
Journal of Theoretical and Applied Information Technology
 20

th
 January 2016. Vol.83. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

165

A NOVEL FILTER BASED PARTITIONING DECISION TREE

MODEL FOR REAL-TIME NETWORK SECURITY

1
 SITA RAMA MURTY PILLA,

 2
 R KIRAN KUMAR,

 3
 M SAILAJA

1
Departement of IT, Vishnu Institute of Technology, Bhimavaram, Andhra Pradesh, INDIA

2
Departement of CSE, Krishna University, Machilipatnam, Andhra Pradesh, INDIA

3
Departement of ECE, JNTUK University, Kakinada, Andhra Pradesh, INDIA

E-mail:
1
psramam.1@gmail.com,

2
kirankreddi@gmail.com

ABSTRACT

Due to the exponential rise of the network attacks and increasing development of software tools and

techniques for intrusion detection, the rule based intrusion detection system has become an essential

solution for real-time anomaly detection. Basically, traditional data mining based intrusion detection

methods generate a large set of predefined patterns most of them are high false rate and inaccurate. There is

a need to optimize the real-time network attacks due to the variation in new attack type, instance set and

attributes. To address the issue of high false rate and dynamic data integration, a new anomaly detection

system using data mining model has been proposed to find the real time DOS/DDOS patterns by

integrating network packets capturing from different systems on the network and kdd99 dataset. This

system generates intrusion patterns by integrating the predefined attacks and new attacks as early as

possible with low false rate. Experimental results show that proposed dynamic model optimizes the real-

time true positive patterns with high accuracy compared to traditional models.

Keywords: DDOS, Attribute Selection, Decision Tree, Intrusion Detection, KDDCup 99 Intrusion dataset

1. INTRODUCTION

In recent years, computers and the internet have

been utilized by many network analysts all over the

world in different platforms. Intrusion detection

system provides an essential role to secure the

network environment by using different rules or

patterns. Yet, the intrusion detection system

adopted the conventional data mining models to

generate the intrusion patterns from different types

of networks have limited validity and scalability.

Some signatures poorly describe the attack, making

them trigger on benign traffic as a result. Instead of

using regular expressions to describe an attack,

simple string matching is often used. This has

several reasons; due to processing time restrictions

simpler string-matching is used to be able to keep

up with traffic data. Writing good and correct

signatures is a difficult task and often leads to

buggy or incomplete signatures. Some signatures

trigger on rare or suspicious traffic. These in

themselves are not classified as attacks, but are

considered uncommon, i.e. failed logins,

overlapping IP fragments or the use of the

URGENT bit in the TCP header [1-3]. It has been

shown that these alerts often are not linked to

malicious activities. In a network environment,

there are three types of network intrusion systems

exist, they are- network based intrusion detection

systems, distributed intrusion detection system and

host based intrusion detection systems. Anomaly

learns what is considered a normal traffic on a

system and from this model alerts on any traffic

deviating from this. Misuse detection on the other

hand, uses search for fixed patterns within the

traffic it knows is malicious. According to the

different network technologies and platforms,

network intrusion systems can be categorized in

two ways: signature based and anomaly based

detection. There are different factors about models

and data mining algorithms in intrusion detection.

• Selecting and building sequential and

association analysis.

• Building self detection and self aware

learning rules such as clustering and

pattern analysis.

• Traditional machine learning models are

time consuming in attack evaluation, if the

data size is exponentially increased. So, it

Journal of Theoretical and Applied Information Technology
 20

th
 January 2016. Vol.83. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

166

is difficult to find the attacks in real time

manner.

With the deployment of IDS one of their

weaknesses is becoming visible, false positives.

False positives are alerting from an IDS on non

malicious activity. With the increase in worm

activity and more complex network structures the

amount of alerts from IDSs have increased, making

it virtually impossible to check the validity of

every. To reduce these problems different data

mining approaches have been used. Data mining is

an algorithm developed to search through a vast

amount of data looking for patterns or relations,

which can prove to be useful. These algorithms are

often time consuming and require a lot of time to

complete, but with the ever increasing processing

power they are becoming more and more

applicable. The patterns found are often surprising,

and can provide further insight [4].

Figure 1: Traditional based NID Model

Responding to and evaluating an IDS alert is a

laborious intensive task, requiring vast human

resource. With the increasing amount of alerts the

task of handling these alerts are becoming a

daunting task. Many system administrators often

ignore or refuse to deploy intrusion detection

systems due to their known high rate of alerts,

missing out on many of the great benefits an

intrusion detection system can provide in a

network. The base framework of data mining

methodology of intrusion detection system is

shown in Fig 1. Initially, data are collected from the

connected network as data stream and generates

specific packets as records. After that, machine

learning algorithms are used to learn and analyze

the input data to find the normal and abnormal

patterns. Intelligent decision making models decide

whether the intrusion takes place or not using the

generated patterns from the data mining model to

the administrator.

Research Objectives:

• An integrated model for real time attack

classification using an offline attack

database.

• Real-time attack filtering model for mixed

data type.

• Multi-class decision tree construction

using probabilistic measures.

2. RELATED WORK

[2][3] have implemented the need for a framework

and architecture specification for intrusion

detection systems. But the details of the framework

and infrastructure required to support the complex

datasets are not included, instead they handled data

with a limited number of attributes and restricted

constraints. Several methods have been

implemented recently to find the correlation

between intrusion detection alarms. Probabilistic

based alert correlation finds the similarity between

alerts that match closely, if not exactly.

The classification model can be decision tree based,

rule based, Bayesian network based, association

rule based and neural network based IDS. These

models ensure that no intrusion will be missed

while checking the real time attack on the network

[4]. Anomaly detection algorithms which identify

new kind of attacks based on deviations from the

regular usage or patterns [4,5]. In statistics based

intrusion detection , the data objects are modeled

using outlier detection depends on the feature

relationship. However, as the input data size

increasing, it becomes difficult to process and in

accurate to predict the data distribution of the data

objects.

[5] implemented a classification model for intrusion

detection that can be achieved as, different methods

like linear discrimination, KNN are used to scan the

network traces.[6] implemented a genetic technique

and used a binary decision tree to represent the

data. They used the false positive rate and detection

rate as condition criterion among the dataset.[7]

also implemented a genetic method for sparse trees

to find anomalies.

[8] has implemented naïve Bayesian model based

decision tree to form the patterns which are

redundant and less informative. Chavan [9] used a

decision tree model for extracting relevant features

through ranking approach per each class. They

extracted 41 features to 16 features for normal type

and 13 features for attack detection.

Journal of Theoretical and Applied Information Technology
 20

th
 January 2016. Vol.83. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

167

[10] Developed comparative analysis of decision

tree model vs naïve Bayesian algorithms and

generates combined intrusion rule for decision

making. Ensemble techniques have the major

benefits as they can be applied to make feature

changes in the input data stream more effectively

than traditional framework models. In this model,

after the i
th

 decision-tree construction, the total

classification error rate of the decision tree is

defined as the commutative sum of the instance

weights which are not a true positive over the

commutative sum of all input instance weights, and

is computed as:

m()

/k k

k m m

falseinst m

err w w= ∑ ∑

 Where m=1, 2……... instances of the input data set

Machine learning approaches like classification and

clustering of malware have been proposed on

reports generated from dynamic analysis. Models

are built for malware families whose labels are

available and used for predicting the malware labels

for newly seen sample reports. Most malware

datasets are collected over a certain period of time

using a honeynet setup and they comprise

executables, aimed to attack Window based

systems. The dynamic analysis techniques gained

prominence because of the limitations in the static

analysis techniques.[7-9] proposed a method where

the normal model of programs were modeled using

sequences of system calls and any deviations from

this was aged as an anomaly or a security threat.

This was one of the first approaches of using

behavior to differentiate malware from benign

programs.

3. PROPOSED MODEL

In this model, data captured from the

realtime networks like LAN/WAN are saved in a

database for filtering. In the field extraction phase,

relevant fields corresponding to the attack are

extracted to improve the true positive of the attack.

For instance, the fields which are relevant to

DOS/DDOS type of attack are IP, Src_bytes, packet

length, duration, interface, header flags,

src_address, dest_address etc. After the field

extraction phase, the instances which are relevant to

a specific type of attack are identified and are being

saved in DB. This process is repeated until

time_interval is satisfied or the size of the instances

is reached. This attacked dataset and the traditional

kddcup’99 dataset are integrated to form a new

dataset for data mining framework. Proposed

filtered based partitioning decision tree can be used

to generate attacked patterns on the new dataset

with high true positive rate compared to traditional

models

Figure 2: Proposed Model Overview

3.1 Network Field Extractor Algorithm

Figure 3: Workflow Of Packet Filtering

Journal of Theoretical and Applied Information Technology
 20

th
 January 2016. Vol.83. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

168

Field Extraction algorithm for DDOS:

Input: Packets with Network fields, Boolean

flg=false;

Output: Attack Fields with labels.

Procedure:

Netconn[]=getInterface(LAN/WAN);

For each interface do

If(Netconn[i]>0)

Then

Connect=true;

Interconn=Netconn[i](connect true);

End if

End for

If flg==false

Then

Disconnect

End if

AttackField[i]=NULL;

PacketFields[]=NULL;

For each captured packet

Do

Packet[]=getPacket(Interconn);

Done.

For each packet ipk do

(pk)i iL getLength=

 L ()

(C ,L) ;

i

m i i

if thresh

then

attack pk

endif

σ>

=

 count(pk)

[, (pk)] (pk);

 attacked packets with DOS/DDOS label

NewD ;

i

m i i

i

f

then

attack C Count Count

endif

endfor

Display

attack

φ>

=

=

In this algorithm, local Ethernet or

wireless router, any network interface in the same

network type can access the data or receive the data

to or from the network interfaces. Each PC in the

connected network has fields such as IP address,

TCP, UDP, RARP and ARP protocols are used to

communicate with each other. In any real time

network, there are four different ways to send or

receive data such as broadcast, unicast , multicast

and hybrid mode. Non-promiscuous mode can take

any packet through the network interface with

considering whether the data is passed or not. In

promiscuous mode, any system can capture packets

through the device, without considering whether the

data is passed or not. We used Winpcap library as

the development tool to support packet capturing

and field extraction process. In this detection

process, each captured data is checked against the

attack using the specified packet size as threshold (

σ). If the condition is met, then the packets are

saving in a file and labeled as DOS/DDOS attack

class name.

3.2 Algorithm 2: Data Integration and Filtering

Input: NewDi (New attacked dataset),

OldD (99)i Kdd

Output: Filtering dataset.

For each OldDi

Do

For each NewDi

Do

If ((Old D) (NewD)i imClass mClass==)

Then

Map(m, OldDi , NewDi);

End if

End for

End for

i=m(class)

// Get DOS or DDOS class instances from the

mapped list based on protocol, srcbytes, duration

and class type.

For each class value im in Map(m, OldDi ,

NewDi)

Do

if (Type(im)==DOS || Type(im)==DDOS)

then

List (,)o i iv Get m OldD= ;

List (, New)N i iv Get m D=

If(correlation((,)O Nv v)>0.5)

Then

NewKDD (,)O Nv v ;

End if

End if

Journal of Theoretical and Applied Information Technology
 20

th
 January 2016. Vol.83. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

169

Done

(,);
ij O N

NewKDDD v v=

Algorithm 2 describes the relationship between the

instances in the data integration phase. In this

phase, newly captured instances correlate with the

traditional kdd data for data integration. If the

correlation between the old and new instances is

greater than predefined threshold 0.5, then those

instances are added to the database for

classification.

3.3 Algorithm 3: Proposed Decision Pattern

Miner

Input: ij
D (integrated dataset)

Output: Decision patterns

Procedure:

If ij
D ==Null

Then

Return leaf node with attack pattern empty.

Else if class (ij
D) ==1

Then

Return leaf node with attack m.

Else

Split ij
D into k disjoint partitions using stratified

random sampling distribution where k=m(classes).

Let 1 2(i1, j1),D (i 2, j2)... (,)kD D ik jk are k

disjoint partitions with m classes such that

1 2
(i1, j1) D (i 2, j2)... (,)

ij k
D D D ik jk= ∪ ∪

Let 1 2(), ()... ()kA n A n A n corresponds to n

attributes of the

1 2(i1, j1),D (i 2, j2)... (,)kD D ik jk partitions.

i.e 1()A n corresponds to the attribute list of the

data partition 1()A n .

For each partition do

Find the attribute ranking using the following

equation

AttRank(P, ()iA n)=

1.2..classes{ ((i) / A ())} / (())i j m i

m

prob A i prob A j=∑ ∑

Where i,j=1,2….n attributes and m=number of

classes.

(())iprob A n : probability of the tuples satisfying

If m==DOS/DDOS and AttRank(P, ()iA n ,m)<0.5

Then

AttRank(P, ()iA n)= AttRank(P, ()iA n)+0.5;

End if

End for

Select the root node in the tree pattern using the

attribute with highest AttRank in all the partitions.

This process is repeated until no more instances in

the partitions.

Display attacked patterns in the decision tree.

tion has to be in sentense case with no spacing

above or below the start of it.

4. EXPERIMENTAL RESULTS

In this section different attack patterns are

analyzed using real-time network data and KDD’99

dataset. Experimental results are simulated using

the Java programming environment with third party

libraries such as JAMA, JUNIT, and statistic and

pattern miner. In our experiment, we have captured

network packets using LAN/WAN and then attack

detection operation was initiated. Experimental

results prove that proposed pattern detection model

outperforms well compared to traditional static

models.

Proposed Attack Patterns

service = http

| same_srv_rate < 0.82

| | src_bytes < 89.5 ==> DDOS

| | src_bytes >= 89.5 ==> normal

| same_srv_rate >= 0.82

| | src_bytes < 28483

| | | dst_host_srv_serror_rate < 0.67

| | | | src_bytes < 256.5

| | | | | src_bytes < 206.5

| | | | | | dst_bytes < 2463

| | | | | | | src_bytes < 203.5

| | | | | | | | srv_diff_host_rate < 0.09

| | | | | | | | | dst_host_srv_count < 219.5

| | | | | | | | | | dst_host_srv_count < 214.5 ==>

normal

| | | | | | | | | | dst_host_srv_count >=

214.5 ==> back

| | | | | | | | | dst_host_srv_count >= 219.5

==> normal

| | | | | | | | srv_diff_host_rate >= 0.09

Journal of Theoretical and Applied Information Technology
 20

th
 January 2016. Vol.83. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

170

| | | | | | | | | srv_count < 33

| | | | | | | | | | dst_host_srv_diff_host_rate <

0.36

| | | | | | | | | | | src_bytes < 199.5 ==> normal

| | | | | | | | | | | src_bytes >= 199.5

| | | | | | | | | | | | dst_host_same_src_port_rate

< 0.01

| | | | | | | | | | | | | dst_bytes < 1710.5 ==> back

| | | | | | | | | | | | | dst_bytes >= 1710.5

==> normal

| | | | | | | | | | | |

dst_host_same_src_port_rate >= 0.01 ==> normal

| | | | | | | | | | dst_host_srv_diff_host_rate

>= 0.36 ==> back

| | | | | | | | | srv_count >= 33 ==> back

| | | | | | | src_bytes >= 203.5

| | | | | | | | srv_diff_host_rate < 0.42 ==> normal

| | | | | | | | srv_diff_host_rate >= 0.42

| | | | | | | | | src_bytes < 204.5 ==> teardrop

| | | | | | | | | src_bytes >= 204.5 ==>

normal

| | | | | | dst_bytes >= 2463

| | | | | | | srv_count < 7.5

| | | | | | | | dst_host_srv_count < 134.5

| | | | | | | | | dst_host_count < 46 ==> normal

| | | | | | | | | dst_host_count >= 46 ==>

smurf

| | | | | | | | dst_host_srv_count >= 134.5

==> normal

| | | | | | | srv_count >= 7.5

| | | | | | | | dst_host_count < 8.5

| | | | | | | | | src_bytes < 199 ==> land

| | | | | | | | | src_bytes >= 199 ==>

teardrop

| | | | | | | | dst_host_count >= 8.5

| | | | | | | | | srv_diff_host_rate < 0.26

| | | | | | | | | | dst_bytes < 4819.5

| | | | | | | | | | | dst_bytes < 4793 ==> normal

| | | | | | | | | | | dst_bytes >= 4793 ==>

land

| | | | | | | | | | dst_bytes >= 4819.5 ==>

normal

| | | | | | | | | srv_diff_host_rate >= 0.26

| | | | | | | | | | dst_bytes < 16590.5 ==> teardrop

| | | | | | | | | | dst_bytes >= 16590.5

| | | | | | | | | | | src_bytes < 152 ==> normal

| | | | | | | | | | | src_bytes >= 152 ==>

land

| | | | | src_bytes >= 206.5

| | | | | | srv_diff_host_rate < 0.08

| | | | | | | dst_host_srv_diff_host_rate < 0.01

| | | | | | | | flag = SF

| | | | | | | | | srv_diff_host_rate < 0.04

| | | | | | | | | | dst_bytes < 1482

| | | | | | | | | | | dst_host_same_src_port_rate <

0.01 ==> normal

| | | | | | | | | | |

dst_host_same_src_port_rate >= 0.01

| | | | | | | | | | | | count < 9.5 ==> normal

| | | | | | | | | | | | count >= 9.5

| | | | | | | | | | | | | srv_count < 11.5 ==> back

| | | | | | | | | | | | | srv_count >= 11.5

==> normal

| | | | | | | | | | dst_bytes >= 1482

| | | | | | | | | | | count < 6.5 ==> normal

| | | | | | | | | | | count >= 6.5

| | | | | | | | | | | | dst_bytes < 1483.5 ==> smurf

| | | | | | | | | | | | dst_bytes >= 1483.5

| | | | | | | | | | | | | count < 31.5

| | | | | | | | | | | | | | src_bytes < 249.5 ==>

normal

| | | | | | | | | | | | | | src_bytes >=

249.5

| | | | | | | | | | | | | | | src_bytes < 250.5

Journal of Theoretical and Applied Information Technology
 20

th
 January 2016. Vol.83. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

171

| | | | | | | | | | | | | | | | count < 20.5 ==> smurf

| | | | | | | | | | | | | | | | count >= 20.5

==> normal

| | | | | | | | | | | | | | | src_bytes >=

250.5 ==> normal

| | | | | | | | | | | | | count >= 31.5

| | | | | | | | | | | | | | dst_bytes < 3424 ==>

normal

| | | | | | | | | | | | | | dst_bytes >= 3424

==> smurf

| | | | | | | | | srv_diff_host_rate >= 0.04

Generated Dynamic Intrusion Rules: 921

Time taken to run Proposed Model: 0.52 seconds

Time taken to detect attacks in the test model on

training Model: 0.19 seconds

=== ACCURACY DETAILS ===

Correctly Classified Accuracy : 0.98150

Total Statistical Error Rate : 0.22859 %

Real Time Attack Detection Rate : 0.95249

Total Number of Instances : 5291

Table 1: Captured Packets In Different Experiments

Along With Packet Size And Time To Detect The Attack

Sample Packets DOS/DDOS

(Packets)

TimeToDetect

(ms)

10000 2466 5877

20000 4803 6388

30000 7988 8655

40000 12866 9899

Table.1 describes the sample captured

packets along with DOS attacked information.

Time to detect the DOS/DDOS in LAN/WAN

networks.

Figure 4: Packet Sizes Vs Detection Times

Table 2: Represents The Integrated Datasize With

Detected Attack Patterns Or Rules And Accuracy

Measures.

 Threshold=0.5

Kdddatasize attack

rules

Accuracy Kdddatasize

4000 834 0.94 0.28

5000 924 0.96 0.18

6000 1025 0.97 0.26

7000 1129 0.985 0.27

8000 1433 0.979 0.22

Table 2, describes the realtime integrated

coded dataset along with attacking decision rules.

From the table, it is observed that the attack

detection accuracy and error rate in the proposed

model increases, when the user defined threshold

was initialized as 0.5.

Figure 5: Represents The Integrated Data Size With

Detected Attack Patterns Or Rules

Figure 6: Represents The Integrated Data Size With

Accuracy And Error Measures.

Table 3: Comparison of Accuracy of different models.

Threshold Naïve

Tree

ProbCorr

Tree

Proposed

Model

0.5 0.89 0.92 0.967

0.6 0.91 0.936 0.973

0.65 0.88 0.918 0.984

0.69 0.925 0.948 0.978

0.75 0.901 0.957 0.989

0

10000

20000

30000

40000

50000

60000

0 5 10

SamplePa

ckets

DOS/DDO

S(Packets)

TimeToDe

tect(ms)

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7

Kdddatasize

attack rules

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7

Accuracy

Error

Journal of Theoretical and Applied Information Technology
 20

th
 January 2016. Vol.83. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

172

Table 3, describes the comparison between

the proposed model with the traditional models

such as Naïve tree and Probabilistic correlation tree

in terms of time and accuracy.

Figure 7: Comparison Of Proposed Model With Other

Models

5. CONCLUSION

In this proposed work an improved

dynamic pattern mining algorithm was

implemented in the real time distributed data. This

approach generates high quality attack patterns

from the complex data. This approach minimizes

the detection time and optimizes the decision

patterns in distributed connected networks. This

system generates intrusion patterns by integrating

the predefined attacks and new attacks as early as

possible with low false rate. Experimental results

show that proposed dynamic model optimizes the

real time true positive patterns with high accuracy

compared to traditional models. In future, real time

alert system using decision patterns will be

evaluated to predict the attacks in the dynamic

networks within the specified time interval.

REFRENCES:

[1] Weller-Fahy, D.J.; Borghetti, B.J.; Sodemann,

A.A."A Survey of Distance and Similarity

Measures Used Within Network Intrusion

Anomaly Detection",Communications Surveys

& Tutorials, IEEE,Year: 2015, Volume: 17,

Issue: 1.

[2] Pontarelli, S.; Bianchi, G.; Teofili,"Traffic-

Aware Design of a High-Speed FPGA

Network Intrusion Detection

System",Computers, IEEE Transactions on

Year: 2013, Volume: 62, Issue: 11.

[3] Muradore, R.; Quaglia, D,"Energy-Efficient

Intrusion Detection and Mitigation for

Networked Control Systems Security",

Industrial Informatics, IEEE Transactions on

Year: 2015, Volume: 11, Issue: 3

[4] Bando, M.; Artan, N.S.; Chao, H.J.,"Scalable

Lookahead Regular Expression Detection

System for Deep Packet Inspection",

Networking, IEEE/ACM Transactions on Year:

2012, Volume: 20, Issue: 3.

[5]Chunjie Zhou; Shuang Huang; Naixue Xiong;

Shuang-Hua Yang; Huiyun Li; Yuanqing Qin;

Xuan Li,"Design and Analysis of Multimodel-

Based Anomaly Intrusion Detection Systems in

Industrial Process Automation",Systems, Man,

and Cybernetics: Systems, IEEE Transactions

on Year: 2015, Volume: 45, Issue: 10

[6] Chittur, A, “Model generation for an intrusion

detection system using genetic methods”,

Thesis, In coorperation with Columbia

university,2001.

[7] Cohen, w. “ Fast effective rule induction “, in

proceedings 12th international conference on

machine learning”, pages 115, Fundamentals of

database systems.

[8] B.A. Nahla, Salem, Zided,”Naïve bayes vs

decision trees in intrusion detection systems”,

proceeding of the ACM symposium on

Applied computing,2004.

[9] S.Chavan,K.Shah,N.Dave,” Adaptive neuro-

fuzzy instrusion detection systems”, the

proceedins of the international conference on

IT:Coding and computing,pp.70-74.IEEE

Computer society ,2004.

[10] B.Amor, S.Benferhat, ”Naïve bayes vs

Decision trees in intrusion detection systems,”

ACM symposium on applied computing, 2004,

pp 420-424.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

Threshold

NaiveTree

ProbCorrT

ree

