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ABSTRACT 

 

Due to the exponential rise of the network attacks and increasing development of software tools and 

techniques for intrusion detection, the rule based intrusion detection system has become an essential 

solution for real-time anomaly detection. Basically, traditional data mining based intrusion detection 

methods generate a large set of predefined patterns most of them are high false rate and inaccurate. There is 

a need to optimize the real-time network attacks due to the variation in new attack type, instance set and 

attributes. To address the issue of high false rate and dynamic data integration, a new anomaly detection 

system using data mining model has been proposed to find the real time DOS/DDOS patterns by 

integrating network packets capturing from different systems on the network and kdd99 dataset. This 

system generates intrusion patterns by integrating the predefined attacks and new attacks as early as 

possible with low false rate. Experimental results show that proposed dynamic model optimizes the real-

time true positive patterns with high accuracy compared to traditional models. 
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1. INTRODUCTION  

 

In recent years, computers and the internet have 

been utilized by many network analysts all over the 

world in different platforms. Intrusion detection 

system provides an essential role to secure the 

network environment by using different rules or 

patterns. Yet, the intrusion detection system 

adopted the conventional data mining models to 

generate the intrusion patterns from different types 

of networks have limited validity and scalability.  

Some signatures poorly describe the attack, making 

them trigger on benign traffic as a result. Instead of 

using regular expressions to describe an attack, 

simple string matching is often used. This has 

several reasons; due to processing time restrictions 

simpler string-matching is used to be able to keep 

up with traffic data. Writing good and correct 

signatures is a difficult task and often leads to 

buggy or incomplete signatures. Some signatures 

trigger on rare or suspicious traffic. These in 

themselves are not classified as attacks, but are 

considered uncommon, i.e. failed logins, 

overlapping IP fragments or the use of the 

URGENT bit in the TCP header [1-3]. It has been 

shown that these alerts often are not linked to 

malicious activities. In a network environment, 

there are three types of network intrusion systems 

exist, they are- network based intrusion detection 

systems, distributed intrusion detection system and 

host based intrusion detection systems. Anomaly 

learns what is considered a normal traffic on a 

system and from this model alerts on any traffic 

deviating from this. Misuse detection on the other 

hand, uses search for fixed patterns within the 

traffic it knows is malicious. According to the 

different network technologies and platforms, 

network intrusion systems can be categorized in 

two ways: signature based and anomaly based 

detection. There are different factors about models 

and data mining algorithms in intrusion detection. 

• Selecting and building sequential and 

association analysis. 

• Building self detection and self aware 

learning rules such as clustering and 

pattern analysis. 

• Traditional machine learning models are 

time consuming in attack evaluation, if the 

data size is exponentially increased. So, it 
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is difficult to find the attacks in real time 

manner. 

With the deployment of IDS one of their 

weaknesses is becoming visible, false positives. 

False positives are alerting from an IDS on non 

malicious activity. With the increase in worm 

activity and more complex network structures the 

amount of alerts from IDSs have increased, making 

it virtually impossible to check the validity of 

every. To reduce these problems different data 

mining approaches have been used. Data mining is 

an algorithm developed to search through a vast 

amount of data looking for patterns or relations, 

which can prove to be useful. These algorithms are 

often time consuming and require a lot of time to 

complete, but with the ever increasing processing 

power they are becoming more and more 

applicable. The patterns found are often surprising, 

and can provide further insight [4]. 

 

Figure 1: Traditional based NID Model  

Responding to and evaluating an IDS alert is a 

laborious intensive task, requiring vast human 

resource. With the increasing amount of alerts the 

task of handling these alerts are becoming a 

daunting task. Many system administrators often 

ignore or refuse to deploy intrusion detection 

systems due to their known high rate of alerts, 

missing out on many of the great benefits an 

intrusion detection system can provide in a 

network. The base framework of data mining 

methodology of intrusion detection system is 

shown in Fig 1. Initially, data are collected from the 

connected network as data stream and generates 

specific packets as records. After that, machine 

learning algorithms are used to learn and analyze 

the input data to find the normal and abnormal 

patterns. Intelligent decision making models decide 

whether the intrusion takes place or not using the 

generated patterns from the data mining model to 

the administrator. 

Research Objectives: 

• An integrated model for real time attack 

classification using an offline attack 

database. 

• Real-time attack filtering model for mixed 

data type. 

• Multi-class decision tree construction 

using probabilistic measures. 

 

2. RELATED WORK 

[2][3] have implemented the need for a framework 

and architecture specification for intrusion 

detection systems. But the details of the framework 

and infrastructure required to support the complex 

datasets are not included, instead they handled data 

with a limited number of attributes and restricted 

constraints. Several methods have been 

implemented recently to find the correlation 

between intrusion detection alarms. Probabilistic 

based alert correlation finds the similarity between 

alerts that match closely, if not exactly. 

The classification model can be decision tree based, 

rule based, Bayesian network based, association 

rule based and neural network based IDS. These 

models ensure that no intrusion will be missed 

while checking the real time attack on the network 

[4]. Anomaly detection algorithms which identify 

new kind of attacks based on deviations from the 

regular usage or patterns [4,5]. In statistics based 

intrusion detection , the data objects are modeled 

using outlier detection depends on the feature 

relationship. However, as the input data size 

increasing, it becomes difficult to process and in 

accurate to predict the data distribution of the data 

objects. 

[5] implemented a classification model for intrusion 

detection that can be achieved as, different methods 

like linear discrimination, KNN are used to scan the 

network traces.[6] implemented a genetic technique 

and used a binary decision tree to represent the 

data. They used the false positive rate and detection 

rate as condition criterion among the dataset.[7] 

also implemented a genetic method for sparse trees 

to find anomalies. 

[8] has implemented naïve Bayesian model based 

decision tree to form the patterns which are 

redundant and less informative. Chavan [9] used a 

decision tree model for extracting relevant features 

through ranking approach per each class. They 

extracted 41 features to 16 features for normal type 

and 13 features for attack detection. 
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[10] Developed comparative analysis of decision 

tree model vs naïve Bayesian algorithms and 

generates combined intrusion rule for decision 

making. Ensemble techniques have the major 

benefits as they can be applied to make feature 

changes in the input data stream more effectively 

than traditional framework models. In this model, 

after the i
th

 decision-tree construction, the total 

classification error rate of the decision tree is 

defined as the commutative sum of the instance 

weights which are not a true positive over the 

commutative sum of all input instance weights, and 

is computed as: 

m( )

/k k

k m m

falseinst m

err w w= ∑ ∑
     

 Where m=1, 2……... instances of the input data set 

Machine learning approaches like classification and 

clustering of malware have been proposed on 

reports generated from dynamic analysis. Models 

are built for malware families whose labels are 

available and used for predicting the malware labels 

for newly seen sample reports. Most malware 

datasets are collected over a certain period of time 

using a honeynet setup and they comprise 

executables, aimed to attack Window based 

systems. The dynamic analysis techniques gained 

prominence because of the limitations in the static 

analysis techniques.[7-9] proposed a method where 

the normal model of programs were modeled using 

sequences of system calls and any deviations from 

this was aged as an anomaly or a security threat. 

This was one of the first approaches of using 

behavior to differentiate malware from benign 

programs. 

 

3. PROPOSED MODEL 

 
In this model, data captured from the 

realtime networks like LAN/WAN are saved in a 

database for filtering. In the field extraction phase, 

relevant fields corresponding to the attack are 

extracted to improve the true positive of the attack. 

For instance, the fields which are relevant to 

DOS/DDOS type of attack are IP, Src_bytes, packet 

length, duration, interface, header flags, 

src_address, dest_address etc. After the field 

extraction phase, the instances which are relevant to 

a specific type of attack are identified and are being 

saved in DB. This process is repeated until 

time_interval is satisfied or the size of the instances 

is reached. This attacked dataset and the traditional 

kddcup’99 dataset are integrated to form a new 

dataset for data mining framework. Proposed 

filtered based partitioning decision tree can be used 

to generate attacked patterns on the new dataset 

with high true positive rate compared to traditional 

models  

 

 
Figure 2: Proposed Model Overview  

 
3.1 Network Field Extractor Algorithm 

 
Figure 3: Workflow Of Packet Filtering 
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Field Extraction algorithm for DDOS: 

Input: Packets with Network fields, Boolean 

flg=false; 

Output: Attack Fields with labels. 

Procedure: 

Netconn[]=getInterface(LAN/WAN); 

For each interface do 

If(Netconn[i]>0) 

Then  

Connect=true; 

Interconn=Netconn[i](connect true); 

End if 

End for 

If flg==false 

Then  

Disconnect 

End if 

AttackField[i]=NULL; 

PacketFields[]=NULL; 

For each captured packet 

Do 

Packet[]=getPacket(Interconn); 

Done. 

For each packet ipk  do 

(pk )i iL getLength=  

 L ( )

(C ,L ) ;

i

m i i

if thresh

then

attack pk

endif

σ>

=
 

 count(pk )

[ , (pk )] (pk );

 attacked packets with DOS/DDOS label

NewD ;

i

m i i

i

f

then

attack C Count Count

endif

endfor

Display

attack

φ>

=

=

 

In this algorithm, local Ethernet or 

wireless router, any network interface in the same 

network type can access the data or receive the data 

to or from the network interfaces. Each PC in the 

connected network has fields such as IP address, 

TCP, UDP, RARP and ARP protocols are used to 

communicate with each other. In any real time 

network, there are four different ways to send or 

receive data such as broadcast, unicast , multicast 

and hybrid mode. Non-promiscuous mode can take 

any packet through the network interface with 

considering whether the data is passed or not. In 

promiscuous mode, any system can capture packets 

through the device, without considering whether the 

data is passed or not. We used Winpcap library as 

the development tool to support packet capturing 

and field extraction process. In this detection 

process, each captured data is checked against the 

attack using the specified packet size as threshold (

σ ). If the condition is met, then the packets are 

saving in a file and labeled as DOS/DDOS attack 

class name. 

 

3.2 Algorithm 2: Data Integration and Filtering 

 

Input: NewDi (New attacked dataset), 

OldD ( 99)i Kdd  

Output: Filtering dataset. 

For each OldDi  

Do 

For each NewDi  

Do 

If ( (Old D ) (NewD )i imClass mClass== ) 

Then 

Map(m, OldDi , NewDi ); 

End if 

End for 

End for 

 
i=m(class) 

// Get DOS or DDOS class instances from the 

mapped list based on protocol, srcbytes, duration 

and class type. 

For each class value im in Map(m, OldDi ,

NewDi ) 

Do 

if  (Type( im )==DOS || Type( im )==DDOS) 

then 

List ( , )o i iv Get m OldD= ; 

List ( , New )N i iv Get m D=  

If(correlation( ( , )O Nv v )>0.5) 

Then 

NewKDD ( , )O Nv v ; 

End if 

End if 
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Done 

( , );
ij O N

NewKDDD v v=  

Algorithm 2 describes the relationship between the 

instances in the data integration phase. In this 

phase, newly captured instances correlate with the 

traditional kdd data for data integration. If the 

correlation between the old and new instances is 

greater than predefined threshold 0.5, then those 

instances are added to the database for 

classification. 

 

3.3 Algorithm 3: Proposed Decision Pattern 

Miner 

 

Input: ij
D (integrated dataset) 

Output: Decision patterns 

Procedure: 

If ij
D ==Null 

Then 

Return leaf node with attack pattern empty. 

Else if class ( ij
D ) ==1 

Then 

Return leaf node with attack m. 

Else 

Split ij
D  into k disjoint partitions using stratified 

random sampling distribution where k=m(classes). 

Let 1 2(i1, j1),D (i 2, j2)... ( , )kD D ik jk are k 

disjoint partitions with m classes such that 

1 2
(i1, j1) D (i 2, j2)... ( , )

ij k
D D D ik jk= ∪ ∪  

Let 1 2( ), ( )... ( )kA n A n A n  corresponds to n 

attributes of the 

1 2(i1, j1),D (i 2, j2)... ( , )kD D ik jk  partitions. 

i.e 1( )A n  corresponds to the attribute list of the 

data partition 1( )A n . 

For each partition do 

Find the attribute ranking using the following 

equation 

AttRank(P, ( )iA n )=

1.2..classes{ ( (i) / A ( ))} / ( ( ))i j m i

m

prob A i prob A j=∑ ∑
 

Where i,j=1,2….n attributes and m=number of 

classes. 

( ( ))iprob A n  : probability of the tuples satisfying  

If m==DOS/DDOS and AttRank(P, ( )iA n ,m)<0.5 

Then  

AttRank(P, ( )iA n )= AttRank(P, ( )iA n )+0.5; 

End if 

End for 

Select the root node in the tree pattern using the 

attribute with highest AttRank in all the partitions. 

This process is repeated until no more instances in 

the partitions. 

Display attacked patterns in the decision tree. 

tion has to be in sentense case with no spacing  

above or below the start of it.  

 
4. EXPERIMENTAL RESULTS 

 

In this section different attack patterns are 

analyzed using real-time network data and KDD’99 

dataset. Experimental results are simulated using 

the Java programming environment with third party 

libraries such as JAMA, JUNIT, and statistic and 

pattern miner. In our experiment, we have captured 

network packets using LAN/WAN and then attack 

detection operation was initiated. Experimental 

results prove that proposed pattern detection model 

outperforms well compared to traditional static 

models.  

Proposed Attack Patterns 

service = http 

|  same_srv_rate < 0.82 

|  |  src_bytes < 89.5 ==> DDOS 

|   |   src_bytes >= 89.5 ==> normal 

|   same_srv_rate >= 0.82 

|  |  src_bytes < 28483 

|  |  |  dst_host_srv_serror_rate < 0.67 

|  |  |  |  src_bytes < 256.5 

|  |  |  |  |  src_bytes < 206.5 

|  |  |  |  |  |  dst_bytes < 2463 

|  |  |  |  |  |  |  src_bytes < 203.5 

|  |  |  |  |  |  |  |  srv_diff_host_rate < 0.09 

|  |  |  |  |  |  |  |  |  dst_host_srv_count < 219.5 

|  |  |  |  |  |  |  |  |  |  dst_host_srv_count < 214.5 ==> 

normal 

|   |   |   |   |   |   |   |   |   |   dst_host_srv_count >= 

214.5 ==> back 

|   |   |   |   |   |   |   |   |   dst_host_srv_count >= 219.5 

==> normal 

|   |   |   |   |   |   |   |   srv_diff_host_rate >= 0.09 
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|  |  |  |  |  |  |  |  |  srv_count < 33 

|  |  |  |  |  |  |  |  |  |  dst_host_srv_diff_host_rate < 

0.36 

|  |  |  |  |  |  |  |  |  |  |  src_bytes < 199.5 ==> normal 

|   |   |   |   |   |   |   |   |   |   |   src_bytes >= 199.5 

|  |  |  |  |  |  |  |  |  |  |  |  dst_host_same_src_port_rate 

< 0.01 

|  |  |  |  |  |  |  |  |  |  |  |  |  dst_bytes < 1710.5 ==> back 

|   |   |   |   |   |   |   |   |   |   |   |   |   dst_bytes >= 1710.5 

==> normal 

|   |   |   |   |   |   |   |   |   |   |   |   

dst_host_same_src_port_rate >= 0.01 ==> normal 

|   |   |   |   |   |   |   |   |   |   dst_host_srv_diff_host_rate 

>= 0.36 ==> back 

|   |   |   |   |   |   |   |   |   srv_count >= 33 ==> back 

|   |   |   |   |   |   |   src_bytes >= 203.5 

|  |  |  |  |  |  |  |  srv_diff_host_rate < 0.42 ==> normal 

|   |   |   |   |   |   |   |   srv_diff_host_rate >= 0.42 

|  |  |  |  |  |  |  |  |  src_bytes < 204.5 ==> teardrop 

|   |   |   |   |   |   |   |   |   src_bytes >= 204.5 ==> 

normal 

|   |   |   |   |   |   dst_bytes >= 2463 

|  |  |  |  |  |  |  srv_count < 7.5 

|  |  |  |  |  |  |  |  dst_host_srv_count < 134.5 

|  |  |  |  |  |  |  |  |  dst_host_count < 46 ==> normal 

|   |   |   |   |   |   |   |   |   dst_host_count >= 46 ==> 

smurf 

|   |   |   |   |   |   |   |   dst_host_srv_count >= 134.5 

==> normal 

|   |   |   |   |   |   |   srv_count >= 7.5 

|  |  |  |  |  |  |  |  dst_host_count < 8.5 

|  |  |  |  |  |  |  |  |  src_bytes < 199 ==> land 

|   |   |   |   |   |   |   |   |   src_bytes >= 199 ==> 

teardrop 

|   |   |   |   |   |   |   |   dst_host_count >= 8.5 

|  |  |  |  |  |  |  |  |  srv_diff_host_rate < 0.26 

|  |  |  |  |  |  |  |  |  |  dst_bytes < 4819.5 

|  |  |  |  |  |  |  |  |  |  |  dst_bytes < 4793 ==> normal 

|   |   |   |   |   |   |   |   |   |   |   dst_bytes >= 4793 ==> 

land 

|   |   |   |   |   |   |   |   |   |   dst_bytes >= 4819.5 ==> 

normal 

|   |   |   |   |   |   |   |   |   srv_diff_host_rate >= 0.26 

|  |  |  |  |  |  |  |  |  |  dst_bytes < 16590.5 ==> teardrop 

|   |   |   |   |   |   |   |   |   |   dst_bytes >= 16590.5 

|  |  |  |  |  |  |  |  |  |  |  src_bytes < 152 ==> normal 

|   |   |   |   |   |   |   |   |   |   |   src_bytes >= 152 ==> 

land 

|   |   |   |   |   src_bytes >= 206.5 

|  |  |  |  |  |  srv_diff_host_rate < 0.08 

|  |  |  |  |  |  |  dst_host_srv_diff_host_rate < 0.01 

| | | | | | | | flag = SF 

|  |  |  |  |  |  |  |  |  srv_diff_host_rate < 0.04 

|  |  |  |  |  |  |  |  |  |  dst_bytes < 1482 

|  |  |  |  |  |  |  |  |  |  |  dst_host_same_src_port_rate < 

0.01 ==> normal 

|   |   |   |   |   |   |   |   |   |   |   

dst_host_same_src_port_rate >= 0.01 

|  |  |  |  |  |  |  |  |  |  |  |  count < 9.5 ==> normal 

|   |   |   |   |   |   |   |   |   |   |   |   count >= 9.5 

|  |  |  |  |  |  |  |  |  |  |  |  |  srv_count < 11.5 ==> back 

|   |   |   |   |   |   |   |   |   |   |   |   |   srv_count >= 11.5 

==> normal 

|   |   |   |   |   |   |   |   |   |   dst_bytes >= 1482 

|  |  |  |  |  |  |  |  |  |  |  count < 6.5 ==> normal 

|   |   |   |   |   |   |   |   |   |   |   count >= 6.5 

|  |  |  |  |  |  |  |  |  |  |  |  dst_bytes < 1483.5 ==> smurf 

|   |   |   |   |   |   |   |   |   |   |   |   dst_bytes >= 1483.5 

|  |  |  |  |  |  |  |  |  |  |  |  |  count < 31.5 

|  |  |  |  |  |  |  |  |  |  |  |  |  |  src_bytes < 249.5 ==> 

normal 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   src_bytes >= 

249.5 

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  src_bytes < 250.5 
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|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  count < 20.5 ==> smurf 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   count >= 20.5 

==> normal 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   src_bytes >= 

250.5 ==> normal 

|   |   |   |   |   |   |   |   |   |   |   |   |   count >= 31.5 

|  |  |  |  |  |  |  |  |  |  |  |  |  |  dst_bytes < 3424 ==> 

normal 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   dst_bytes >= 3424 

==> smurf 

|   |   |   |   |   |   |   |   |   srv_diff_host_rate >= 0.04 

 

Generated Dynamic Intrusion Rules: 921 

Time taken to run Proposed Model: 0.52 seconds 

Time taken to detect attacks in the test model on 

training Model: 0.19 seconds 

=== ACCURACY DETAILS === 

Correctly Classified Accuracy : 0.98150 

Total Statistical Error Rate : 0.22859 % 

Real Time Attack Detection Rate : 0.95249 

Total Number of Instances : 5291 

Table 1: Captured Packets In Different Experiments 

Along With Packet Size And Time To Detect The Attack 

Sample Packets DOS/DDOS 

(Packets) 

TimeToDetect 

(ms) 

10000 2466 5877 

20000 4803 6388 

30000 7988 8655 

40000 12866 9899 

Table.1 describes the sample captured 

packets along with DOS attacked information. 

Time to detect the DOS/DDOS in LAN/WAN 

networks.  

 
 

Figure 4: Packet Sizes Vs Detection Times 

Table 2: Represents The Integrated Datasize With 

Detected Attack Patterns Or Rules And Accuracy 

Measures. 

 Threshold=0.5  

Kdddatasize attack 

rules 

Accuracy Kdddatasize 

4000 834 0.94 0.28 

5000 924 0.96 0.18 

6000 1025 0.97 0.26 

7000 1129 0.985 0.27 

8000 1433 0.979 0.22 

Table 2, describes the realtime integrated 

coded dataset along with attacking decision rules. 

From the table, it is observed that the attack 

detection accuracy and error rate in the proposed 

model increases, when the user defined threshold 

was initialized as 0.5. 

 

 
 

Figure 5: Represents The Integrated Data Size With 

Detected Attack Patterns Or Rules  

 
 

Figure 6: Represents The Integrated Data Size With 

Accuracy And Error Measures. 

Table 3: Comparison of Accuracy of different models. 

Threshold Naïve 

Tree 

ProbCorr 

Tree 

Proposed 

Model 

0.5 0.89 0.92 0.967 

0.6 0.91 0.936 0.973 

0.65 0.88 0.918 0.984 

0.69 0.925 0.948 0.978 

0.75 0.901 0.957 0.989 
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Table 3, describes the comparison between 

the proposed model with the traditional models 

such as Naïve tree and Probabilistic correlation tree 

in terms of time and accuracy. 

 
 

Figure 7: Comparison Of Proposed Model With Other 

Models 

5. CONCLUSION 

 

In this proposed work an improved 

dynamic pattern mining algorithm was 

implemented in the real time distributed data. This 

approach generates high quality attack patterns 

from the complex data. This approach minimizes 

the detection time and optimizes the decision 

patterns in distributed connected networks. This 

system generates intrusion patterns by integrating 

the predefined attacks and new attacks as early as 

possible with low false rate. Experimental results 

show that proposed dynamic model optimizes the 

real time true positive patterns with high accuracy 

compared to traditional models. In future, real time 

alert system using decision patterns will be 

evaluated to predict the attacks in the dynamic 

networks within the specified time interval. 
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