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ABSTRACT 

 

Kernel mode rootkits, KMRs have indeed gained considerable success as far as blackhat society is 

concerned raising much alarm to systems and system defenders. The danger posed by these rootkits has to 

some extent led to call for universal attention on the means to handle and deal with them. Rootkits have by 

far become more complicated and stealthy making it difficult to even detect their presence in the system 

using their susceptible methods. Bearing in mind the danger at hand posed by these rootkits to operating 

system and at large other computer systems, getting crucial information from already compromised system 

proves to be an uphill task. This thesis focused in addressing this problem. It focused on various techniques 

such as intelligent algorithm using neural networks technology to enable integrity checking for kernel mode 

rootkits. The research conducted also has described to some extent operating systems e.g. Linux kernel and 

some of the areas which are a common target by kernel rootkits. Virtualization technology was also 

introduced to enable readers understand some of the critical concepts. A number of requirements to be 

satisfied while addressing this issue have been outlined. A framework to implement the model has been set 

up to show how integrity check was achieved at the end of research. 
 

Keywords: Artificial Neural Network (ANN), Loadable kernel module (LKM), common object file format 

(COFF), Kernel mode rootkits, (KMR), probability mass functions (PMFs) 

 

1. INTRODUCTION  

 

There is ultimatum danger posed by rootkits to 

computer systems in every day encounter. The 

overwhelming importance of remaining protected 

from the various threats presented by these rootkits 

such as cloaker cannot be underestimated. In 

particular, memory protection and integrity of the 

OS is of paramount significance hence the need to 

be more vigilant. Rootkits have been known to 

cause havoc and even force many organizations 

lose vital information rendering them obsolete. 

With this in mind, the call for this research work 

will play an important role in helping counter threat 

of malware in systems. Applications of ANN to 

computer systems integrity are a growing area of 

interest. Connection weights of links between 

neurons, and information are processed in parallel.  

2. BACKGROUND OF THE STUDY  

In order to surreptitiously control a compromised 

computer, an intruder typically installs software 

that tries to conceal malicious code. This software 

is commonly referred to as a rootkit. A rootkit hides 

itself and some malicious payload from the 

operating system, users and intrusion detection 

tools. The techniques utilized by rootkits to avoid 

detection have evolved over the years. Older 

rootkits modified system files and were easily 

detected by tools that checked for file integrity 

(Kim and Spafford, 1993) or rootkit signatures. To 

avoid being detected by such tools, rootkit 

designers resorted to more complex techniques 

such as modifying boot sectors (King and Chen, 

2003) and manipulating the in-memory image of 

the kernel.  

These rootkits are susceptible to detection by tools 

that check kernel code and data for alteration, 

(Perrigi, 2005). Rootkits that modify the system 

BIOS or device firmware ( (al, Rootkits that modify 

system BIOS, 2004)) can also be detected by 

integrity checking tools. More recently, 

virtualization technology has been studied as yet 

another means to conceal rootkits (Hill et all , 

2000). These rootkits remain hidden by running the 

host OS in a virtual machine environment. To 

counter the threat from these Virtual Machine 

Based Rootkits (VMBRs), researchers have 
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detailed approaches to detect if code is executing 

inside a virtual machine, (Kauer, 2007). Is this the 

end of the line for rootkit evolution? We believe 

that other hardware features can still be exploited to 

conceal rootkits. 

Shadow (2005), exploits the existence of separate 

instruction and data address translation buffers to 

hide itself. While Shadow Walker exhibits some 

weaknesses that allow it to be detected by existing 

approaches, we aim to show that it is possible to 

construct a rootkit that exploits changes to 

hardware state for more effective concealment. 

Studying the construction of such a rootkit fuels the 

proactive design and deployment of new 

countermeasures. Similar approaches have been 

used in the past by other researchers, (Kim and 

Spafford, 1993). 

Cloaker is an extremely stealthy proof-of-concept 

rootkit that exploits ARM processor features to 

avoid discovery. ARM processors power 90% of 

mobile handsets shipped today and five billion 

ARM processors have already been consumed by 

the mobile device market, (Kim and Spafford, 

1993). With four billion mobile phone subscriptions 

expected by 2009 and an increasing deployment of 

ARM-based phones, it is essential that the threat 

posed by rootkits such as Cloaker to be carefully 

evaluated. In contrast, the number of worldwide PC 

users is expected to be a little over one billion in 

2009, reaching the two billion mark only by 2015 

(Chen et al, 2006. However, to the best of our 

knowledge, Cloaker represents the first exploration 

of an ARM processor specific rootkit. In this paper, 

we have demonstrated that most existing techniques 

used for rootkit detection are ineffective against 

Cloaker. Cloaker does not leave any detectable 

trace in the file system and is thus invisible to 

typical intrusion detection tools that scan file 

systems. Similar to VMBRs, Cloaker does not 

modify OS code or data. Therefore, it cannot be 

detected by integrity checks of the host OS. Cloaker 

tweaks hardware registers and settings in a manner 

that allows it to execute without interfering with the 

existing OS. More specifically, Cloaker exploits an 

ARM processor setting that allows the interrupt 

vector to be located in an alternate region of 

memory. It also exploits hardware functionality that 

allows several entries in the address translation 

cache to be locked down and not be automatically 

removed using the typical approaches used by 

operating systems to flush it. 

 

 

 

3. MALWARE 

 

Malware refers to malicious software which is 

used to disrupt the normal functioning or operation 

of a computer while gathering information through 

unauthorized access to computer systems. There are 

different forms in which a malware can present 

itself to the computer such as other software, 

scripts, code as well as active content. Different 

examples of computer systems malware exist and 

may include the following; adware, worms, 

scareware, horses, spyware, viruses, Trojan among 

others. From previous statistics done in 2011, most 

of these active malware which posed a greater 

threat included Trojan.  Sometimes malware can be 

found in programs supplied by legit companies but 

mostly they are downloaded from websites which 

appear attractive to users but with a hidden agenda 

of gathering information on marketing statistics.  A 

good example is the Sony rootkit, a Trojan which is 

embedded on CDs sold by the company to prevent 

unauthorized copying of the discs sold Sony.  

Rise of widespread broadband internet access 

malware has been much often used for all beneficial 

reasons. For example, since 2003 majority of these 

software have been designed to control user 

computers and gather information about companies 

and other personal information of interest. A good 

example is the zombie computers used to send 

spam emails to host contraband data such as child 

pornography or engage in distributed DOS [denial 

of service] attacked as a form of extortion. There is 

greater risk posed by all kinds of malware software 

such as ransomware which demands payment of 

some sort to reverse the process or damage caused 

to the computer system. Cryptolocker encrypt files 

securely and only decrypt themselves on payment 

of substantial amount of money which directly 

implies losses to the company at question. 

4. PROLIFERATION 

 

Results from various publications released highlight 

how the use of malicious code has become 

commonplace. For instance in 2008 the results from 

Symantec suggested that the release of unwanted 

programs had by far exceeded that of legit software 

applications. This is by far a much outcry as the use 

of spam emails and World Wide Web has become 

more rampant fostering more desire of 

encapsulating attacks in much unwarranted manner. 

Characteristics of malware in a system 

Presence of malware in a system can be identified 

by some characteristics which they exhibit in a 

computer. This however may not be an easy task 
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since malware are highly deceptive and conceal 

their presence to avoid being detected. However, 

we have highlighted some of the various properties 

attributed to malware as follows; 

Loadable kernel module (LKM); due to 

advancement in malware and rootkit detection in 

the recent past, malware developers have developed 

more technical mechanisms of hiding their presence 

in the system. Loadable kernel module are the most 

highly deceptive malware as they are loaded during 

the boot process thus providing a window for them 

to be loaded to the system without detection. Most 

anti-virus tools use signatures extracted from 

rootkit bodies (e.g. file or network packet). In 

addition, there are heuristic and behavioral patterns 

based on certain activities typical for rootkits (e.g. 

an aggressive use of a certain network port on the 

computer).  

Network sniffers; the nature of malware in a system 

exhibited by this feature is to gather information 

about the system and its environment stealthily and 

relay back some of this information to the attacker. 

Such is highly commonplace in networked systems 

where the attacker eavesdrop data packet and 

modifies them in a manner which the user isn’t able 

to notice. 

Log editors; this property of malware enables them 

to hide the presence of the attacker and give him 

the privilege to perform backdoor activities without 

the user realizing the presence of the attacker. Such 

is critically dangerous as the attacker is able to 

modify, edit and even delete files from the system.  

Backdoor; such a property enables the attacker to 

regain access to the system and perform file 

modification as well as sniffing on password and 

other credential details which gives them access to 

the system at any given time without the knowledge 

of system administrators.  

Auditing programs; this used to exist in the old 

system such as ps/netstat for UNIX. Such are able 

to record important information about a system and 

relay information to the attacker. A good example 

is keeping track of users’ passwords and user name 

which the attacker uses to access such a system 

from time to time. 

 

5. ALGORITHMIC METHOD 

 

1) NEURAL NETWORK 

There are various real life applications of neural 

networks which instigated the idea of bringing into 

board their usability. One good example of this is 

data processing including filtering, clustering, blind 

source separation and compression. Citing from the 

nature of malware once their get access to the 

system they undergo various phases before 

reaching their execution stage. Through these 

stages it’s possible to distinctively detect 

irregularities in files or documents as may be 

depicted by changes in file extensions. As a result, 

understanding the powerful role played by neural 

networks in pattern recognition opens the avenue to 

adopt this great feature and employ it in providing 

the solution to the question at hand. The following 

is the lifecycle of a malware in a system; 

Dormant phase; once they pass various 

authentication procedures, malware remains 

dormant in the host system for some time then 

proceeds to the propagation phase. 

Propagation phase; during this stage, the malware 

does replicate to avoid detection and also increase 

chances of attacking the system. 

Triggering phase; it can be triggered by presence or 

absence of a certain file or record a particular day 

of week, a particular user running the application. 

Execution/damage phase; during execution stage 

malware Performs a disguised malicious function, 

e.g. destroy or alter data, change file permissions, 

trick user into typing password, copy or transmit 

data over covert channels 

2) Number Of Layers And Neurons 

The system implementation has been carried out in 

2 phases. The first phase performs the feature 

selection procedure by taking input from the files 

which make up the training data. Phase 2 performs 

the training of the neural network and then 

classifies a file as either legitimate or virus infected.  

Phase1  
In Phase 1, the Training Data, which comprises of 

two types of executable files-legitimate and virus 

infected, is given as input to the Feature Extractor. 

The Feature Extractor takes a 

one feature (PE Structure field) at a time from all 

files present in the Training Data, and sends it to 

the Fisher Score Implementer, Eric Filiol et al, 

2006.  This in turn evaluates the most optimum or 

relevant features, using Fisher Score technique. It 

assigns a rank to each feature which will be stored 

in the Database. Finally, the Feature Selector 

selects the ‘M’ most relevant features based on 

their rank. It then provides them as input to Phase 2 
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Figure 1; Phase 1 Feature Selection 

Phase 2  

 

Figure 2; Training And Classification Of .Exe File 

The Input from Phase 1, which comprises of the 

‘M’ most relevant features, is given as input to the 

neural network, Isabelle Guyon, 2003. Using these 

features, the neural network trains itself, and then 

whenever a file is given as input, it will classify it 

as either a legitimate or a virus infected file.  

3) Training The Algorithm 

To distinguish legitimate data from virus infected 

as the neural network algorithm has been trained 

using supervised learning where the network is 

trained by providing it with input values and 

matching output patterns. These input-output pairs 

can be provided by an external teacher or by a 

system. This means presence of malware is 

detected as the algorithm classifies inputs into 

either legitimate or malware. After the 

classification, we have shown what data is malware 

and which isn’t using the confusion matrix. 

 

6. MODELING FILE ATTRIBUTES AS 

DISCRETE RANDOM VARIABLES 

 

We have modeled each file attribute as a discrete 

random variable by mapping each plausible value 

of an attribute to an integer outcome. Using the 

benign and malware datasets, for each random 

variable we have computed histograms of each 

outcome. By normalizing these histograms, we 

obtained the probability mass functions (PMFs) of 

the attribute random variables. The outcomes to 

integer mappings for some representative random 

variables are enumerated in Table 1 below.  

The first three attributes in Table 1 are checked for 

their presence only, that is whether value of these 

attributes is present (non-zero) or absent (zero).  

The file content section is the byte distribution. 

Much emphasize is in Table 3 which lists all the 

file attributes that are used for classification in this 

section. Using this mapping and our dataset, future 

studies can compare accuracy of their results with 

the technique used in this work. 
Table 1; Possible Values For Attribute Random 

Variables 

 
 

7. RESULTS AND ANALYSIS  

In this section we have showed and compared 

results and performance of neural network 

algorithm based on various attributes to show the 

improvement it brings forth as well as the overall 

performance of the algorithm in conclusion. 

To determine various attributes of malware from 

our data sets, we examined two kinds of data sets. 

We referred to these two as source data where one 

is the zoo population which represents malware 

corrupted data from vxheaven delfi rootkit which 

incorporates a combination of worms, Trojans, 

viruses, spyware, and network intrusion related 

files (password dumpers, covert channels, etc. 

collected while responding to confirmed network 

intrusion events). All files in this population are 

Win32 files with target platforms of MS Windows 

Server 2008, MS Windows XP, and MS Windows 

7. We called this the “known bad” set, henceforth 

referred to as the zoo set. The other small sample 

set or the known good set which we shall refer to as 

the control set Win32 files extracted from a number 

of MS Windows XP, MS Windows 7, and MS 

Windows Server 2008 systems. The reason for the 

smaller size of the control set is largely because 

there is little variance in PE32 files from system to 

system for common application and operating 

system files. Additionally, Copywrite issues 

prohibit the collection and sharing of executables 

from valid applications. 
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Attributes  

The approach adopted in the analysis of these data 

sets involved extracting several attributes and 

comparing the two so as to establish any changes 

which might be exhibited. To do this, we used data 

mining rules to extract specifics which guided in 

drawing our conclusion from a series of attributes. 

These attributes were primarily extracted from the 

file’s PE32 headers (Microsoft Corporation, 2010), 

(Pietrek, 1994) with the addition of a few whole file 

attributes such as file entropy and file size. For 

completeness purposes, we picked four major 

attributes for analysis with our model as they 

yielded much significance to our case study. Other 

attributes such as sizeOfHeader attribute, 

SectionAddress attributes did not provide 

significance detection rates.  

Timestamp; examining date of file creation which 

is automatically set during the file creation compile 

time can be interfered with by the malware. This 

can be modified using specialized tools indicating a 

malicious or abnormal behavior, [ligh, Adair 2011]. 

We check for the field within our two data sets and 

establish changes in dates using a specified rule. 

For example we select for    all years >2012 thus 

detecting anomaly in data. This is demonstrated this 

using area graph below; 

 

Figure 3; Distribution Of Samples By Year Of 

Timedatestamp 

 

We can notice various deviations when we look at 

the above figure comparing how the zoo set 

datasets compare to the control set. A noticeable 

point is where the zoo set greatly deviates from the 

control set giving a sharp spike. One practical use 

of this approach could be to apply this method to a 

smaller more targeted subset of samples as an aid in 

discovering attacker TimeZone, Country of Origin, 

and periods of activity. 

 

File size; we compared the range in the two data 

sets in terms of file size and establish if there is any 

anomaly. Normally each process in the file is 

allotted some reasonable resources to execute it. If 

the size of a given file grows without know how of 

resource allocator of the operating system then it 

becomes obvious that it has been tampered with 

from a malicious source. A certain known range is 

compared for both the zoo data set and the control 

data set and see if there is any deviation from the 

norm. 

 
Figure 4; Size Attribute Chart 

 

From the above figure 2 we can notice some 

anomalies on the size of data and how it various 

from one zoo set when compared with the control 

set. For example, zoo set1 represents approximately 

65% while the control set is at 100% giving a 

deviation of 35%. This is a big anomaly and thus 

we are able to establish interference of the file size. 

The malware will try to take some small size to 

avoid detection but with this kind of analysis we are 

able to establish the maliciousness in the data. 

File content;  

In PE32 files, sections divide the file content 

between code, data, resources, and various types of 

variable and configuration data. While there are a 

vast number of section types and section names 

possible, in practice most non-malicious PE32 files 

use a small number of sections. As shown in Figure 

3 and Table 2 most of the control set samples has 

between 1 and 8 sections. When comparing this 

range against the zoo set two interesting deviations 

are noted. First, figure 3 shows a spike of zoo set 

samples where the NumberOfSections value is set 

to 7. 

 
Figure 3; File Content Attribute Chart 
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Table 2; File Content Deviation Between Two Samples 
 

 
 
Symbol Attributes 

 

The pointerToSymbol and NumberOf Symbol 

fields define  the location and size of the COFF 

[common object file format] debugging information 

(Pietrek, 1994). 

A value of zero specifies no debugging Information 

was included during compile time. In the Majority 

of cases the control samples should not contain 

debug information fields set to zero. The lack of 

debug information is driven by the deprecation of 

COFF [common object file format] debugging in 

favor of PDB [program database] files (Glaister, 

2007) and the common practice of stripping 

debugging symbols for production files. Table 3 

Shows the control set, indeed has a very small 

population (0.29%) of samples having a 

PointerToSymbolTable Value greater than zero. 

When examining the same field within the zoo set a 

seven‐fold increase (2.06%) is observed in the 

occurrence of samples that have a non-zero value 

for this field. One could argue that this value alone 

would make a good detection rule 

(PointerToSymbolTable>0).  

 

 

 

 

 

 

Table 3; Symbol Attributes Deviation 

 
 
Improved detection rate of the In fact the data 

shows a 76.59% deviation between the control set 

and the zoo set for this value of NumberOfSections. 

This deviation may be useful when considered in 

conjunction with other potential indicators 

considering this value alone as an indicator of 

malicious effect. 

algorithm is demonstrated using a confusion matrix 

to show how the classification of these files is done 

once all the relevant attributes as discussed above 

are selected. The confusion matrix is an indicator of 

what percentages of the samples used have been 

classified as either benign or bad shown in the 

figure below;  

 

 
Figure 6; Confusion Matrix 

 

A confusion matrix classifies dataset as legit or 

malware, based on uniformity of timestamp, file 

size, file content, symbol attributes. The diagonal 

cells show the number of cases that were correctly 

classified, and the off-diagonal cells show the 

misclassified cases [malware]. The blue cell in the 

bottom right shows the total percent of correctly 

classified cases (in green) and the total percent of 

misclassified cases (in red). The results show very 

good recognition. 
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7. CONCLUSION  

 

The above malware attributes have been discussed 

and compared with some benign to identify if there 

are any disparities and consequently be able to 

detect presence of malicious activities in a system. 

These factors are leading reasons that detection 

based on file attributes provides an excellent 

supplement to the normal Anti-Virus detection 

regiment and have a potential for a much longer life 

span than traditional detection signatures. This will 

eventually help in keeping our system safe and thus 

prevent any form of data modification from 

external sources. This is the ultimate objective of 

this research to help improve on the integrity of our 

system by ensuring that any anomalies in systems 

are detected. The use of neural network facilitated 

achieving the core objective the research of 

improving the integrity of systems through the 

ability to detect changes made within a kernel 

through pattern recognition providing secure and 

isolated environments for execution of untrusted 

code. One of its main advantages is that it provides 

the detection of mismatch in system sequence thus 

upholding integrity of the data. 

 

8. FUTURE WORK 

 

Analyzing the ability to discover changes; the 

ability to discover any changes made to a 

monitored system, needs to be further explored. 

This can only be done through thorough analysis 

and testing of the capabilities of the integrity 

checker. 

Looking at the possibilities of new virtualization 

technologies; AMD and Intel will within near 

future incorporate support for virtualization into 

their processors. Incorporating these into the 

framework will probably allow a higher degree of 

isolation. 

Improving integrity checking technologies; The use 

of integrity checking is expensive with regards to 

system resources. Therefore, developing more 

efficient integrity checkers is important. 

Analyzing the isolation and transparency 

capabilities of the framework; The ability to 

provide isolated and transparent environments is 

critical to the success of the detection system. An 

analysis revealing the systems weaknesses should 

be conducted to allow further improvements of the 

system. 

Extending the suggested model; currently, the 

model focuses on the use of integrity checking as 

its main detection mechanism. However, the model 

is open for extensions through the implementation 

of detection modules. Therefore, developing such 

detection modules is important to improve the 

model. These modules may contain a number of 

functionalities, looking at and analyzing the 

existing tools would provide basis functionalities to 

be incorporated into such modules. 
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