SPEED CONTROL OF THE DOUBLY FED INDUCTION GENERATOR APPLIED TO A WIND SYSTEM

HALA ALAMI AROUSSI, ELMOSTAFA ZIANI, BADRE BOSSOUFI
Laboratory of Electrical Engineering and Maintenance (LGEM), Higher School of Technology, University Mohammed Premier Oujda - Morocco
E-mail: alami.aroussi.hala@gmail.com

ABSTRACT

This paper presents a nonlinear control of doubly fed induction generator (DFIG) integrated with a wind system. Initially, we propose a model of wind turbine and generator in order to apply the Field Orientation Control (FOC) approach. The Vector Control is still the most commonly used for the control of power and reactive powers, as well as in many industrial systems especially in production of electrical energy. Next, the synthesis of a proportional-integral regulator (PI) is presented. Subsequently, a technical control for wind energy systems is developed. The principle of this control is to direct the flux vector to make the doubly fed induction machine similar control standpoint to a separately excited DC machine. The performance’s system is analyzed and compared with a validation on the environment Matlab / Simulink.

Keywords: DFIG, Vector Control, Wind Energy, PI Controller.

1. INTRODUCTION

Among various types of renewable energy, wind energy is the most used in industry for the production of electrical energy since it represents a sizeable potential. We also note an orientation towards variable speed wind controlled by a doubly fed induction machine (DFIM).

The use of DFIM allows indeed reducing efforts on the mechanical parts, reducing noise and the possibility of control of active and reactive power.

In this context, several control approaches of DFIM have emerged, among them, the FOC, the principle of this technique is to direct the flux vector to make this machine similar control standpoint to a separately excited DC machine. This control is based on the conventional controllers (Proportional control, integral and derivative). In this article, we focus on direct vector control powers of DFIG, applied to wind system.

2. MODEL OF THE TURBINE:

By applying the theory of momentum and Bernoulli’s theorem, we can determine the theoretical power of the wind or wind power [1]:

\[P_{\text{theor}} = \frac{1}{2} \cdot \rho \cdot S \cdot v^3 \]

\(S \) : The circular swept area of the turbine [m²]

\(\rho \) : Air density (\(\rho = 1.225 \, \text{Kg/m}^3 \) at atmospheric pressure at 15 °C).

\(v \) : Wind speed [m/s]

The aerodynamic power appearing at the rotor of the turbine is then written [4]:

\[P_{\text{aer}} = \frac{1}{2} \cdot \rho \cdot S \cdot C_p(\lambda, \beta) \cdot v^3 \]

The power coefficient \(C_p(\lambda, \beta) \) represents the aerodynamic efficiency of the turbine. It depends on the speed ratio \(\lambda \) and the pitch angle of the blade \(\beta \). The speed ratio is defined as the ratio of the linear speed of the blades and the wind speed:

\[\lambda = \frac{\Omega \times B}{v} \]

Where \(\Omega \) is the speed of the turbine.

The evolution of the mechanical speed from the total mechanical torque (\(C_{\text{mec}} \)) is determined by the fundamental equation of dynamics:

\[\frac{d\Omega_{\text{mec}}}{dt} = C_{\text{mec}} = C_g - C_{\text{em}} - f \Omega_{\text{mec}} \]

\(f \) : Friction coefficient.
\textbf{3. EXTRACTION OF MAXIMUM POWER:}

In order to capture the maximum power of the incident wind, the rotational speed of the turbine must permanently be adjusted to that of the wind. The optimum mechanical speed of the turbine corresponds to \(\lambda = 5!6 \) and \(0^\circ \). The speed of DFIM is used as a reference value for a proportional-integral controller type. The latter determines the set of the command that is the electromagnetic torque that we will apply to the machine to run the generator at its optimum speed. The torque thus determined by the regulator is used as reference variable torque model of the turbine.

\begin{align*}
\Phi_{sd} &= L_s i_{sd} + M i_{rd} \\
\Phi_{sq} &= L_s i_{sq} + M i_{rq} \quad (6) \\
\Phi_{rd} &= L_r i_{rd} + M i_{sd} \\
\Phi_{rq} &= L_r i_{rq} + M i_{sq}
\end{align*}

Where:

- \(R_s \) and \(R_r \) : Resistance of the stator / rotor per phase.
- \(L_s \) and \(L_r \) : Cyclical inductance of a stator / rotor phase.
- \(M \) : Maximum of the mutual inductance between stator and rotor phase winding.
- \(\sigma = 1 - \frac{M^2}{L_s L_r} \) : Dispersion coefficient.
- \(\omega_r \) and \(\omega_s \) : Angular speed of the rotor / stator.

In order to achieve the control law we choose to guide the stator’s flux along the axis \(d \). Therefore we get: \(\Phi_{sq} = 0 \) and \(\Phi_{sd} = \Phi_s \).

It comes then:

\begin{align*}
\Phi_{sq} &= 0 \\
\Phi_{sq} &= -\frac{M}{L_s} i_{rd} + \Phi_s \\
\Phi_{sq} &= -\frac{M}{L_s} i_{rq} \quad (7)
\end{align*}

The expression of the electromagnetic torque, of the DFIG, as a function of flux and stator currents is written as follows:

\[C_{em} = P \Phi_s i_{rd} \quad (8) \]

In any landmark two-phase, the active and reactive power stator of an asynchronous machine are written:

\begin{align*}
\{ P_s \} &= V_s i_{sd} + V_q i_{sq} \\
\{ Q_s \} &= V_q i_{sd} - V_s i_{sq} \quad (9)
\end{align*}

The adaptation of these equations to the selected axis system and simplifying assumptions made in our case \((V_{sd} = 0) \), leads us to:

\begin{align*}
\{ P_s \} &= V_q i_{sq} \\
\{ Q_s \} &= V_q i_{sd} \quad (10)
\end{align*}

Replacing \(i_{sd} \) and \(i_{sq} \) and by their expressions given by equation (10), we obtain those of active and reactive power:

\begin{align*}
\{ P_s \} &= -V_s \frac{M}{L_s} i_{rd} + V_s \Phi_s \\
\{ Q_s \} &= -\frac{V_s M}{L_s} i_{rd} + \frac{V_s}{\omega_s} \Phi_s \quad (11)
\end{align*}

Approaching \(\Phi_s \) by \(\frac{V_s}{\omega_s} \), the term reactive power \(Q_s \) becomes:
\[Q_s = - \frac{v_{\phi M}}{L_s} i_{rd} + \frac{v_{r d}'}{\omega_s} \] \hspace{1cm} (12)

Substituting the stator currents terms in equation (6) of the flux, and by integrating the result in the expression of the rotor two-phase voltages of the equation (5), we obtain:

\[
\begin{align*}
V_{rd} &= R_r i_{rd} + (L_r - \frac{M^2}{L_s}) \frac{di_{rd}}{dt} - g \omega_s (L_r - \frac{M^2}{L_s}) i_{rq} \\
V_{rq} &= R_r i_{rq} + (L_r - \frac{M^2}{L_s}) \frac{di_{rq}}{dt} + g \omega_s (L_r - \frac{M^2}{L_s}) i_{rd} + g \omega_s \frac{MV_s}{L_r \omega_s} \\
\end{align*}
\] \hspace{1cm} (13)

Equations (11), (12) and (13) are used to establish a block diagram of the electric system controlling:

6. SYNTHESIS OF CONTROLLER PI:

The figure 4 shows a closed loop system corrected by a PI controller. In our case, the transfer function is on the form \(K_p + \frac{K_i}{s} \) as shown in figure 5.

![Figure 5: Block diagram of a system controlled by a PI.](image)

The open-loop transfer function (OLTF) with regulators is written as follows:

\[OLTF = \frac{s + \frac{K_i}{K_p}}{s + \left(L_r - \frac{M^2}{L_s} \right)} \]

In order to eliminate the zero of the transfer function, we will use the compensation method for the synthesis of the poles of the regulator. This gives us:

\[\frac{K_i}{K_p} = L_s \left(L_r - \frac{M^2}{L_s} \right) \]

By performing the compensation, we obtain the following OLTF:

\[OLTF = \frac{s}{\tau_r s + \frac{MV_s}{L_s \left(L_r - \frac{M^2}{L_s} \right)}} \]

This gives us a closed loop: \(CLTF = \frac{1}{\tau_r s} \)

With:

\[\tau_r = \frac{L_s \left(L_r - \frac{M^2}{L_s} \right)}{MV_s} \]

\(\tau_r \): The system response time.

Correctors’ gains can be expressed in terms of machine parameters and response time:

\[K_p = \frac{1}{\tau_r} \frac{L_s \left(L_r - \frac{M^2}{L_s} \right)}{MV_s} \]

\[K_i = \frac{1}{\tau_r} \frac{R_r L_s}{MV_s} \]

7. RESULTS AND INTERPRETATIONS:

The overall block diagram of the simulation was simulated in Matlab / Simulink. The model includes the mechanical device, the electrical device and the control part arranged as shown in Figure 6 above.
To comply with the characteristics optimal of energy production, an open-loop test of DFIG is performed in the closest possible operating conditions of a wind system to different profiles of the wind using the scheme shown in Figure 7.

7.1 Constant speed \(V=20 \text{ m/s} \)
Figure 8: Curves of the rotational speed of the machine, the power of the turbine, the rotational speed of the turbine, the currents and voltages of the stator and rotor.

7.2 Random speed:
Figure 9: Curves of the wind speed, rotational speed of the machine, the power of the turbine, the rotational speed of the turbine, the currents and voltages of the stator and rotor.

7.3 Speed: Ramp function
The figures above are those obtained for the model of DFIG driven at a fixed speed, random and ramp function. We observe that:

- The results obtained show the robustness and the validation of the model proposed for the control of the wind energy system based on the DFIG.
- The figure 6 shows the development of the wind energy system performance (wind speed, Couple, Active and reactive power ...), from a constant wind speed, the results obtained are following the path of the wind.
- The figure 7 shows the development of the wind power system performance, from a variable wind speed (as start speed 3m/s to speed 20m/s), the results obtained are following the path of the wind, and the voltage and the frequency are fixed that causes no problems when connecting to the grid.

8. CONCLUSION:

This article has allowed us to study and apply the vector control power of the doubly fed inductance generator. The choice of orientation of
the flow was taken by aligning the stator flux on the d-axis. The method of directed flow, is applied for several years to DFIG, remains the most popular method. Indeed, it not only allows us to simplify the model of the machine but also to decouple torque control and the flow. From the numerical simulation, we found that indeed the stator flux orientation technique enables to decouple the flux. This allows us to obtain high dynamic performance similar to that of the DC machine. The wind generator has been tested and modeled for different wind speed profiles for a power of 7.5KW.

REFERENCES: