distributed

System which always have two daemons running

on it. One is data node and another daemon could

be task tracker. Data Node is going to take care

about the distributed aspect of an implementation

and Task Tracker is going to take care about Map

Reduce Algorithm implementation part of it. Data

Node is interacting with Name Node and where as

Task Tracker is going on interacting with Job

Tracker. Data is replicated on multiple nodes.

Hadoop solves the limitations of an existing system

of RDBMS/ Data warehouse. HDFS helps to solve

entire file a gigabytes of size [2] [6]. Unlike in data

warehouse, no need to cut the portion of it and do

the analytics. So the Map Reduce framework does

the analytics but in hadoop takes very less time [8].

If we increase the size of the commodity machine

the amount of time it takes for processing will be

less than an hour which scales out an efficient

architecture.

For example if client sends file size of

200MB request to node name then the file is

divided into four block which are termed as input

splits because the default block size of hadoop is

64MB. So, their exist four input splits for a given

file size. First three blocks consist of 64MB size

each and the last block consist of 8MB and the

remaining 56MB free space can be given another

file size. But the client does not now what are free

spaces available in the data node. Suppose if a

system is crashed then one of the input split file

will be lost. To overcome this HDFS maintains

three replications (or a back up files) by default [2].

It also gives the acknowledgement to the client that

the first input split is stored in 1, 2 and 4

commodities. The data node gives block report and

heart beat to Name Node for every small period of

time such that the blocks are live or dead. If the

Meta data is lost then there is no useful with

hadoop and the entire cluster is inaccessible. It is

always recommended to maintain Node Name with

a high reliable hardware in order to overcome the

data loss. So the Node Name is called as single

point of failure. Assume that for processing data of

200MB we require program size of 10KB. Client

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

264

sends the 10KB of data in HDFS environment there

comes the existence of Job Tracker. Job Tracker

sends Meta data operations to get the block

information that is available in Name Node.

 Figure 3: Hadoop Distributed File System Architecture

Job Tracker finds the nearest Task Tracker

so that the information can be sent in less amount

of time. The processing of program in Task Tracker

is defined as a Map. If Map working in a system is

crashed then the data node is lost [10]. The Job

Tracker will reallocate task to another Task Tracker

based replicated data available in a block. For every

3seconds of time the Task Tracker will give the

heart beat to Job Tracker to intimate that they are

alive. Job Tracker waits for 10 heart beats i.e., 30

seconds of time. Thereby concluding that either

Task tracker is working slowly or it is dead. Along

with heart beat Task Tracker sends the available

slots to Job Tracker. It is recommended to maintain

a high reliable hardware for Job Tracker. It is also

defined as single point of failure. The Task Tracker

generates output file. The number of output file is

based on number of reducer. Finally the reducer

combines the entire output file and it is sent back to

an application.

The object oriented programming

paradigm used in hadoop is Map Reduce. This

Model consist of two primitives (i) Map and (ii)

Reduce [8] [10]. The Map Reduce is based on (key,

value) pair where key should not contain any

duplicates but there is no restriction for value. For

example input file of size 200MB is divided into

four input splits. Record Reader reads only one

record at a time. Record Reader is a predefined

interface in hadoop. It records (byte offset, records

the entire transaction) which is in the form of (key,

value) pair. They are represented in four different

formats that are predefined classes in Hadoop.

Each Mapper contains number of lines in which

input split appears to be parallel processing.

Figure 4: Map Reduce Flowchart

The default one is Text Input Format, Key

Value Text Input Format, Sequence File Input

Format and Sequence File As Text Input Format.

The number of mapper depends on the input splits.

The Mapper generates the intermediate data which

is also in the form of (key, value) pair contains

duplicates keys. In order to prune redundant keys

we require two phases shuffling and sorting phase.

In shuffling phase it combines all values, which are

identical to key. Due to Writable Comparable

Interface the sorting is done automatically.

Therefore the Record Writer writes only 1 (key,

value) pair at a time. Finally the output file contains

part-00000.

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

265

Our Unique Approach using Map Reduce

Implementation:

Map (String Item, String Value)

// Item: Item Name in a Stream data

// Value: Support count value of an item

satisfying threshold value.

While (has more Data Stream)

 Value= Get Cached Data Stream ()

For each word in value

 Obtain Intermediate Data (w,”1”)

Reduce (String key, Iterator values)

//Key: a word

// Values: a list of count

While (has More Intermediate data)

int result= get result from HDFS

For each value V

 result=result + parseInt (V)

Obtain the result as a String

3.3 Proposed Method

In distributed computing, association rule

mining is more concerned with efficient and

scalable design of algorithm and requires less

communication of data in network. HDFS provides

efficient and scalable data that is processed in

location itself instead of transferring the data to the

computation section. In HDFS, only information

required for data processing is sent through network

and handling of nodes is done effectively in

distributed environment.

3.3.1 Construction and Mining of Input Split FP-

Tree

The Proposed algorithm Mining

Association Rule using Map Reduce is simple and

flexible because of hadoop framework that is

implemented using Map-Reduce object oriented

programming paradigm. FP-Tree is reduced form of

stored data that requires two times scanning of

database. But if the threshold value is very less for

huge amount of data set then the number of levels

in a tree will be a large number that increases

complexity. Root node of tree is labeled as null.

Second time it scans a database in order to create a

branch node for each transaction. The item set are

arranged in a descending order based on their

support count values and the list is denoted as

L={I1:8, I2:7, I3:6, I4:5, I5:2}. By scanning the

first transaction which contains three item sets are

arranged in L order i.e., <I1, I2, I3, I4, I5>.It leads

to the construction of first branch node of tree with

three nodes where I1 is the child of root node and

I2 is linked to I1. In second transaction T2 contains

I2, I3, I4 item sets, which are arranged in L, order

Here another branch is created to tree I2 is child to

root, I3 is linked to I2 and I4 is linked to I3 by

assigning a support count as 1 to each item sets. But

in third transaction, however the branch could share

common prefix I1 with an existing path for

Transaction T1 and by incrementing the count

value of each item by 1where <I3:1> is linked to

<I1:2>. Finally FP-Tree is obtained by considering

all the transactions. Therefore considering I4 as a

suffix , the prefix path for I4 is <I1,I2, I3:1>,

<I1,I3:1>, <I1:1>, <I2,I3:1> and <I1,I2:1> which

forms a conditional pattern-base. The conditional

FP-Tree for I4 contains all paths that are

mentioned-above as its support count is less than

the minimum support threshold value. The FP-Tree

contains the parameters like prefix path subtree and

header table. The header table has three attributes

namely Node Name, support count and node link.

In mining process having header table information

will be useful. But it will be burden for distributed

and massive data. In this paper we proposed input

split FP-tree helps us to store only minimum

information required for processing. It is

represented as follows: <bucket addressing, bucket

item, bucket count, index of parent node>.

Table 1: Transactional Data Set

TID
Item sets

T1 I1 I2

T2 I2 I3 I4

T3 I1 I3 I4 I5

T4 I1 I4 I5

T5 I1 I2 I3

T6 I1 I2 I3 I4

T7 I1

T8 I1 I2 I3

T9

I1 I2 I4

T10

I2 I3 I5

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

266

The input split FP-Tree is mined by calling

FP-growth (ISFP-Tree, l1) which is implemented as

follows: Map function operates on <Item set,

supp_count> which is a key, value pair and

produces the intermediate data in the form of

<Item set, supp_count> as conditional pattern base.

Since the intermediate data contains duplicates item

sets that are to be pruned using conditional input

split FP-tree handled by Mapper Job. For

performing this task we require shuffling phase

eliminates redundant keys and thereby by combing

all the support count which are the identical item

sets. Finally Reducer job produces frequent pattern

are constructed from Conditional Input Split FP-

Tree that produces another (key, value) pair as

<item sets, support_count>.

Table 2: Input Split Data Structure Corresponding to

FP-Tree

The procedure MRIS_DataStructure

illustrates to retrieve input split ‘S’ by scanning

database ‘D’ with set of items I={I1, I2,……..}. If

there are no input splits. It will discover the buffer

size ‘b’ by an analytical processing and deficiency

between the successive transactional identifier is

computed (TIDi and TIDi+1). The deficiency

indicates the irrelevant itemsets. If the deficiency is

less than min_supp threshold value (1%) then

increases the buffer size to store TIDi+1.

Algorithm: Mining Association Rule using Map

Reduce paradigm

Input: D, a transactional database with a set of

transactional identifiers TID={TID1, TID2, …,

TIDn} and min-sup, the minimum support count

threshold value.

Output: Input Splits Frequent Pattern ‘S’ with

<key, value> pairs.

Method:

1. The FP-tree is constructed in the following steps:

// Store the transactional database in HDFS.

a. Huge amount of data is divided into input

splits are based on data set size and HDFS

block size.

b. For each input split the record reader scans

only one record at a time and computes the

support count and itemsets. Prefix path

subtree is constructed from the distributed

input split FP-tree.

2. MapReduce Input Split Data Structure by

calling the procedure (MRIS_DataStructure)

a. if (! Scan D contains (S))

b. {

c. def:=0,b:=0

d. i:=S’s index in TID

e. while((def<min_supp)and(b+def+lengt

h(TIDi) < number of transactions))

f. {

g. b:=b + def + length(TIDi)

h. def:= ref (TIDi+1)-ref(TIDi)-

length(TIDi)

i. i:=i+1

j. }

k. starting from ref(S), identify Itemsets

from D

l. }

m. return scan ‘D’.get_Input Splits (S)

3. The input split FP-Tree is mined by calling

the procedure (ISFP-tree, 11)

a. if input split tree consist of single path

b. {

c. for each aggregation (denoted as l2) of

Name Node in the path produces l2 U l1

with supp_count= min_sup of Name Node

in l2.

d. }

e. else

f. for each link li in header table of ISFP-

Tree

g. {

h. Generates pattern l2=liUl1 with supp_count

=li.supp_count.

Bucket

Address

0 1 2 3 4 5 6

 Item

root I1 I2 I2 I3 I4 I3

Count

0 8 2 5 1 1 2

Parent

null 0 0 1 1 1 2

Bucket

Address

7 8 9 10 11 12 13 14

 Item

I3 I4 I4 I5 I4 I5 I4 I5

Count

3 1 1 1 1 1 1 1

Parent

3 3 4 5 6 6 7 9

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

267

i. Generate l2’s conditional pattern base and

l2’s conditional ISFP-Tree

j. If ISTreel2 � Φ� ∅not null then

k. Call FP-growth (ISTreel2 , l2)

l. }

4. For optimizing the output file more specifically

the additional operation ⨁ is to be performed for

reducer that is in the form of (key, value) pair and

the function ‘f ‘ is defined as

f({V0,V1,V2,……..Vn})=V1⨁V2⨁V3⨁……….⨁V

n

To perform this task, the programmer

should use additional reducer by declaring it as an

interface. The optimized Input Split FP-Tree is

measured by using Gain Ratio per Sensitive Loss

data (GRSL). The highest value of GRSL is

considered as more relevant one. The GRSL of

specific: base ⟶ derive (base) is formulated as

follows:

The term GR (Si) is the Gain Ratio of a particular

Input Split FP-Tree Si and SL (Si) is the sensitive

lossy data. Both the terms can be calculated by

using certain statistical measurements.

Let Tx denotes set of training dataset

containing items which are generalized to ‘x’ where

| Tx | is the number of tuples in Tx. I (Tx) denotes

the entropy of Tx. Let | (Tx, sv)| describes number of

tuples with a sensitive value SV in Tx and

Information gain of training dataset I (Tx) is

formulated as follows:

A data vector of split point of all itemsets in a

transactional database is defined as anonymization

hierarchy (AH).

AH = < S1, S2, …… ……,Sn> where Si 1� i �	n is

the split point of Input Split FP-Tree. Let Ab

indicates anonymity of before forming Input Split

and Ad (Si) indicates anonymity of after forming

Input Splits sensitive lossy data is measured as

follows:

 SL (Si) = Ab - Ad (Si) (8)

Figure 5: Mining Input Split FP-Tree based on Input

Split Data Structure corresponding to FP-Tree by

considering prefix path subtree ending with each itemset.

(a) Prefix Path Containing I1

 (b) Prefix Path Containing I2

(c) Prefix Path Containing I3

(d) Prefix Path Containing I5

(e) Prefix Path Containing I4

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

268

4. EXPERIMENTAL RESULTS

To Calculate the performance of mining

the association rule using Map Reduce Object

Oriented programming paradigm the data sets are

generated by conducting the experiments on multi-

node hadoop commodity machines and each node

with the configuration 320GB of hard disk, Intel

core i7 2.5GB and 4 GB of RAM. Hadoop is open

source software, which requires JDK to be installed

on Linux system. The hadoop can be verified using

jps command. To verify the performance of

MapReduce copy files from local drive to HDFS.

As the name node records the metadata for each

file.

To compare the performance of Input

Split Frequent Pattern Tree using Map Reduce

algorithm with Tidset based Parallel FP-Tree

algorithm that includes Apriori and FP-growth

algorithm. But TPFP-Tree uses divide and conquer

approach and produce a better result in PC clusters

and grid computing. Parallel mining of Association

Rule from text database on the set of commodity

machines as clusters. But the data set generated

using IBM’s Quest Synthetic, TPFP-Tree does not

perform effectively as it distributes the data in

cloud environment among the set of nodes [31] [36]

[37]. The results are analyzed by conducting

experiments.

Table 3: The Datasets that are taken for ARM

Dataset Items Transaction
Size

(MB)

Chess
90 3495 0.45

Yeast
850 150000 4.96

FoodMart
43000 1000005 35.60

Figure 6, 7 and 8 shows experimental

results conducted for Chess, Yeast and FoodMart

dataset that illustrate execution time (in minutes) of

Input Split FP-Tree and Tidset Parallel FP-Tree.

For large-scale datasets Input Split Frequent Pattern

Tree using MapReduce shows more efficient

algorithm when compared to other three algorithms

like Apriori, FP-Tree and Tidset parallel FP-Tree

especially when minimum support threshold value

is very low. In Table 4 MapReduce Time and

Runtime for the various datasets. In HDFS, the

number of mapper plays a vital role in the runtime

of Job Tracker and Task Tracker. The number of

reducer determines how many input split files are

required to produce the desired output file. If there

exist only one reducer, then the output file will be

larger in size. This output file becomes a heavy

weight component that has to be transferred to

various data node over network. As the experiments

are conducted on various dataset like Chess, Yeast

and Foodmart datasets by considering 1%

minimum support threshold value.

Table 4: MapReduce Time and Runtime for the Various

Datasets

Transactions Map

Time

Reduce

Time

Runtime

(in minutes)

3495
3.57 23.81 4.3

150000
21.92 45.91 12.2

1000005
41.21 86.7 22.5

Figure describes the execution time in

minutes and number of reducer. Table 5 shows

runtime between two algorithms. Input Split FP-

Tree performs better than Tidset based Parallel FP-

Tree because the proposed algorithm uses

MapReduce paradigm for larger dataset as it

generates input split files. Like Input Split FP-Tree

algorithm constructs subtree in map phase and

mining Input Split FP-Tree in reducer phase.

Table 5: Runtime/Execution Time between the two

Algorithms

Dataset
Input Split FP-

Tree

Tidset Parallel FP-

Tree

Chess
4.3 37.5

Yeast
12.2 87.2

FoodMart
22.5 97.5

 The Tidset Parallel Frequent Pattern Tree

performs a good processing for medium size data

set. As day-by-day it increases the data

heterogeneity and complexity. For such kind of a

data the TPFP-Tree algorithm increases

exponentially [20] [21]. But for mining association

rule using Map Reduce algorithm gives fast and

efficient scalability. The Input Split Frequent

Pattern-Tree construction is based on each

individual by dividing the data set based on Hadoop

block size and merging the obtained result performs

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

269

lot of information sharing among data nodes and

Node Name.

Figure. 6: Runtime in Minutes for Chess Dataset and

Considering 1% Minimum Support ThresholdVvalue.

Figure 7: Runtime in Minutes for Yeast Dataset and

Considering 1% Minimum Support Threshold Value.

Figure 8: Runtime in Minutes for FoodMart Dataset and

Considering 1% Minimum Support Threshold Value.

In mining association rule using Map

Reduce algorithm, as execution time decreases as

the number of nodes increases. Thus storage and

processing of a data in hadoop gives a better

performance.

5. CONCLUSION

In this paper we proposed Input Split Frequent

Pattern Tree algorithm using Map Reduce paradigm

that uses hadoop cluster efficiently in order to

retrieve the frequent item sets from huge data sets.

In this algorithm data is stored in hadoop cluster

inside the hadoop distributed file system and it is

processed or implemented using Map Reduce

object oriented programming paradigm. Unlike in

the existing algorithm Tidset Parallel Frequent

Pattern Tree algorithm uses divide and conquer

approach but the data storage and processing is

done efficiently only for medium data set in cloud

environment but for large data set. In this algorithm

also it requires a lot of information sharing between

name node and data node in hadoop master and

slave architecture. Because of the implementation

of Map Reduce model in hadoop and the presence

of intermediate data the processing has became

very easy. Based on the experimental results Input

Split Frequent Pattern Tree is fast and scalable than

Tidset Parallel Frequent Pattern Tree algorithm.

REFRENCES:

[1] R. Agrawal, R. Srikant, Fast algorithms for

mining association rules, in: Proceedings of the

20th International Conference on Very Large

Data Bases, 1994, pp. 487–499.

[2] Apache Hadoop, http://hadoop.apache.org.

[3] Apache Mahout, http://mahout.apache.org. 

[4] bigdata@csail, http://bigdata.csail.mit.edu/. 

[5]‘Big Data’ has Big Potential to Improve

Americans’ Lives, Increase Economic

Opportunities, Committee on Science, Space

and Technology (April 2013). URL

http://science.house.gov/press-release. 

[6] D. Borthakur, J. Gray, J.S. Sarma, K.

Muthukkaruppan, N. Spiegelberg, H. Kuang,

K. Ranganathan, D. Molkov, A. Menon, S.

Rash, R. Schmidt, A. Aiyer, Apache Hadoop

Goes Realtime at Facebook, in: Proceedings of

the ACM SIGMOD International Conference

on Management of Data (SIGMOD

2011),ACM, New York, USA, 2011, pp. 1071–

1080. 

[7] D. Borthakur, “Facebook has the worlds largest

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

270

hadoop cluster,” Re- trieved April, vol. 20, p.

2012, 2010.  

[8] Y. Chen, S. Alspaugh, R. Katz, Interactive

Analytical Processing in Big Data Systems: A

Cross-Industry Study of MapReduce

Workloads, Proceedings of the VLDB

Endowment 5 (12) (2012) 1802–1813. 

[9] Q. Chen, D. Zhang, M. Guo, Q. Deng, and S.

Guo, “Samr: A self- adaptive mapreduce

scheduling algorithm in heterogeneous

environ- ment,” in Computer and Information

Technology (CIT), 2010 IEEE 10th

International Conference on. IEEE, 2010, pp.

2736–2743.

[10] Y. Chen, S. Alspaugh, D. Borthakur, R. Katz,

Energy Efficiency for Large-Scale MapReduce

Workloads with Significant Interactive

Analysis, in: Proceedings of the 7th ACM

European Conference on Computer Systems

(EuroSys 2012), ACM, New York, USA, 2012,

pp. 43–56.

[11] “Cogset: A unified engine for reliable storage

and parallel processing,” in Network and

Parallel Computing, 2009. NPC’09. Sixth IFIP

International Conference on. IEEE, 2009, pp.

174–181.  

[12] J. P. Dijcks, “Oracle: Big data for the

enterprise,” Oracle White Paper, 2012.  

[13] D. Fisher, R. DeLine, M. Czerwinski, S.

Drucker, Interactions with Big Data Analytics,

Interactions 19 (3) (2012) 50–59. 

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung,

“The google file system,” in ACM SIGOPS

Operating Systems Review, vol. 37, no. 5.

ACM, 2003, pp. 29–43.  

[15] L.Glimcher, R.Jin , G.Agarwal, Middleware

for data mining application on clusters and

grids, Journal of Parallel and Distributed

Computing 68 (1) (2008). 37-53.

[16] GrahneG, ZhuJ(2005)Fast algorithms for

frequent itemset mining using FP-trees.

IEEETransKnowl Data Eng 17(10): 1347–

1362

[17] J. Han, J. Pei, Y. Yin, R. Mao, Mining

frequent patterns without candidate generation:

a frequent-pattern tree approach, Journal of

Data Mining and Knowledge Discovery (8) - 1

(2004) 53 -87.

[18] A. Hadoop, “Apache hadoop nextgen

mapreduce (yarn),” 2013.

[19] J.D.Holt, S.M.Chung, Parallel mining of

association rules from text databases on a

cluster of workstations, Proceeding of 18
th

International Symposium on Parallel and

Distributed Processing, 2004.

[20] E.H.S Han, G.Karypis, Scalable parallel data

mining for association rules, IEEE Transaction

on Knowledge and Data Engineering 12 (3)

(2000). 

[21] E.H.S Han, G. Karypis, V.Kumar, Scalable

parallel data mining for association rules,IEEE

Transaction on Knowledge and Data

Engineering. 12 (3) (2000). 352-377.

[22] HanJ,PeiJ,YinY(2000)Mining frequent

patterns without candidate generation. In:

Proceedings of the 2000 ACM SIGMOD

international conference on management of

data (SIGMOD ’00), pp 1–12

[23] The Intel science and technology center for big

data, http://istc-bigdata.org.

[24] A.Javed , A. Khokhar, Frequent pattern mining

on message passing multiprocessor systems,

Distributed and Parallel Database 16 (3) (2004)

321 – 334.

[25] R. T. Kaushik and M. Bhandarkar,

“Greenhdfs: Towards an energy- conserving

storage-efficient, hybrid hadoop compute

cluster,” in Pro- ceedings of the USENIX

Annual Technical Conference, 2010.

[26] Mannila H, Motwani R (eds) Proceedings of

the second SIAM international conference on

data mining. Arlington, VA, pp 457–473

[27] A.MateiZaharia, A. Joseph, and I. RandyKatz,

“Improving mapreduce performance in

heterogeneous environments,” 2010.

[28] T. Nykiel, M. Potamias, C. Mishra, G. Kollios,

and N. Koudas, “Mrshare: sharing across

multiple queries in mapreduce,” Proceedings

of the VLDB Endowment, vol. 3, no. 1-2, pp.

494–505, 2010.

[29] PasquierN, TaouilR,BastideY,StummeG,

LakhalL (2005): Generating a condensed

representation for association rules. J Intell Inf

Syst 29–60

[30] PeiJ, HanJ, MaoR (2000) CLOSET: an

efficient algorithm for mining frequent closed

itemsets. In: ACM SIGMOD workshop on

research issues in, data mining and knowledge

discovery, pp 21–30  

[31] M.S.Perez , A. Sanchez , V.Robles , P.Herrero,

J.M Peria, Design and implementation of a data

mining grid – aware architecture, Future

Generation Computer Systems 23 (1) (2007)

42-47.

[32] P. Russom, Big Data Analytics, TDWI best

practices report, The Data Warehousing

Institute (TDWI) Research (2011).

[33] Raymond Gardiner Goss Kousikan

Veeramuthu , “Heading Towards Big Data

Building A Better Data Warehouse For More

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

271

Data, More Speed, And More Users”, 978-1-

4673-5007-5/13/ ©2013 IEEE

[34] S. Shankar, A. Choi, and J.-P. Dijcks,

“Integrating hadoop data with oracle parallel

processing–an oracle white paper,” Oracle

Corporation, 2010.

[35] S. V. Valvag and D. Johansen, “Oivos: Simple

and efficient distributed data processing,” in

High Performance Computing and

Communica- tions, 2008. HPCC’08. 10th IEEE

International Conference on. IEEE, 2008, pp.

113–122.  

[36] C.H.Wu, C.C.Lai, Y.C.Lo, An empirical study

on mining sequential patterns in a grid

computing environment, Expert systems with

Application 39 (5) (2012) 5748-5757.

[37] K.M.Yu, J.Zhou, Parallel TID- based frequent

pattern mining algorithm on PC clusters and

grid computing system, Expert system with

Applications 37 (3) (2010) 2486-2494.

[38] J.Zhou, K.M.Yu, Parallel TID- based frequent

pattern mining algorithm on PC clusters and

grid computing system, Expert system with

Applications 37 (3) (2010) 2486-2494.

[39] J.Zhou, K.M.Yu, Tidset - based parallel FP-

tree algorithm for the frequent pattern mining

problem on PC clusters, Lecture Notes in

Computer Science 5036 (2008).18-28.

[40] Zibin Zheng, Jieming Zhu, and Michael R.

Lyu , “Service-generated Big Data and Big

Data-as-a-Service: An Overview” , 978-0-

7695- 5006-0/13 © 2013 IEEE

