10th February 2016. Vol.84. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved

ISSN: 1992-8645

www.jatit.org

SENTIMENT ANALYSIS SYSTEM AND CORRELATION ANALYSIS ON HOSPITALITY IN BALI

I GEDE SUARDIKA

STMIK STIKOM Bali, Denpasar Indonesia

E-mail: mail2suarbilt@gmail.com

ABSTRACT

Bali is one of the favorite tourist destinations for foreign visitors who are currently experiencing overcapacity accommodation facilities. One way to stabilize between positive and negative impacts is by improving tourism marketing which can be done by increasing the number of rating and review on online media. Review valence (positive or negative review) is one of the aspects that affect consideration to a hotel guest. Classification to review valance can be done with sentiment analysis. In this research, sentiment analysis to hotel review is conducted by Naïve Bayes Method. The dataset used is reviews of some hotel in some areas in Bali are selected based on its ranking on Tripadvisor. Review of several hotels in several areas in Bali are selected based on its ranking on Tripadvisor is used as dataset. A web-based system is built to perform sentiment analysis. Tests conducted to determine the level of classification accuracy. Correlation analyzes were conducted to determine whether there is a relationship between ratings with the classification results. Sentiment Analysis System can be built using the PHP programming language, MySQL database, and Naïve Bayes classifier algorithm with average accuracy level is 81%. Correlation analysis proved the hypothesis that the lower rating of the hotel on the TripAdvisor website, the greater percentage of negative sentiment. Results of tests of significance of the correlation coefficient indicates that the data and coefficients obtained in the sample used in this study can be generalized to the population.

Keywords: Sentiment Analysis System; Hotel Reviews; Correlation Analysis

1. INTRODUCTION

Bali is one of the provinces in Indonesia which is favorite destination for foreign tourists. In 2014, 39.92% of the total foreign tourists visiting Indonesia are tourists who visited Bali. The number of tourist arrivals to Indonesia, and the percentage visiting Bali from years 2001-2014 shown by

Year	Number Of Fore	Number Of Foreign Tourist Arrivals							
rear	INDONESIA	BALI	%						
2001	5,153,620	1,356,774	26.33						
2002	5,033,400	1,285,844	25.55						
2003	4,467,021	993,029	22.23						
2004	5,321,165	1,458,309	27.41						
2005	5,002,101	1,386,449	27.72						
2006	4,871,351	1,260,317	25.87						
2007	5,505,759	1,664,854	30.24						
2008	6,234,497	1,968,892	31.58						

Year	Number Of Foreign Tourist Arrivals								
rear	INDONESIA	BALI	%						
2009	6,323,730	2,229,945	35.26						
2010	7,002,944	2,493,058	35.60						
2011	7,649,731	2,756,579	36.03						
2012	8,044,462	2,892,019	35.95						
2013	8,802,129	3,278,598	37.25						
2014	9,435,411	3,766,638	39.92						

Sutapa and Wisnawa in his research stating that Bali excess accommodation facilities. The growth rate of the hotel rooms are not comparable with the growth of the number of tourists coming to Bali [1]. The growth number of star-rated hotels in Bali in 2010-2014 indicated by Table 2, while the growth number of tourists coming to Bali shown by Table 3. Excess of accommodation facilities is caused by several factors, namely: (1) investment shift to the accommodation sector and the property sector; (2) the convenience provided by the government in terms of licensing; (3) the economic recession in

10th February 2016. Vol.84. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved

ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-3195

Europe; and (4) land tax is too high and the consumptive culture of Bali [1]. Sutapa and Wisnawa mention that the best way to stabilize between positive and negative effects of overcapacity of accommodation in Bali: (1) increasing the marketing efforts of tourism in Bali; (2) MICE tourism boost; (3) halt the construction of accommodation facilities in the area of South Bali; and (4) standardize the price of the room [1].

Tabla	2.	Number	of	Star	Hotal	Pooms	in	Rali
Table	2.	number	ΟJ	siar	погег	Rooms	ın	Бан

Year		H	Iotel Sta	ır		Count
i eai	5	4	3	2	1	Count
(1)	(2)	(3)	(4)	(5)	(6)	(7)
2014	12 122	9 345	5 304	1 469	562	28 811
2013	11 177	7 463	4 045	1 385	790	24 860
2012	10 803	7 548	3 729	1 351	784	22 794
2011	10 469	6 887	3 215	1 340	883	21 133
2010	10 462	6 064	2 485	1 676	446	18 684

	Month	Year							
		2010	2011	2012	2013	2014			
	(1)	(3)	(4)	(5)	(6)	(6)			
1	Jan	179 273	209 093	253 286	232 935	279 257			
2.	Feb	191 926	207 195	225 993	241 868	275 795			
3.	Mar	192 579	207 907	230 957	252 210	276 573			
4.	Apr	184 907	224 704	225 488	242 369	280 096			
5.	May	203 388	209 058	220 700	247 972	286 033			
6.	Jun	228 045	245 652	244 080	275 667	330 396			
7.	Jul	254 907	283 524	271 512	297 878	361 066			
8.	Aug	243 154	258 377	254 079	309 219	336 763			
9.	Sep	240 947	258 440	257 363	305 629	354 762			
10.	Okt	229 904	247 565	255 021	266 562	341 651			
11.	Nop	199 861	221 603	242 781	307 276	296 876			
12.	Des	227 251	253 591	268 072	299 013	347 370			
	Sum	2 385 122	2 576 142	2 826 709	3 278 598	3 766 638			
	Growth (%)	8.01	9.73	4.34	11.16	14.89			

Table 3: Number of Foreign Tourists Visit To Bali

To improve marketing, primarily to increase the hotel bookings, hence the hotel needs to increase the number of rating and review on online media Research conducted by Deependra Singh and Edwin Torres get the result that both the online ratings and total review give a positive impact on the average amount of each transaction [2]. In addition to providing a positive impact on transaction ordering, number of hotel reviews on online media can also improve the performance of the hotel. Pasi Tuominen in the study stated that there is a correlation between the performance of the hotel and a number of reviews given as well as the ratings of these reviews [3]. Consideration for hotel guests is influenced by several aspects of the review of the hotel. These aspects according to Ivar and Daphne are: (1) review valence (positive or negative reviews), (2) hotel familiarity (famous or less famous), and (3) reviewer expertise (expert or non-expert) [4].

To perform the classification of the review valence, can be done with sentiment analysis. Sentiment analysis is a process that aims to determine the contents of the dataset (documents, sentences, paragraphs, etc.) are positive, negative or neutral [5]. There is lot of sentiment classification algorithm proposed by the researchers, namely: Naïve Bayes (NB), Artificial Neural Network (ANN), and Support Vector Machine (SVM) [6].

Several studies have been conducted to find the right algorithm to perform sentiment analysis, but have not found the most appropriate algorithm. The algorithm is most often demonstrated high performance in analyzing the sentiment is NB, ANN and SVM. This study uses an NB algorithm to analyze the sentiment of the review of the hotel.

The purpose of this research are: (1) to build an Analysis Sentiment System with Naïve Bayes Classifier algorithm; (2) to find out the correlation between rating of hotel on Tripadvisor and percentage of negative sentiment; and (3) to find out if the sample used in this study can be generalized to the population where it is taken from.

2. RELATED WORK

Research conducted by Vinita Chandani, Romi Satria Wahono, and Purwanto do a comparison of some studies that apply the classification algorithm and feature selection. The comparison is shown in the Table 4.

Journal of Theoretical and Applied Information Technology <u>10th February 2016. Vol.84. No.1</u>

© 2005 - 2015 JATIT & LLS. All rights reserved

ISSN	: 1992-8	8645			<u>www.jat</u>	it.org				E-ISSN	V: 1817-3195
Tab	ole 4: C	omparison Feat	of Classifica ture Selectio		rithm and	Yr.	Na me	Algo Classifica	rithm <i>Feature</i>	Data Set	Result
Yr.	Na me	Algo Classifica tion	rithm Feature Selection	Data Set	Result	2000	For man	tion	Selection 12 algorith m		IG and chi-square obtain
2015	Vini ta Cha nda ni	SMV, NB, dan ANN	IG, Chi Square, Forward Selection , dan Backwar d Eliminati on	Film Review	The best results are obtained by SVM algorithm combined with IG algorithms				m		better results than the Bi-Normal Separation method that researchers proposed
2002	Pan g, Lee, Rd, & Jose	NB, maximu m entropy and SVM	-	Film Review	The best results obtained are SVM	2008	S Tan & Zha ng			Chines e docume nts	The best results obtained are IG
2013	Rod rigo Mor aes et al	ANN, SVM and NB	-	Film review, Global Positio ning System (GPS), book dan camera	The best results obtained are ANN	2011	Kon cz & Para lic	SVM	n- grams+ documen t frequenc y compare d with Informati on Gain (IG)		IG is better than the proposed algorithm
2011	Z. Zha ng, Ye, Zha ng, & Li	SVM and NB	-	Restaur an review t	The best results obtained are NB	2013	Rod rigo Mor aes, Joao Fran cisc	SVM, Naïve Bayes (NB) and Artificial Neural	expert knowled ge, minimu m frequenc y, IG,		The best result are: ANN for the classificati on And IG for
2008	S Tan & Zha ng	NB, centroid classifier , k- nearest neighbor		Chines e docume nts	The best results obtained are SVM		o Vali ati, Wils on P	Network (ANN)	chi- square.		the feature selection
		(KNN), winnow classifier and SVM				2010	Zhu Jian, Xu Che n dan	individua l model (imodel) based on ANN	odd ratio		i-model based on ANN was the best result
1997	Yan g & Ped erse n	-	documen t frequenc y, IG, chi- square, term strength and mutual informati on.		IG and chi-square are the most efficient		Wan g Han Shi	compare d with hidden markov model and SVM			

<u>10th February 2016. Vol.84. No.1</u> © 2005 - 2015 JATIT & LLS. All rights reserved TITAL

E-ISSN: 1817-3195

Yr.	Na me	Algo	rithm	Data Set	Result	3.
	inc	Classifica tion	Feature Selection	Set		
2008	Son gbo Tan dan Jin Zha ng	centroid classifier , K- nearest neighbor, winnow classifier , NB and SVM	Mutual Informati on, IG, chi- square and Docume nt Frequenc y		The best result are: SVM for the classificati on And IG for the feature selection	

Research conducted by Novantirani Anita, Mira Kania Sabariah, and Veronikha Effendy performs sentiment analysis of the twit dataset of overland public transportation using SVM algorithm. The results obtained are SVM can be implemented with an accuracy of 78.12%. Variables that influence the accuracy is the amount of data, comparison of the amount of training data and test, as well as the comparison of positive and negative amount of data used [8].

Research conducted by Tough Heru Susilo, Siti Rohimah performs classification and sentiment analysis on social media status. The results obtained are within the classification of topics in Indonesian, a collaboration between the method Support Vector Machine (SVM) with weighting feature Term Frequency - Inverse Document Frequency (TF-IDF), can be used with a 93% accuracy rate. While performing sentiment analysis in Bahasa, collaborative methods of Maximum Entropy (MAXENT) with the features of word-shape "dan2" and POS-tagged using Hidden Markov, can be used with a level of accuracy of 70% to document positive and 53% to document negative [9].

Research conducted by Amir Hamzah performs sentiment analysis to the text document containing suggestions and comments from AKPRIND IST students. The algorithm used to perform the classification of opinions is NBC with an average accuracy of 85.59% [10].

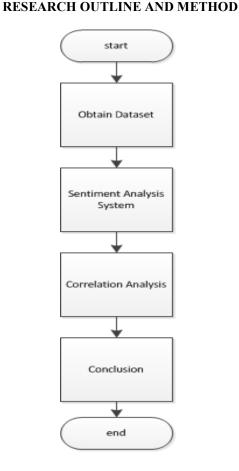


Figure 1: Research Workflow

3.1 Dataset

Dataset is hotel reviews which is obtained by scraping Tripadvisor website. Several area of hotel was selected for scraping, which is Jimbaran, Kuta, Nusa Dua and Seminyak. One hotel with high ranking and one hotel with low ranking is selected for each area. Tests will be conducted to determine whether there is a relationship between ratings with sentiment analysis results. The dataset is shown in the Table 5.

Table 5: Data Set

No	Area	Rank- ing	Hotel	Review
1	Jimbaran	High	INTERCONTI- NENTAL Bali Resort	130
2	Jimbaran	Low	The Rich Prada Hotel Bali	25
3	Kuta	High	Discovery Kartika Plaza Hotel	70
4	Kuta	Low	LA Inn	36
5	Nusa DUa	High	Melia Bali	110

10th February 2016. Vol.84. No.1 © 2005 - 2015 JATIT & LLS. All rights reserved

ISSN: 1992-8645 www.jatit.org Indonesia 6 Nusa Dua Low Bali Relaxing 24 Resort Spa 7 Seminyak High W Retreat Spa 20 Bali Seminyak 10 8 Seminyak Low Bali Relaxing Resort Spa

3.2 Sentiment Analysis

Sentiment analysis was conducted using NB. NB method chosen because it is one of the methods most often showed the best performance in the classification. Besides that, the system is built based on web, so that the process should be take less time. NBC chosen because of its superiority in computational simplicity [10].

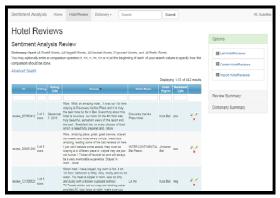


Figure 2: Sentiment Analysis System

Web-based system that is built used to perform sentiment analysis on datasets. The programming language used is PHP, and MySQL as a database system. Sentiment analysis performed by the system shown by Figure 2. The flowchart of Sentiment Analysis is shown by Figure 3. The accuracy of the classification is done by using the formula (1).



Figure 3: Sentiment Analysis Flowchart

10th February 2016. Vol.84. No.1 © 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645	<u>www.jatit.o</u>	rg				E-ISSN: 18	17-319	5
Accuracy = $\frac{num of correct}{1} x100\%$	(1)	Sentiment Analysis	Home	Hotel Review	Dictionary -	Search	Submit	

$$Accuracy = \frac{num of correct}{total num of data} x100\%$$

3.3 Correlation Analysis

To determine whether there is a relationship between the rankings in Tripadvisor with sentiment analysis results performed by correlation analysis. Correlation analysis is a statistical method used to measure the linear relationship between two or more variables [11].

The formula used to calculate the correlation coefficients Modest is as formula (2): (This formula is also called the Pearson Product Moment).

$$r = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{\sqrt{\{n\Sigma x^2 - (\Sigma x)^2\}\{n\Sigma y^2 - (\Sigma y)^2\}}}$$
(2)

n = The number of data pair X and Y

 Σx = The total amount of the variable X

 $\Sigma y =$ The total amount of variable Y

 $\Sigma x2$ = Squares of Total Number of Variable X

 $\Sigma y2$ = Squares of Total Number of Variable Y

 $\Sigma xy =$ Multiplication results of the Total Number of variable X and variable Y

RESULT AND DISCUSSION 4.

4.1 Sentiment Analysis

Data processing is performed based on data which is obtained from Tripadvisor hotel reviews. The dataset is then carried out by the sentiment analysis system built using Naïve Bayes classifier. The evaluation procedure presented by measuring the level of classification accuracy.

The data that has been processed is then used as a basis in the search for the relationship between hotel ranking (high or low) on the Tripadvisor site with the results of the classification (in positive sentiment, negative sentiment, or neutral sentiment).

Examples of hotel review that will be analyzed is: "staff pleasant enough room worse poor state". The results of analysis performed by the system indicates that a review of the hotel is classified as negative sentiment, where scores of each type of sentiment is negative = 0.571, positive = 0.286, and neutral = 0.143 as shown by the Figure 4.

Sentiment Analysis	Home	Hotel Review	Dictionary -	Search	Submit
Analyze ser	ntime	ent of th	ne sent	ence	
Sentence					
staff pleasant enough roor	n worse po	oor state			
					6
Analyze Sentiment					
Sentiment is Negatif					
Sentiment Scores:					

Figure 4: Calculation of Sentiment Analysis on the System

If calculated by the method Naïve Bayes Classification, then the calculation is as follows:

Table 6: Calculation With NBC

Туре	Doc	Words	Class
Training	1	Pleasant	Pos
	2	Like	Pos
	3	Poor	Neg
	4	Worse	Neg
	5	Average	Neu
	6	Absolute	Neu
Test	7	staff pleasant enough room worse poor state	?

Ι	Priors:
P(pos) = 2/6	= 0.333333333
P(neg) = 2/6	= 0.333333333
P(neu) = 2/6	= 0.333333333

Conditional Probabilities:	
Positive	
P(staff pos) = $(0 + 1) / (2+6) = 1/8$	= 0.125
P(pleasant pos) = $(1 + 1) / (2/6) = 2/8$	= 0.25
P(enough pos) = $(0 + 1) / (2+6) = 1/8$	= 0.125
P(room pos) = (0 + 1) / (2+6) = 1/8	= 0.125
P(worse pos) = $(0 + 1) / (2+6) = 1/8$	= 0.125
P(poor pos) = (0 + 1) / (2+6) = 1/8	= 0.125
P(state pos) = $(0 + 1) / (2+6) = 1/8$	= 0.125
Negative	
P(staff neg) = (0 + 1) / (2+6) = 1/8	= 0.125
P(pleasant neg) = $(0 + 1) / (2+6) = 1/8$	= 0.125
P(enough neg) = $(0 + 1) / (2+6) = 1/8$	= 0.125
P(room neg) = (0+1) / (2+6) = 1/8	= 0.125
P(worse neg) = $(1 + 1) / (2/6) = 2/8$	= 0.25
P(poor neg) = $(1 + 1) / (2/6) = 2/8$	= 0.25
P(state neg) = $(0 + 1) / (2+6) = 1/8$	= 0.125
Neutral	
P(staff neu) = (0+1) / (2+6) = 1/8	= 0.125
P(pleasant neu) = $(0 + 1) / (2+6) = 1/8$	= 0.125
P(enough neu) = $(0 + 1) / (2+6) = 1/8$	= 0.125
P(room neu) = (0+1) / (2+6) = 1/8	= 0.125
P(worse neu) = $(0 + 1) / (2/6) = 1/8$	= 0.125
P(poor neu) = $(0 + 1) / (2/6) = 1/8$	= 0.125
P(state neu) = $(0 + 1) / (2+6) = 1/8$	= 0.125
P(pos d7) = 2/6 * (1/8) * 2/8 * 1/8 * 1/8 * 1/8	* 1/8 * 1/8 =
0.00000032	

10th February 2016. Vol.84. No.1 © 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645	SN: 1992-8645 <u>www.jatit.org</u>					E-ISSN: 1817-3195			
P(neg d7) = 2/6 * (1/8) * 1/8 * 1/8 * 0.00000064	1/8 * 2/8 * 2/8 * 1/8 =	N O	Rang king	Neg. Sent.(%)	X	Y	X ²	Y ²	XY
$P(\text{ neu} \mid d7) = 2/6 * (1/8) * 1/8 * 1/8 * 0.00000016$	1/8 * 1/8 * 1/8 * 1/8 =	5	High	4	1	4	1	16	4
		6	High		1		1	9	
In percentages:				3		3			3
$P(\text{ pos} \mid d7) = 0.00000032 / (0.000 \\ 0.00000016) = 0.286$	00032 + 0.00000064 +	7	High	3	1	3	1	9	3
$\frac{P(\text{ neg } d7) = 0.00000064 / (0.000 \\ 0.00000016) = 0.571$	00032 + 0.00000064 +	8	High	5	1	5	1	25	5
$\frac{1}{P(\text{ neu} \mid d7)} = 0.00000016 / (0.000) \\ 0.00000016) = 0.143$	00032 + 0.00000064 +				$\sum_{i=1}^{n}$	Σr	\sum_{x}	$\sum r^{i}$	Σ
0.0000010) 0.145			Sum		12	11	20	3187	223

So, d7 belong to the class neg. Thus the hotel review "staff pleasant enough room worse poor state" is belonging to the negative sentiment.

4.2 Measurement accuracy level of sentiment analysis

A number of datasets are selected and counted the number of positive sentiment, negative sentiment, and neutral sentiment. The accuracy is calculated by the formula: Accuracy = correct amount / number of test data x 100%. The average level of accuracy sentiment analysis conducted by the method of Naïve Bayes classifier is at 81%.

No.	Rangking	Num of Review	In- correct	Accuracy (%)
1	Low	25	7	72
2	Low	36	13	64
3	Low	24	6	75
4	Low	10	2	80
5	High	130	12	91
6	High	70	9	87
7	High	110	11	90
8	High	20	2	90
	Ŭ		Average	81

Table 7: Classification Accuracy

4.3 Correlation Analysis Product Moment

N O	Rang king	Neg. Sent.(%)	X	Y	X ²	Y^2	XY
1	Low		2		4	144	
		12		12			24
2	Low		2		4	484	
		22		22			44
3	Low		2		4	900	
		30		30			60
4	Low		2		4	1600	
		40		40			80

1	Kang	neg.	А	I	л	r	ЛІ
0	king	Sent.(%)					
5	High		1		1	16	
	•	4		4			4
6	High		1		1	9	
	_	3		3			3
7	High		1		1	9	
	_	3		3			3
8	High	5	1		1	25	
	•			5			5
			$\sum_{i=1}^{n}$	Σr	$\sum x$	$\sum Y^{2}$	Σ
	Sum		12	11	20	3187	223
				9			

r _{xy} =	$\frac{n(\Sigma XY) - (\Sigma X)(\Sigma Y)}{\sqrt{\{m, \Sigma X^2 - (\Sigma X)^2\}} \{m, \Sigma Y^2 - (\Sigma Y)^2\}}$
r _{xy} =	$\frac{\$ (223) - (12)(119)}{\sqrt{\$(9.20 - (12)^2] - \{\$(3187 - (119)^2\}}}$
$r_{xy} = \frac{1}{4}$	356 25.9639

$$r_{xy} = 0.836$$

So the correlation coefficient between the effect of the hotel rangking on Tripadvisor site with the results of the sentiment analysis (negative sentiment) is 0.836, meaning the two variables have a close relationship and shape of the relationship is linear positive, which means that the lower of the hotel rating on the TripAdvisor, the greater the percentage of negative sentiment.

The correlation coefficient when tested its significance, comparing with table r (r Product Moment), the error level of 5% (95% confidence level) and N = 8, then the value of r table = 0.707. R count value is greater than r table (0836 > 0707), so that Ho refused and Ha accepted. So in conclusion, there is a positive relationship and the correlation coefficient between the ranking with sentiment analysis results is 0.836. Data and coefficient obtained in the sample can be generalized to the population which is taken from TripAdvisor.

When described by the scatter plot, the relationship between ratings with the results of sentiment analysis is shown by the Figure 5.

<u>10th February 2016. Vol.84. No.1</u>

© 2005 - 2015 JATIT & LLS. All rights reserved

JATIT

E-ISSN: 1817-3195

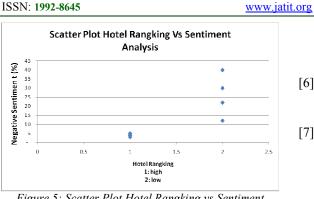


Figure 5: Scatter Plot Hotel Rangking vs Sentiment Analysis Result

5. CONCLUSION

are:

The conclusions obtained from this study

- 1. Analysis Sentiment System can be built with Php programming language, Database MySQL, and Naïve Bayes Classifier algorithm where average accuracy is 81%.
- 2. The results of correlation analysis prove the hypothesis that the lower rating of the hotel on the TripAdvisor, the greater the percentage of negative sentiment.
- 3. The significance of the test results show that the correlation coefficient data and the coefficient obtained in the sample used in this study can be generalized to the population where it is taken from.

REFRENCES:

- [1] I Ketut Sutapa and I Made Bayu Wisnawa, "OVER CAPACITY PEMBANGUNAN FASILITAS AKOMODASI DI BALI DALAM PERSPEKTIF EKONOMI DAN BISNIS," Jurnal Perhotelan dan Pariwisata, vol. 3, no. 2, p. 69, 2013.
- [2] Dipendra Sing and Edwin Torres, "Hotel Online Reviews and Their Impact on Booking Transaction Value," *XVI Annual Conference Proceedings*, January 2015.
- [3] Pasi Tuominen, "The Influence of TripAdvisor Consumer-Generated Travel Reviews on Hotel Performance," *University of Hertfordshire Business School Working Paper*, 2011.
- [4] Ivar E. Vermeulen and Daphne Seegers, "Tried and tested: The impact of online hotel reviews on consumer consideration," *Tourism Management*, vol. xxx, 2008.
- [5] E. Kontopoulos, C. Berberidis, T. Dergiades,

and N. Bassiliades, "Ontology-based sentiment analysis of twitter posts," *Expert Systems with Applications*, 2013.

- [6] P. Koncz and J. Paralic, "An approach to feature selection for sentiment analysis," *IEEE International*, 2011.
- [7] Vinita Chandani, Romi Satria Wahono, and Purwanto, "Komparasi Algoritma Klasifikasi Machine Learning Dan Feature," *Journal of Intelligent Systems*, vol. 1, no. 1, February 2015.
- [8] Anita Novantirani, Mira Kania Sabariah, and Veronikha Effendy, "Analisis Sentimen pada Twitter untuk Mengenai Penggunaan," *Jurnal EPROC*, Dec. 2014.
- [9] Tegar Heru Susilo and Siti Rochimah, "Pengklasifikasian Topik dan Analisis Sentimen Dalam Media Sosial," SNASTI, 2013.
- [10] A. Hamzah, "Meningkatkan Kinerja Naïve Bayes Classifier (NBC) Untuk Klasifikasi Teks dengan Menggunakan Clustering untuk Pemilihan Feature Kata," *Prosiding Seminar Nasional TEKNOIN 2012, Universitas Islam Indonesia*, November 2012.
- [11] R.E. Walpole, *Pengantar Statistika*, 3rd ed. Jakarta: Gramedia, 1995.
- [12] Amir Hamzah, "SENTIMENT ANALYSIS UNTUK MEMANFAATKAN SARAN **KUESIONER** DALAM **EVALUASI** PEMBELAJARAN DENGAN MENGGUNAKAN NAIVE BAYES CLASSIFIER (NBC)," Seminar Nasional Aplikasi Sains æ Teknologi (SNAST), November 2014.