
Journal of Theoretical and Applied Information Technology 
 10

th
 January 2016. Vol.83. No.1 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
1 

 

GRAPH PATTERN MATCHING IN YEAST DATASET 
 

 
1
DION TANJUNG, 

2
KEMAS RAHMAT SALEH W, ST., M.ENG., 

3
SHINTA YULIA P, ST. 

1
School of Computing, Telkom University, Bandung, Indonesia 

2
School of Computing, Telkom University, Bandung, Indonesia 

3
School of Computing, Telkom University, Bandung, Indonesia 

E-mail: 
1
dae.one11@gmail.com, 

2
bagindokemas@telkomuniversity.ac.id, 

3
shintayulia@telkomuniversity.ac.id  

 

 

ABSTRACT 

 

Graph representation has been widely used in scientific study to analyze a pattern. Geographic maps, 

computer networks, chemical structures, and databases are examples of information that can be applied to 

graph representation. This is related to graph representation method that makes manipulation data 

easier.The needs and growth of information make graph representation larger. Pattern analysis need more 

time while searching in larger graph. Therefore we need new method to searching graph pattern in a large 

graph. In thisresearch , graph query language(GraphQL) algorithm is used for searching graph pattern in 

graph database using yeast dataset. This algorithm is used because it can search graph pattern in graph 

databases by reducing search space. The result obtain combination of local pruning and global pruning can 

reduce search space with the result of reduction ratio and running time being lower. Smaller search space 

make process of searching graph pattern in graph faster. 

 

Keywords: GraphQLAlgorithm, Reduction Ratio, Running Time, Graph, Graph Pattern 

 

1 INTRODUCTION 

Nowadays, pattern analysis development can 

not be separated from the role of the graph. Data in 

multiple domains can be modeled as graphs for 

ease of data manipulation processes [5], like 

chemical compounds, geographic maps, computer 

networks, and databases. Graph is a collection of 

nodes and edges. Node is described as a point or an 

object, and the edge is a relation between nodes.  

From the point of view of the graph pattern, the 

most important problem is matching graphs or 

subgraphs for comparing them[2]. The growing 

heterogeneity and size of the data that increase over 

time,make the existing data models, query 

languages and database systems do not support for 

the modeling and management of this data[5]. The 

growing of the data need to be saved in semi 

structured information. To deal with this problem, 

database using graph representation. Various 

studies are being done to reduce the computational 

cost when matching a large graph with the number 

of nodes above 100[2]. Computational complexity 

of the algorithms need to be considered when 

matching  large graphs. Matching on large graphs 

requires low computational complexity to speed up 

running time of the process matching. One 

technique used to reduce computational cost is 

reducing search space. Result of the graph 

matching are not limited to the node and edge 

information. Structural information and value of the 

entire object of interest is needed, so there is no 

information loss[5]. This means the ability of graph 

matching to return a graph or set of graphs. 

Graph Query Language (GraphQL) is one 

method that can be used to searching graph pattern 

in a graph. The GraphQL algorithm uses profile 

neighborhood signature based pruning and the 

pseudo subgraph information test based pruning to 

reduce the size of the candidate sets[7]. Results 

obtained from the GraphQL algorithm process is a 

graph or set of graphs. In this paper we 

implemented the GraphQL algorithm in graph 

database using yeast dataset. The graphQL 

algorithmalso tested usingmany different size of 

graph pattern from this dataset. The purpose is to 

find out how GraphQL algorithm deal with 

different size of graph pattern. The other purpose 

isto find out the effectiveness of reduction ratio and 

running time in local pruningand global pruning 



Journal of Theoretical and Applied Information Technology 
 10

th
 January 2016. Vol.83. No.1 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
2 

 

process that should be carried out in sequence, find 

outthe influence of search space size to the running 

time in matching process, and find out the influence 

of the optimization phase in the running time.The 

limitation of this research are as follow: simple 

graph, undirected graph, using adjajency list to 

implements graph, and choose graph with more 

than 100 of nodes.  

 

2 BACKGROUND 

In this section we describe graph query 

language, graph, graph database, and GraphQL 

algorithm. 

2.1 Graph Query Language 

Graphquerylanguagehasvarious definitions. 

Herearesomeexamples ofdefinitions ofgraphquery 

language[5]: 

1. Data Model 

Data model in GraphQL algorithm can be 

described as a graph motif that has an 

attribute on the node or edge. 

Example : 

Graph G{ 

Node v1 <year=2006>; 

Node v2 <name=”A”>; 

} 

2. Graph Pattern 

Graph pattern is a graph motif plus a 

predicate on attributes. Graph pattern is also 

called a graph query that used to select 

graphs of interest.Graphpatternis 

representedas follows : 

P = (M,F) 

M is graph motif and F is a predicate. 

Example : 

Graph P { 

Node v1 where name =”A”; 

Node v2 where year>2000; 

}; 

3. Graph Pattern Matching 

P (M, F) same as the graph G if there is 

injective mapping 1 to 1, ∅: V (M)�V (G) 

for ∀ e (u, v) ∈ E (M), (∅ (u), ∅ (v)) is an 

edge of G and predicate F∅ (G).Example of 

mapping graph pattern P on the graph G 

Mapping∅: 

∅(P.v1)→G.v2 

∅(P.v2)→G.v1 

2.2 Graph 

Graph is a collection of nodes and edges. Node 

is described as a point or an object and the edge is 

described as a relation between nodes. Based on the 

orientation, the graph can be divided into two types: 

directed graph and undirected graph. Directed 

graph is a graph which has direction so that 

connectivity between nodes only in one direction. 

Connectivity between nodesin undirected graph can 

be two-way. Example: E = {{x, y}} in a directed 

graph indicates that the relation of the node only 

from nodex to y. X is the predecessor and y is the 

successor. If the graph is undirected, the two nodes 

will be interconnected. Nodex is related to nodey 

and nodey is related to x. Here are some graph 

definitions: 

1. Thesimplegraphisa graphthatdoes nothave a 

loop. 

2. Subgraph is a part of graph that has same 

nodes or edges on the graph. 

3. Path represent a way from a node as start 

point to a destination nodewhichdoes not pass 

throughthe nodeoredgetwice. 

4. Clique in a graph is a subgraph complete 

which every node linked each other. 

5. Matching in a graph is a set of edges which 

connecting nodes only one to one. 

6. Graph to be perfectmatching when allnodesin 

a graph hasmatchingedge 

7. Semi-perfect matchingis 

aperfectgraphmatchingthatleaves 

onenodewithoutedgedue totheoddnumber of 

nodes 

8. The bipartite graph is a graph that can be 

divided into two subsets, such that no nodes 

are interconnected in the same set. If all nodes 

in a set connected to another set of nodes that 

called graph bipartite complete. 

2.3 Graph Database 

Graph database is one of the categories of 

NoSQL who model a database in the form of a 

graph. Just like the graph, node is a data or entity 

and edge is the relationship between nodes. 

Modeling graph database using functions Create, 

Read, Update, and Delete to manipulating data. 

Graph database can be represented using adjacency 

list or implementations to array 2D. Graph database 

consists of [8]: 

1. Graph Storage 

Graph storage is a storage area graph 

database. Graph database used to store the 

graph native storage, data serialization graph 



Journal of Theoretical and Applied Information Technology 
 10

th
 January 2016. Vol.83. No.1 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
3 

 

into relational databases, object-based 

database, and others. 

2. Graph Processing Engine 

Used to form a graph database and set of data 

processing. 

2.4 GraphQL Algorithm 

GraphQL algorithm is one of graph pattern 

matching algorithm that is able to handle small to 

large-sized of graph. The core of GraphQL 

algorithm is graph algebra for the selection process 

and composition. Selection for graph pattern 

matching and composition to generate a new graph 

from matched graph. Figure 1 is an example of a 

graph Gand figure 2 is a graph patternP. Both graph 

G and graph pattern Phave labelA, B, C, and D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.1 Retrieve of feasible mates 

Feasible mates Φ (u) of node u  is a set of 

nodes of in graph G that satisfies the predicate fu in 

the graph patternΦ(u) = {v | v∈V (G), fu(v) = true}. 

From the figure 1, feasible mates each nodes is 

Φ(A) = A1, A2, Φ(B) = B1, B2, B3, Φ(C) = C1, and 

Φ(D) = D1, D2. The resulting product of (A) x Φ 

(B) x Φ (C) x Φ (D) is search space. 

2.4.2 Local pruning 

Search space need to be reduced for fast 

matched process, because matched process is 

checking all nodes that contained in the search 

space. Local pruning use light weight profile to 

prune the search space. One can define the profile is 

node labels. This process is checking profile each 

neighborhood from feasible mates  in radius 1. 

From figure 1, neighborhood of node label A in 

graph pattern is nodes B and D, neighborhood of 

node A2 with label A is nodes B3 with label B and 

C1 with label C. Node A in graph pattern and node 

A2 in graph have same label B from neighborhood, 

but node A has label D and node A2 not has label D. 

The conclusion is node A and node A2 is not sub-

isomorphic, so node A2 is pruned from the search 

space. The search space after the pruning process is 

Φ (A) =A1,Φ (B) =B1,B3,,Φ (C) =C1, and Φ (D) 

=D1. 

2.4.3 Global pruning 

This pruning is the process of join reduction of 

search space. This pruning technique reduce the 

overall search space iteratively using the concept of 

pseudo isomorphism test. Node u and the feasible 

mates of node node u need to be checked whether 

sub tree of node u in Tu sub-isomorphic with the 

node of v in Tv. From the algorithm in figure 2, line 

3-18 checking the sub-isomorphic of Tu and Tv 

using Breadth First Search (BFS) algorithm until 

the depth of adjacent sub trees. Each sub-

isomorphic sub tree is checked  with radius d=1. 

First process is marking node u and node v from the 

search space to checked for semi-perfect matching. 

line 5-9 is construct bipartite graph Bu,v from the 

sub tree of marking nodes. Bipartite graph Bu,v is 

checked for graph semi-perfect matching to pruning 

nodes. Graph is semi-perfect matching if graph Bu,v 

is complete bipartite graph and each nodes in Bu,v is 

connected 1 to 1. If bipartite graph Bu,v not semi-

perfect matching, node v is pruned from search 

space and marking node u’ and v’ for each 

neighborhood of node u and v. This process can be 

done if there is no marked node u and v. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1 

B1 

A2 

B3 B2 D2 

C1 D1 

A 

D B C 

Figure 1: Graph G 

Figure 2 : Graph Pattern P 



Journal of Theoretical and Applied Information Technology 
 10

th
 January 2016. Vol.83. No.1 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
4 

 

 

From figure 1, neighborhood of node A2 is B3 and 

C1, neighborhood of node A is B and D. Each sub 

tree of node A2 and A is used to construct bipartite 

graph Ba,a2 with left sets are A sub tree and right sets 

are A2 sub tree. After that, bipartite graph Ba,a2 is 

checked for semi-perfect matching. The result of 

graph Ba,a2  is not semi-perfect matching because 

node A2 not has D label of neighborhood so 

neighborhood D from node A is not connected to 

any nodes then node A2 is pruned from search 

space. Next iteration, we explained to checked node 

B and node B3. Neighborhood of node B is A and 

D, neighborhood of node B3 has label A,C,and D. 

At the previous iteration, node A2 is pruned from 

the search space so node A in graph Bb,b3  can not 

connected node A2. Graph Bb,b3  is not complete 

graph bipartite and not semi-perfect matching, so 

node B3 is pruned from search space. The result of 

search space after global pruning process is Φ(A) 

=A1,Φ(B)= B1,Φ(C)=C1, and Φ(D)=D1. 

2.4.4 Optimization 

The goal in this optimization is finding the good 

search order for better running time the process 

matching. This optimization is modeled each Φ (U) 

as nodein binary root tree andcalculate the size and 

the cost of the search order. Size of the tree model 

can be estimated by : 

������	 
 ������. ���	�	����	��. �����		�	Υ�i	(1) 

i.left is child node in left i and i.rightis child node in 

right i. size left and size right is be obtained from 

amount of nodes in Φ (U). Υis the reduction factor 

that can use constant reduction values [5]. 

Cost of the tree model can be estimated by : 

������	 
 ������. ���	�	����	��. �����	(2) 

The cost total of search order Γ can be estimated by  

�����Γ	 
 � Cost�i	
�∈ 

(3) 

For example,search space from local pruning is Φ 

(A) =A1,Φ (B) =B1,B3, ,Φ (C) =C1, and Φ (D) 

=D1 with the size of Φ (B) is 2 because Φ (B) have 

2 nodes and other size is 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From figure 4, the search order is (((A⋈ "	 ⋈
�	 ⋈ #	. Size (A⋈ "	 = 1 x 2 = 2 and cost (A⋈ "	 
= 1 x 2 x $ =	2$. Size ((A⋈ "	 ⋈ � 

2$	�	1=2$with cost is 2$x1 x $=2$2

. cost 

(((A⋈ "	 ⋈ �	 ⋈ #	=2$2
x1=2$2

so the total cost 

if $ 
 1	is 2+2$ '
2$2

=2+2(1)+2(1)
2
=2+2+2=6.Similary, the total 

cost of (((A⋈ �	 ⋈ #	 ⋈ ")in figure 5is 4. Thus, 

(((A⋈ �	 ⋈ #	 ⋈ "	is better than (((A⋈ "	 ⋈
�	 ⋈ #	. 

2.4.5 Graph pattern matching 

After optimization process, all of nodes in Φ 

(A)Φ,(V),Φ (C), andΦ (D)is combined to make a 

combination of node that matched with the graph 

pattern.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From figure 6, procedure boolean check(ui,v) is 

checking node ui whether that node can be mapped 

v. Line 15 examine if node ui is neighborhood of uj 

and examine if node v is an edge of node uj then 

return false. Procedure search(1) is examine node 

from first index or from Φ (A)if the first searh order 

is fromΦ (A)  . For each node v in Φ (ui)is checked 

in procedure check, if the result is false then the 

iteration is examine the next v (line 4). If return true 

thennode v  is replace node ui. Line 6 is checking if 

index of i is less then the size of graph pattern, if 

A B C D 

Figure 4 : Search Order A ⋈ B ⋈ C ⋈ D 

Figure 5 : Search Order A ⋈ C ⋈ D ⋈ B 

1. void Search(i) 

2. begin 

3. foreach v ∈ Φ(ui), v is free do 
4. if not Check(ui, v) then continue; 

5. φ(ui) ← v; 

6. if i<|V (P)| then Search(i + 1); 
7. else if Fφ(G) then 

8.               Report φ ; 

9.                                if not exhaustive then stop; 
10. end 

11.   end 

12. 
13.   boolean Check(ui, v) 

14.   begin 

15. foreachedge e(ui,uj) ∈ E(P), j<i do 

16. ifedge e (v,φ(uj)) ∉ E(G) or not Fe(e ) then 
17. return false; 

18. end 
19. return true; 

20.   end 

Figure 3 : Global Pruning Algorithm[5] 

Figure 6: Matching Algorithm[5] 

A C D B 



Journal of Theoretical and Applied Information Technology 
 10

th
 January 2016. Vol.83. No.1 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
5 

 

true then add I with 1 to search next index in 

recursive phase. If i is the size of graph pattern then 

check the combination result. The result of this 

matching algorithm is not necessarily same as the 

graph pattern and the results of the new graph can 

be duplicated. To avoid that problem, we 

comparing the size of the new graph and the graph 

pattern. For example, node YNLin the new graph 

has neighborhoodYAL, YOL, andYDR, 

NodeYNLingraph patternhas neighborhoodYAL dan 

YDR. The new graph and the graph pattern in that 

case is not sub-isomorphic so the new graph is not 

the answer of the graph pattern. To avoid 

duplicated new graph, we checked the previous 

answer of the graph pattern. The answer of the 

graph pattern is a set of new matched graph, if new 

graph pattern found is similar as other result so this 

new graph is not counted as the answer. For 

example, combination of nodes 

{{YAL,YNL,YDR},{YNL,YDR,YAL}} create similar 

graph so we choose the first combination as the 

answer. 

 

3 EXPERIMENT 

3.1 System design 

In this research, will be built a system that is 

used for the analysis of algorithms GraphQL. 

General overview of the system to be built is as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From figure 7, we evaluate the performance of 

GraphQL algorithm on yeast dataset that consist 

2361 nodes, 7182 edges, and 536 loops. This 

dataset was taken from http://vlado.fmf.uni-lj.si/in 

pajek format and we change this pajek format into 

excel format so our system can read this format. 

This dataset is represented into simple graph G to 

produce more varied graph pattern. Id example of 

this dataset is YBR236C. Because this dataset has 

no label, we make label from Yeast mark(letter 1), 

number of kromosom(letter 2), and left-right 

mark(letter 3) for each id. From the example, id 

YBR236Chas label YBR.Using this technique, this 

dataset contains more than one label so we have a 

lot of similar pattern from this label. This idea is to 

know the effectiveness of pruning process when 

deal with similar pattern because pruning process 

check from the label. Although this process is 

checking the node label, but the result of pattern 

must matching with the node id. 

Graph G on system consist 2361 nodes, 13292 

edges, and has no loops because we changed into 

simple graph. From this graph G, we searching path 

and cliques to determine amount of graph pattern to 

be tested. We choose the longest path and the 

largest clique to make a graph pattern. To searching 

all of paths contained in graph G, we using dijkstra 

algorithm. This algorithm is used to searching the 

shortest path, so we replace and added some 

function so this algorithm can searching all path 

contained in graphs. The longest path found in 

graph G is 22, because path length is 11 to 22 only 

a few are found, so we choose the longest path uses 

is 10. We break that path to make path with length 

1 to 10. Same as path, we use Bron-Kerbosch 

algorithm to search all cliques contained in graph 

G. The largest cliques size is 9 so we break this 

cliques into cliques size of 1 to 9. 

Graph pattern used for testing need to change 

into query form because system read the input of 

graph pattern in query form. Figure 8 is the 

example of query used. This query is to make graph 

pattern for cliques which has 3 nodes:YDR1, 

YNL1,and YAL1interconnected.  

 

 

 

 

 

 

 

 Figure 8: Clique Query 
Figure 7: System Design 

4. 

query graph 

pattern 

3. 

Graph 

pattern P 

1. 

dataset 

graph 

database.  

 

6. 

Feasible mate 

process 

 

8. 

Local pruning 

 

10.  

Global pruning 

 

14. 

Matching 

answer 

12. 

optimization 

 

13.  

Graph pattern 

matching 

2. 

Representation of 

graf G 

5. 

Representation of 

graph pattern P 

 

start 

end 

7. 

Search space 

9. 

Search space 

11. 

Search Space 









Journal of Theoretical and Applied Information Technology 
 10

th
 January 2016. Vol.83. No.1 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
9 

 

Algorithm (Graph Algorithm Clustering) 

in Graph Database Compression. 

[13] Tian, Y. & Patel, J. M., 2008. Tale : A tool 

for Approximate Large Graph Matching.  

[14] Ullmann, J. R., 1976. an Algorithm for 

Subgraf Isomorphism.  

[15] Zhang, S., Li, S. & Yang, J., 2009. 

GADDI : Distance Index based Subgraph 

Matching in Biolgical Network. ACM. 

[16] Zhao, P. & Han, J., 2010. On Graph Query 

Optimization in Large Network. VLDB 

Endowment. 

 


