
Journal of Theoretical and Applied Information Technology
 20

th
 January 2016. Vol.83. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

255

OPERATING SYSTEM INTEGRITY CHECK FRAMEWORK

ALGORITHM FOR THREAT POSED BY ROOTKITS

DAVID MUGENDI, PROF. WAWERU MWANGI (PHD) DR. MICHAEL KIMWELE

School of computing and information Technology

Jomo Kenyatta University of Agriculture and Technology

P.O. Box 62000-00200 Nairobi Kenya

E-mail: david.mugendi@yahoo.com, dnthuni@yahoo.com

ABSTRACT

Kernel mode rootkits, KMRs have indeed gained considerable success as far as blackhat society is

concerned raising much alarm to systems and system defenders. The danger posed by these rootkits has to

some extent led to call for universal attention on the means to handle and deal with them. Rootkits have by

far become more complicated and stealthy making it difficult to even detect their presence in the system

using their susceptible methods. Bearing in mind the danger at hand posed by these rootkits to operating

system and at large other computer systems, getting crucial information from already compromised system

proves to be an uphill task. This thesis focused in addressing this problem. It focused on various techniques

such as intelligent algorithm using neural networks technology to enable integrity checking for kernel mode

rootkits. The research conducted also has described to some extent operating systems e.g. Linux kernel and

some of the areas which are a common target by kernel rootkits. Virtualization technology was also

introduced to enable readers understand some of the critical concepts. A number of requirements to be

satisfied while addressing this issue have been outlined. A framework to implement the model has been set

up to show how integrity check was achieved at the end of research.

Keywords: Artificial Neural Network (ANN), Loadable kernel module (LKM), common object file format

(COFF), Kernel mode rootkits, (KMR), probability mass functions (PMFs)

1. INTRODUCTION

There is ultimatum danger posed by rootkits to

computer systems in every day encounter. The

overwhelming importance of remaining protected

from the various threats presented by these rootkits

such as cloaker cannot be underestimated. In

particular, memory protection and integrity of the

OS is of paramount significance hence the need to

be more vigilant. Rootkits have been known to

cause havoc and even force many organizations

lose vital information rendering them obsolete.

With this in mind, the call for this research work

will play an important role in helping counter threat

of malware in systems. Applications of ANN to

computer systems integrity are a growing area of

interest. Connection weights of links between

neurons, and information are processed in parallel.

2. BACKGROUND OF THE STUDY

In order to surreptitiously control a compromised

computer, an intruder typically installs software

that tries to conceal malicious code. This software

is commonly referred to as a rootkit. A rootkit hides

itself and some malicious payload from the

operating system, users and intrusion detection

tools. The techniques utilized by rootkits to avoid

detection have evolved over the years. Older

rootkits modified system files and were easily

detected by tools that checked for file integrity

(Kim and Spafford, 1993) or rootkit signatures. To

avoid being detected by such tools, rootkit

designers resorted to more complex techniques

such as modifying boot sectors (King and Chen,

2003) and manipulating the in-memory image of

the kernel.

These rootkits are susceptible to detection by tools

that check kernel code and data for alteration,

(Perrigi, 2005). Rootkits that modify the system

BIOS or device firmware ((al, Rootkits that modify

system BIOS, 2004)) can also be detected by

integrity checking tools. More recently,

virtualization technology has been studied as yet

another means to conceal rootkits (Hill et all ,

2000). These rootkits remain hidden by running the

host OS in a virtual machine environment. To

counter the threat from these Virtual Machine

Based Rootkits (VMBRs), researchers have

Journal of Theoretical and Applied Information Technology
 20

th
 January 2016. Vol.83. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

256

detailed approaches to detect if code is executing

inside a virtual machine, (Kauer, 2007). Is this the

end of the line for rootkit evolution? We believe

that other hardware features can still be exploited to

conceal rootkits.

Shadow (2005), exploits the existence of separate

instruction and data address translation buffers to

hide itself. While Shadow Walker exhibits some

weaknesses that allow it to be detected by existing

approaches, we aim to show that it is possible to

construct a rootkit that exploits changes to

hardware state for more effective concealment.

Studying the construction of such a rootkit fuels the

proactive design and deployment of new

countermeasures. Similar approaches have been

used in the past by other researchers, (Kim and

Spafford, 1993).

Cloaker is an extremely stealthy proof-of-concept

rootkit that exploits ARM processor features to

avoid discovery. ARM processors power 90% of

mobile handsets shipped today and five billion

ARM processors have already been consumed by

the mobile device market, (Kim and Spafford,

1993). With four billion mobile phone subscriptions

expected by 2009 and an increasing deployment of

ARM-based phones, it is essential that the threat

posed by rootkits such as Cloaker to be carefully

evaluated. In contrast, the number of worldwide PC

users is expected to be a little over one billion in

2009, reaching the two billion mark only by 2015

(Chen et al, 2006. However, to the best of our

knowledge, Cloaker represents the first exploration

of an ARM processor specific rootkit. In this paper,

we have demonstrated that most existing techniques

used for rootkit detection are ineffective against

Cloaker. Cloaker does not leave any detectable

trace in the file system and is thus invisible to

typical intrusion detection tools that scan file

systems. Similar to VMBRs, Cloaker does not

modify OS code or data. Therefore, it cannot be

detected by integrity checks of the host OS. Cloaker

tweaks hardware registers and settings in a manner

that allows it to execute without interfering with the

existing OS. More specifically, Cloaker exploits an

ARM processor setting that allows the interrupt

vector to be located in an alternate region of

memory. It also exploits hardware functionality that

allows several entries in the address translation

cache to be locked down and not be automatically

removed using the typical approaches used by

operating systems to flush it.

3. MALWARE

Malware refers to malicious software which is

used to disrupt the normal functioning or operation

of a computer while gathering information through

unauthorized access to computer systems. There are

different forms in which a malware can present

itself to the computer such as other software,

scripts, code as well as active content. Different

examples of computer systems malware exist and

may include the following; adware, worms,

scareware, horses, spyware, viruses, Trojan among

others. From previous statistics done in 2011, most

of these active malware which posed a greater

threat included Trojan. Sometimes malware can be

found in programs supplied by legit companies but

mostly they are downloaded from websites which

appear attractive to users but with a hidden agenda

of gathering information on marketing statistics. A

good example is the Sony rootkit, a Trojan which is

embedded on CDs sold by the company to prevent

unauthorized copying of the discs sold Sony.

Rise of widespread broadband internet access

malware has been much often used for all beneficial

reasons. For example, since 2003 majority of these

software have been designed to control user

computers and gather information about companies

and other personal information of interest. A good

example is the zombie computers used to send

spam emails to host contraband data such as child

pornography or engage in distributed DOS [denial

of service] attacked as a form of extortion. There is

greater risk posed by all kinds of malware software

such as ransomware which demands payment of

some sort to reverse the process or damage caused

to the computer system. Cryptolocker encrypt files

securely and only decrypt themselves on payment

of substantial amount of money which directly

implies losses to the company at question.

4. PROLIFERATION

Results from various publications released highlight

how the use of malicious code has become

commonplace. For instance in 2008 the results from

Symantec suggested that the release of unwanted

programs had by far exceeded that of legit software

applications. This is by far a much outcry as the use

of spam emails and World Wide Web has become

more rampant fostering more desire of

encapsulating attacks in much unwarranted manner.

Characteristics of malware in a system

Presence of malware in a system can be identified

by some characteristics which they exhibit in a

computer. This however may not be an easy task

Journal of Theoretical and Applied Information Technology
 20

th
 January 2016. Vol.83. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

257

since malware are highly deceptive and conceal

their presence to avoid being detected. However,

we have highlighted some of the various properties

attributed to malware as follows;

Loadable kernel module (LKM); due to

advancement in malware and rootkit detection in

the recent past, malware developers have developed

more technical mechanisms of hiding their presence

in the system. Loadable kernel module are the most

highly deceptive malware as they are loaded during

the boot process thus providing a window for them

to be loaded to the system without detection. Most

anti-virus tools use signatures extracted from

rootkit bodies (e.g. file or network packet). In

addition, there are heuristic and behavioral patterns

based on certain activities typical for rootkits (e.g.

an aggressive use of a certain network port on the

computer).

Network sniffers; the nature of malware in a system

exhibited by this feature is to gather information

about the system and its environment stealthily and

relay back some of this information to the attacker.

Such is highly commonplace in networked systems

where the attacker eavesdrop data packet and

modifies them in a manner which the user isn’t able

to notice.

Log editors; this property of malware enables them

to hide the presence of the attacker and give him

the privilege to perform backdoor activities without

the user realizing the presence of the attacker. Such

is critically dangerous as the attacker is able to

modify, edit and even delete files from the system.

Backdoor; such a property enables the attacker to

regain access to the system and perform file

modification as well as sniffing on password and

other credential details which gives them access to

the system at any given time without the knowledge

of system administrators.

Auditing programs; this used to exist in the old

system such as ps/netstat for UNIX. Such are able

to record important information about a system and

relay information to the attacker. A good example

is keeping track of users’ passwords and user name

which the attacker uses to access such a system

from time to time.

5. ALGORITHMIC METHOD

1) NEURAL NETWORK

There are various real life applications of neural

networks which instigated the idea of bringing into

board their usability. One good example of this is

data processing including filtering, clustering, blind

source separation and compression. Citing from the

nature of malware once their get access to the

system they undergo various phases before

reaching their execution stage. Through these

stages it’s possible to distinctively detect

irregularities in files or documents as may be

depicted by changes in file extensions. As a result,

understanding the powerful role played by neural

networks in pattern recognition opens the avenue to

adopt this great feature and employ it in providing

the solution to the question at hand. The following

is the lifecycle of a malware in a system;

Dormant phase; once they pass various

authentication procedures, malware remains

dormant in the host system for some time then

proceeds to the propagation phase.

Propagation phase; during this stage, the malware

does replicate to avoid detection and also increase

chances of attacking the system.

Triggering phase; it can be triggered by presence or

absence of a certain file or record a particular day

of week, a particular user running the application.

Execution/damage phase; during execution stage

malware Performs a disguised malicious function,

e.g. destroy or alter data, change file permissions,

trick user into typing password, copy or transmit

data over covert channels

2) Number Of Layers And Neurons

The system implementation has been carried out in

2 phases. The first phase performs the feature

selection procedure by taking input from the files

which make up the training data. Phase 2 performs

the training of the neural network and then

classifies a file as either legitimate or virus infected.

Phase1
In Phase 1, the Training Data, which comprises of

two types of executable files-legitimate and virus

infected, is given as input to the Feature Extractor.

The Feature Extractor takes a

one feature (PE Structure field) at a time from all

files present in the Training Data, and sends it to

the Fisher Score Implementer, Eric Filiol et al,

2006. This in turn evaluates the most optimum or

relevant features, using Fisher Score technique. It

assigns a rank to each feature which will be stored

in the Database. Finally, the Feature Selector

selects the ‘M’ most relevant features based on

their rank. It then provides them as input to Phase 2

Journal of Theoretical and Applied Information Technology
 20

th
 January 2016. Vol.83. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

258

Figure 1; Phase 1 Feature Selection

Phase 2

Figure 2; Training And Classification Of .Exe File

The Input from Phase 1, which comprises of the

‘M’ most relevant features, is given as input to the

neural network, Isabelle Guyon, 2003. Using these

features, the neural network trains itself, and then

whenever a file is given as input, it will classify it

as either a legitimate or a virus infected file.

3) Training The Algorithm

To distinguish legitimate data from virus infected

as the neural network algorithm has been trained

using supervised learning where the network is

trained by providing it with input values and

matching output patterns. These input-output pairs

can be provided by an external teacher or by a

system. This means presence of malware is

detected as the algorithm classifies inputs into

either legitimate or malware. After the

classification, we have shown what data is malware

and which isn’t using the confusion matrix.

6. MODELING FILE ATTRIBUTES AS

DISCRETE RANDOM VARIABLES

We have modeled each file attribute as a discrete

random variable by mapping each plausible value

of an attribute to an integer outcome. Using the

benign and malware datasets, for each random

variable we have computed histograms of each

outcome. By normalizing these histograms, we

obtained the probability mass functions (PMFs) of

the attribute random variables. The outcomes to

integer mappings for some representative random

variables are enumerated in Table 1 below.

The first three attributes in Table 1 are checked for

their presence only, that is whether value of these

attributes is present (non-zero) or absent (zero).

The file content section is the byte distribution.

Much emphasize is in Table 3 which lists all the

file attributes that are used for classification in this

section. Using this mapping and our dataset, future

studies can compare accuracy of their results with

the technique used in this work.
Table 1; Possible Values For Attribute Random

Variables

7. RESULTS AND ANALYSIS

In this section we have showed and compared

results and performance of neural network

algorithm based on various attributes to show the

improvement it brings forth as well as the overall

performance of the algorithm in conclusion.

To determine various attributes of malware from

our data sets, we examined two kinds of data sets.

We referred to these two as source data where one

is the zoo population which represents malware

corrupted data from vxheaven delfi rootkit which

incorporates a combination of worms, Trojans,

viruses, spyware, and network intrusion related

files (password dumpers, covert channels, etc.

collected while responding to confirmed network

intrusion events). All files in this population are

Win32 files with target platforms of MS Windows

Server 2008, MS Windows XP, and MS Windows

7. We called this the “known bad” set, henceforth

referred to as the zoo set. The other small sample

set or the known good set which we shall refer to as

the control set Win32 files extracted from a number

of MS Windows XP, MS Windows 7, and MS

Windows Server 2008 systems. The reason for the

smaller size of the control set is largely because

there is little variance in PE32 files from system to

system for common application and operating

system files. Additionally, Copywrite issues

prohibit the collection and sharing of executables

from valid applications.

Journal of Theoretical and Applied Information Technology
 20

th
 January 2016. Vol.83. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

259

Attributes

The approach adopted in the analysis of these data

sets involved extracting several attributes and

comparing the two so as to establish any changes

which might be exhibited. To do this, we used data

mining rules to extract specifics which guided in

drawing our conclusion from a series of attributes.

These attributes were primarily extracted from the

file’s PE32 headers (Microsoft Corporation, 2010),

(Pietrek, 1994) with the addition of a few whole file

attributes such as file entropy and file size. For

completeness purposes, we picked four major

attributes for analysis with our model as they

yielded much significance to our case study. Other

attributes such as sizeOfHeader attribute,

SectionAddress attributes did not provide

significance detection rates.

Timestamp; examining date of file creation which

is automatically set during the file creation compile

time can be interfered with by the malware. This

can be modified using specialized tools indicating a

malicious or abnormal behavior, [ligh, Adair 2011].

We check for the field within our two data sets and

establish changes in dates using a specified rule.

For example we select for all years >2012 thus

detecting anomaly in data. This is demonstrated this

using area graph below;

Figure 3; Distribution Of Samples By Year Of

Timedatestamp

We can notice various deviations when we look at

the above figure comparing how the zoo set

datasets compare to the control set. A noticeable

point is where the zoo set greatly deviates from the

control set giving a sharp spike. One practical use

of this approach could be to apply this method to a

smaller more targeted subset of samples as an aid in

discovering attacker TimeZone, Country of Origin,

and periods of activity.

File size; we compared the range in the two data

sets in terms of file size and establish if there is any

anomaly. Normally each process in the file is

allotted some reasonable resources to execute it. If

the size of a given file grows without know how of

resource allocator of the operating system then it

becomes obvious that it has been tampered with

from a malicious source. A certain known range is

compared for both the zoo data set and the control

data set and see if there is any deviation from the

norm.

Figure 4; Size Attribute Chart

From the above figure 2 we can notice some

anomalies on the size of data and how it various

from one zoo set when compared with the control

set. For example, zoo set1 represents approximately

65% while the control set is at 100% giving a

deviation of 35%. This is a big anomaly and thus

we are able to establish interference of the file size.

The malware will try to take some small size to

avoid detection but with this kind of analysis we are

able to establish the maliciousness in the data.

File content;

In PE32 files, sections divide the file content

between code, data, resources, and various types of

variable and configuration data. While there are a

vast number of section types and section names

possible, in practice most non-malicious PE32 files

use a small number of sections. As shown in Figure

3 and Table 2 most of the control set samples has

between 1 and 8 sections. When comparing this

range against the zoo set two interesting deviations

are noted. First, figure 3 shows a spike of zoo set

samples where the NumberOfSections value is set

to 7.

Figure 3; File Content Attribute Chart

Journal of Theoretical and Applied Information Technology
 20

th
 January 2016. Vol.83. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

260

Table 2; File Content Deviation Between Two Samples

Symbol Attributes

The pointerToSymbol and NumberOf Symbol

fields define the location and size of the COFF

[common object file format] debugging information

(Pietrek, 1994).

A value of zero specifies no debugging Information

was included during compile time. In the Majority

of cases the control samples should not contain

debug information fields set to zero. The lack of

debug information is driven by the deprecation of

COFF [common object file format] debugging in

favor of PDB [program database] files (Glaister,

2007) and the common practice of stripping

debugging symbols for production files. Table 3

Shows the control set, indeed has a very small

population (0.29%) of samples having a

PointerToSymbolTable Value greater than zero.

When examining the same field within the zoo set a

seven‐fold increase (2.06%) is observed in the

occurrence of samples that have a non-zero value

for this field. One could argue that this value alone

would make a good detection rule

(PointerToSymbolTable>0).

Table 3; Symbol Attributes Deviation

Improved detection rate of the In fact the data

shows a 76.59% deviation between the control set

and the zoo set for this value of NumberOfSections.

This deviation may be useful when considered in

conjunction with other potential indicators

considering this value alone as an indicator of

malicious effect.

algorithm is demonstrated using a confusion matrix

to show how the classification of these files is done

once all the relevant attributes as discussed above

are selected. The confusion matrix is an indicator of

what percentages of the samples used have been

classified as either benign or bad shown in the

figure below;

Figure 6; Confusion Matrix

A confusion matrix classifies dataset as legit or

malware, based on uniformity of timestamp, file

size, file content, symbol attributes. The diagonal

cells show the number of cases that were correctly

classified, and the off-diagonal cells show the

misclassified cases [malware]. The blue cell in the

bottom right shows the total percent of correctly

classified cases (in green) and the total percent of

misclassified cases (in red). The results show very

good recognition.

Journal of Theoretical and Applied Information Technology
 20

th
 January 2016. Vol.83. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

261

7. CONCLUSION

The above malware attributes have been discussed

and compared with some benign to identify if there

are any disparities and consequently be able to

detect presence of malicious activities in a system.

These factors are leading reasons that detection

based on file attributes provides an excellent

supplement to the normal Anti-Virus detection

regiment and have a potential for a much longer life

span than traditional detection signatures. This will

eventually help in keeping our system safe and thus

prevent any form of data modification from

external sources. This is the ultimate objective of

this research to help improve on the integrity of our

system by ensuring that any anomalies in systems

are detected. The use of neural network facilitated

achieving the core objective the research of

improving the integrity of systems through the

ability to detect changes made within a kernel

through pattern recognition providing secure and

isolated environments for execution of untrusted

code. One of its main advantages is that it provides

the detection of mismatch in system sequence thus

upholding integrity of the data.

8. FUTURE WORK

Analyzing the ability to discover changes; the

ability to discover any changes made to a

monitored system, needs to be further explored.

This can only be done through thorough analysis

and testing of the capabilities of the integrity

checker.

Looking at the possibilities of new virtualization

technologies; AMD and Intel will within near

future incorporate support for virtualization into

their processors. Incorporating these into the

framework will probably allow a higher degree of

isolation.

Improving integrity checking technologies; The use

of integrity checking is expensive with regards to

system resources. Therefore, developing more

efficient integrity checkers is important.

Analyzing the isolation and transparency

capabilities of the framework; The ability to

provide isolated and transparent environments is

critical to the success of the detection system. An

analysis revealing the systems weaknesses should

be conducted to allow further improvements of the

system.

Extending the suggested model; currently, the

model focuses on the use of integrity checking as

its main detection mechanism. However, the model

is open for extensions through the implementation

of detection modules. Therefore, developing such

detection modules is important to improve the

model. These modules may contain a number of

functionalities, looking at and analyzing the

existing tools would provide basis functionalities to

be incorporated into such modules.

REFRENCES:

[1] Spafford, E.H.: “The Internet Worm Program:

An Analysis” Tech.

Report CSD-TR-823. Department of

Computer Science, Purdue University (1988).

[2] kephart J.O Amold, WC:”Automatic extraction

of computer virus signatures” in 4
th

 virus

Bulletin International Conference, 1996

 [3] Lo, R.W., Levitt, K.N., Olsson, R.A: MCF: “a

malicious code filter”. Compute. Secure.

14(6), 541–566 (1995)

[4] A.Rajavelu, M. T Musavi and M.V Shirvaikar,

A Neural Network Approach to Character

Recognition” Neural Networks, Vol. 2. Pp.

387-393, 1989.

[5] B CJohnson, D. (2013). “Publication on

Malware and Antivirus Systems for Linux

operating system”.

[6] Garfinkel, T. and Rosenblum, M., (2003), “A

virtual machine introspection based

architecture for intrusion detection, In

Procedings of the Net- work and Distributed

Systems Security Symposium, pages 191–206,

2003.

[7] Seshadri, M. Luk, E. Shi, A. Perrig, L. van

Doorn, and P. Khosla, (2005). Pioneer:

“Verifying Code Integrity and Enforcing

Untampered Code Execution on Legacy

Systems”, In Proceedings of the twentieth

ACM Symposium on Operating Systems

Principles, pages 1–16, New York, NY,

USA,. ACM

[8] [Skou2003] E. Skoudis, “Fighting malicious

Code”, Prentice-Hall. ISBN-0131014056,

2003

[9] Sullivan, D., (2009) “The Shortcut Guide to

Prioritizing Security Spending”, USA: Real-

time Publishers

[10] [BC2002] D. Bovet; M. Cesati,

“Understanding the Linux Kernel”, 2nd

Edition. O`Reilly,ISBN-0596002130, 2002.

[11] J.B. Ekanayake and N. Jenkins, “A Three-Level

Advanced Static VAR Compensator”, IEEE

Transactions on Power Systems, Vol. 11, No.

1, January 1996, pp. 540-545.

[12] A.Rajavelu, M. T Musavi and M.V Shirvaikar,

A Neural Network Approach to Character

Recognition” Neural Networks, Vol. 2. Pp.

387-393, 1989

