
Journal of Theoretical and Applied Information Technology
 10

th
 January 2016. Vol.83. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

138

COMPARING THE APPROACHES OF GRAPH-REDUCTION

AND LANDMARK SHORTEST PATHS

1
FAISAL KHAMAYSEH,

 2
NABIL ARMAN

1
Asstt Prof., Department of Computer Science and Engineering, Palestine Polytechnic University

2
Prof., Department of Computer Science and Engineering, Palestine Polytechnic University

2
Corresponding Author

E-mail:
1
faisal@ppu.edu,

2
narman@ppu.edu

ABSTRACT

We study the different recent improvements on shortest path algorithms. We suggest improvements to the

classical path computing algorithms and we implement them using random generated graphs with various

sizes. Many attempts exist for improving shortest path techniques. Computing shortest path is one of the

most important and recent issues in combinatorial optimization, emergency routs, NoSQL data graph

representation, road and public transportation networks, and other applications. One of the big obstacles in

such real-word applications is the size of the graphs that motivates the attempts of enhancing the path-

finding procedures. Given a weighted graph G={V,E,w}, a heuristic method to improve conventional

shortest-path for a given source node <s> is provided. In this paper, we address the complexity of shortest

paths in large graphs and we present a graph structure and enhancement process of finding the shortest path

in the given graph. We study the current improving algorithms and highlights the improvements over the

classical ones. We evaluate our implemented techniques using randomly generated weighted graphs. The

main procedure is compressing the graph without losing the graph properties. We then, compare our

technique with the approach of using landmark optimization. We discuss the performance, storage, error

rate in our approach compared to landmark. Our experiments show that the new technique of graph

compression performs with better speedup and no path mistakes compared to fast landmark approach which

leads to high overhead in most situations.

Keywords: Candidate Subgraphs, Graph Compression, Shortest-path, landmarks, Reverse Representation.

1. INTRODUCTION

Finding shortest paths in graph based domains is

demanding issue especially in recent digital life. It

is difficult to imagine real-world applications such

as online social networks (like Facebook, LinkedIn,

MySpace), communication, transportation and

routing networks, without applying graph

algorithms. The huge number of graph nodes and

links makes the existing path-finding algorithm

incredible in terms of time complexity. Shortest

path is needed in real-world applications such as

communication, transportation and routing

networks. In small non-dynamic graphs, pre-

processing is very beneficial. However, pre-

processing procedures require much space.

Applications such as NoSQL graph representation

of the data network rely basically on preprocessed

preparation of data items. Twitter’s real graph is

hundreds of millions of nodes and relationships that

makes it difficult to find a simple search path unless

data is prepared in a graph that simplifies the query.

The advantage of such pre-processing is to help

finding the intended source-destination path while

obtaining tangible cost reduction.

The processes of finding the shortest path over

network topology is quite expensive. It is worthy to

work towards improving existing classical

algorithms such as the well-known Dijkstra's

algorithm for finding shortest path [1]. Many

attempts exist for improving shortest path

techniques using different graph representation and

constraints [2]-[11]. Pre-processed paths

preparations provide better performance in path

finding algorithms [6], [9],[11] and [13].

We study and describe some recent existing

techniques for improving the computation of

shortest path [9], [11] and [12]. Recent subgraph

compression technique is very important which

focuses on graph reduction in order to lower

shortest path computing cost. This paper focuses on

Journal of Theoretical and Applied Information Technology
 10

th
 January 2016. Vol.83. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

139

the comparison between the new improved

algorithm using graph compression and the

landmark technique of point-to-point shortest path.

Let G={V,E,w} be a directed weighted graph

with vertex (node) vi∈{V}, edge ei ∈ {E} and w(e)

is the nonnegative weight function on every graph

edge ei ∈ {E}. The compressed graph CG={CV,

CE, w} is generated from graph G using

compression procedure. {CV} is the set of vertices

in CG, {CE} is a set of edges formed using

compression function, and w(e) is the positive

weight function applied on CG edges. The

compression function transforms G into new graph

while preserving the graph properties. That is, the

weight-sum of the shortest path from source <s> to

target <t> in the compressed graph is the same as it

is in original graph G. The Complexity of shortest

path goes around O(|V|log|V|) or O(|V|log|E|).

Example of such variations is the running time

based on Fibonacci-heap min-priority queue which

is O(|V|log|V|+|E|) for the nonnegative weighted

graph with w(e) is nonnegative [14].

Some recent improving attempts commit to

improve shortest path finding algorithms based on

search procedure by imposing a constraint functions

while ignoring the large number of irrelevant nodes

[10], [15]-[20]. Some researchers have focused

more on overcoming the network structure rather

than the algorithm itself. Some improvements

introduced to find the shortest path through graph

partitioning. Researchers took an advantage of the

graph features to improve the search such as

network properties, and sentence fusion using

dependency graph structure to acquire compression

[15] and [18]. Some attempts focused on

simplifying the detailed graph by clustering

adjacent nodes and benefiting from components on

the transit edges. The main feature in these recent

improvements is the possibility of partitioning the

graph into a set of components or clusters and in

better representations with some constraints.

The technique of landmark selects set of nodes

that cover the graph using a selection algorithm for

better set of selected central nodes with highest

betweenness centrality [19]. Finding the optimal set

of nodes that covers the entire graph is NP-hard

[20]. Landmark approach aims at decreasing the

time needed to find the frequent shortest path

finding [21] and [22]. This is not very beneficial in

dynamic graphs especially when the real-world

applications are critical such as aviation routs,

emergency communications, medical data

communication networks, to mention a few.

Although computing shortest path is deeply studied,

landmark approach as well as many other

improvements do not guarantee the best procedure

especially in current real-world huge networks.

2. STRUCTURE

Different graph representations have been used to

handle the given graph. In graph compression

technique, the sets of V nodes and E edges with

corresponding positive weights are required to be

represented in two matrices with maximum |V|
2

elements to represent the graph in normal and

reverse representations [1]. For example, figure 1

depicts a random generated graph G (V,E,w) to be

represented in the matrix structure which stores all

nodes and edges in two dimensional array structure

where each node Ni stores the name or index of

previous node Nj and the weight w of the edge

(Ni,Nj). Paths are represented in the matrix structure

as a single row of consecutive nodes with every

subpath branched in the next rows starting from

next column. For example, starting from node N1,

the linear parts are represented in separate rows

with every subpath occupies a consequent row as

shown in table 1, for example. It is required to

construct a reverse matrix representation of the

graph G. The main advantage of this representation

is in finding all possible ancestor nodes starting

from the destination node <si>. This step

determines all nodes lead to the current node.

Figure 1. ph G = (V,E,w)

Journal of Theoretical and Applied Information Technology
 10

th
 January 2016. Vol.83. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

140

The reverse pre-process structuring procedure

limits the candidate subgraph where the algorithm

is intended to work in. It is very useful in real-world

path-finding applications to exclude irrelevant

nodes or subgraphs in order to limit the scope. If we

assume that the source node in the given graph G is

N1 and the destination node is N59, the required

candidate subgraph G'(V,E) is {N1, N2, N6, N11,

N21, N19, N27, N35, N59} and hence, there no

need to put effort in other parts of the graph. It is

also required to represent the graph in linear

representation for fast references of nodes as shown

in table 3. For efficient implementation and to save

storage, the matrix can also be represented as a

linear array with |E| entries are:

 {((0,0), N1), ((0,1), N2), ((0,2), N7), ((0,3), N8),

((0,4), N9), ((0,5), N24), ((0,6), N25), ((1,6), (0,8)),

etc.}.

 In this structuring technique, matrix stores all

vertices showing all links and paths. The matrix is

beneficial in finding all reachable vertices in the

graph for given source and destination nodes. It

takes only linear time to check path existence. We

get an advantage of using this matrix in fast finding

sub-paths of single in-degree and single out-degree

where we apply compression technique.

We also benefit from this structure in

determining the graph roots or zero in-degree heads.

These nodes appear in the first columns in the graph

structure. The paths are represented in depth first

search traversal order while common parts of the

paths are stored only once using array indexing to

avoid duplications of subpaths representation.

When the reference of the vertex is in the form of

(ri, cj), it means that the node is previously visited

and previously represented. That is, the node (ri, cj)

can be visited from more than one subpath. For

example, if paths p1 is represented as vertices

{N1,N2,…,Ni,…,Nn-1,Nn} and p2 is represented

as {N1,N2,..,Ni,..,Nm}, P1 and P2 are paths in G,

then the rest of path p2 is stored in the next row of

path p1 starting from the column (i+1) with no

elements in previous entries of the same row.

3. GRAPH REDUCTION PROCEDURE

Two major steps are required for reduction,

compression and determining the candidate

subgraph.

3.1 Graph Compression

The linear path that has no more than one in-

degree and one out-degree in all inner nodes has to

be reduced to only one edge with the corresponding

weight sum. Graph reduction or compression is a

task of producing new reduced graph G' produced

from G by applying path compression. This

procedure preserves the original graph properties

including paths, weights, path heads and ends,

source nodes and destinations, etc. The procedure

finds all linear subpaths in which every node has no

more than one out-degree and only one in-degree,

adds up the subpath weights and transforms it to

only one edge with its total weight. Figure 2 shows

the new compressed graph G'={V,E',w'} after

applying graph reduction procedures which reduces

the number of nodes and edges. For example, the

path p={N1,N37,N38, N14, N13, N17} with total

weight = 29 in G is reduced to one edge <N1, N17>

with weight = 29 preserving the same total weight

of the original path. The benefit of this procedure is

to help jump from head node of the linear path to its

end node without calculation. The matrix structure

of the graph aids in determining the linear subpaths.

Figure 2. Compressed Graph

TABLE I. GRAPH REPRESENTATION MATRIX

Node 0 1 2 3 4 5 6 7 8

0 N1 N2 N7 N8 N9 N24 N25 N62 N63

1 (0,8)

2 N25

3 N5 N6 etc

etc etc

Journal of Theoretical and Applied Information Technology
 10

th
 January 2016. Vol.83. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

141

This reduction method performs well on sparse

graph since it contains many linear subpaths with

consequent nodes. The resultant reduced graph may

include two direct edges between consecutive

nodes such as N26 and N33. The second pass of the

procedure removes the direct multiple edges

between every two consecutive nodes. While this

step is not necessary, it completes the reduction

step as shown in figure 2 which creates figure 3.

3.2 Candidate Subgraph

 When source and destination nodes are closed to

each other or locate in a clear closed part of a big

graph that can be bounded, working in the whole

graph is therefore time consuming. Figure 3 shows

a pictorial illustration of having candidate subgraph

with reverse representation together with

compression generated from the original given

graph.

4. GRAPH COMPRESSION ALGORITHM

Normal structure, reverse matrix and linear

representation are required for the compression

stage. Reverse matrix array is used to represent the

graph G where ancestors and decedents of each

node vi are reversed to represent all vertices where

vertex vi is accessible from. The optimized

procedure to compress the graph and determine the

candidate subgraph is then takes place where huge

irrelevant parts of the graph may be excluded.

N1

N2 N4

N6

N36 N40

N41

N15

N44

N45

N16N11

N9

N12

N48

N19

N51

N24

N23

N21

N52

N54
N49

N27

N26

N35

N33

N59

N61

5 9

29

12

10

6

13 3

9

3

6

8

6

5

1

18

10

9

4

9

10

3
5

7

11

20

7

2

4

16

13
8

176

23

28

2

6

5

2

N62

7

N64

2

N65

6

7

15

12

N60

3

Graph G={V,E,w}

Compression technique performs path reduction

using reverse matrix in the first place. The node

structure includes the current vertex, minimum

distance, and predecessor node. This aids in

determining the direct path with its corresponding

0/1 (unmark/mark) flag of each node, the goal

node, and accumulated weights. Then the algorithm

saves the direct paths for nodes vi to vj where out-

degree and in-degree of each node on this direct

path equals to 1.

4.1 Compression General Steps

� Selects node Ni as a path head or parent.

� Calculates the weight sum of all
consequent nodes in the same row in the
original graph matrix with out-degree is not
more than 1.

� Find the goal-node, which is the first node
along the direct path with out-degree is
other than 1.

� Save the direct path between the parent and
the goal-node and the accumulated weight
in the new compressed matrix.

4.2 Properties

The result of the above steps is a new reduced

graph with no linear subpaths, that is, every node Ni

has at least one the following properties:

• Selected source node of the shortest path.

• Selected destination of the shortest path.

• Graph root (path head): any node with in-

degree equals to zero. These roots appear

in column zero of the graph matrix.

• Path end: every node with no out-degree

which appear as last node in each row.

• In-degree > 1in which more than one path

leading to the Ni.

• Out-degree > 1 in which the node Ni

appears in more than one path.

4.3 Constructing Reverse Matrix

 To exclude irrelevant graph parts or nodes, we

apply the selection method to determine that

candidate subgraph G' with given source and

destination nodes. In this step, the algorithm

constructs the reverse matrix representing the graph

rooted with all graph destinations to form the

candidate subgraph. Candidate subgraph is

determined by tracing the reverse matrix starting

from the destination and going back through the

Journal of Theoretical and Applied Information Technology
 10

th
 January 2016. Vol.83. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

142

matrix and marking only the candidate nodes along

the backward edges only. This procedure is also

possible in different ways as preferred by the

programmer, e.g., copying the candidate nodes to a

different reduced matrix, having mark-flag in the

node structure, or by changing the weights of the

excluded nodes to infinite value. After marking the

visited (candidate) nodes in the subgraph, and

starting from the source node, the algorithm checks

the path existence in just array-row direct access

time. The algorithm directly selects the direct path

in the case it exists, otherwise it adds all neighbor

edges of the current node by visiting all nodes listed

in the next column in a breadth fashion.

The main saving of the this algorithm is to find

the shortest path in the candidate part of the

compressed graph excluding all nodes that do not

lead to destination which limits the search to take

less time than searching the entire graph. This new

efficient procedure clearly reduces the search effort

compared to the functionality of known

conventional algorithms especially when applied on

real-world problems such as communication and

data networks.

Algorithm: Finding Shortest Path Using Graph

Reduction (graph, mark, reverse-matrix)

1: initialize mark-matrix to unmark (false

mark)

2: select destination vertex t

3: construct a reverse-matrix

4: start at destination vertex t in reverse-

matrix

5: for every linear subpath from vi to vj

6: transform all inner nodes to <vi,vj>

as a single edge with total weight wij

7: mark all ancestor nodes to mark (true

mark)

8: dist= FindShortest(graph-matrix, mark-

matrix, s) //For the selected source node s

Function:FindShortest(GraphMatrix, MarkMatrix,s)

1: for each vertex v in Graph Matrix

2: initialize distance of v to infinity;

3: Initialize predecessor of v to undefined

4: end for

5: for every node starting from path-heads to path-

 ends in Graph Matrix // compression

6: add up weights of all consecutive vertices

vi's with in-degree and out-degree no more

than 1

7: store total weight as an a single edge for vi+1

8: end for

9: dist[s] := 0 ;

10: MarkQ = set of Marked nodes in Graph Matrix

ordered in dfs visit

11: starting from s, select smallest nodes with

distance using marked nodes in MarkQ only

12: Update dist

13: return dist

5. PERFORMANCE

In this paper we have studied the algorithm of

reducing the graph and finding the candidate

suitable subgraph to find the shortest path. The

fundamental objective is to come up with better

performance comparing with conventional naïve

shortest path algorithms and also comparing with

some recent improvements such as using landmark

method. The algorithm finds the shortest path

SP(s,t) between two given vertices <s> and <t> in a

directed weighted graph G={V,E,w}. It obviously

reduces the original graph G. This improvement

reduces the number of edges |E| to the new number

of edges |E'| and the number of vertices |V| to |V'|

which lowers the cost significantly. This reduction

results in more benefits and improved tangible

performance if applied on sparse graph than

applying it on dense one.

Practically, we applied the given approach on a

random generated graph G={V,E,w} where the

algorithm reduces the graph G to G'(E',V') in about

51% with significant saving about 49% of the total

number of edges in G, for example.

In the algorithms of finding shortest paths, it is

required to have O((|V|+|E|)log |V|) for each path

finding applying the classical algorithms making

the cost extremely high. This classical procedure is

almost impossible in many real-world applications

such as in communication networks. Comparing

with late shortest path improvement attempts, the

recent algorithm using graph compression [9]

introduces more tangible performance.

6. EXPERIMENT AND EVALUATION

This paper presents an experimental study of our

improving algorithm. We investigate the different

graph representations, graph reduction and

performance results in comparison with landmark

approach. The graph compression approach

provides evidence that the proposed heuristic

outperforms the conventional algorithms. The

performance of the algorithm shows a considerable

Journal of Theoretical and Applied Information Technology
 10

th
 January 2016. Vol.83. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

143

saving in the cost of random generated graphs with

different sizes. The experiment shows a significant

saving in performance when applied on dense

graphs and more on sparse ones in most of the

trials. Average performance of applying the new

improving approach on set of random graphs with

different density degrees is shown in figure 4. This

procedure shows that the algorithm with the

compression approach outperforms the improved

procedures using landmark method.

Figure 3. Performance of Shortest Path using

Compression with Candidates Heuristics on Sparse and

Desnse Graphs

7. GRAPH COMPRESSION USING

CANDIDATE SUBGRAPH HEURISTIC VS

LANDMARK APPROACH

The landmark based algorithm store complete

shortest paths with reference to each landmark

vertex [23]. Finding shortest path using landmark

approach is fast when source node is one of the

landmark vertices. The best landmark selection is

the set that covers all graph nodes where it works

not faster than naïve shortest path. In real random

selection of source nodes, landmark approach

calculates the shortest path between the source and

the closest landmark point. The risk, is that shortest

path between source and destination may not go

through any landmark vertices. On the other hand,

pre-processed shortest paths via landmark requires

large storage on each landmark vertex.

Although landmark approach adds some tangible

improvements on shortest path finding, there is a

considerable overhead when applied on nodes out

of landmark set, hence, larger k leads to less errors.

The reason is that large k covers the graph in more

small-subgraphs covering more source nodes. To

avoid this case, compression approach performs in

a better way. Figure 5 shows the same graph G with

landmark selection. After structuring the graph and

storing the shortest path trees, landmark approach

finds the shortest path in high speed, however extra

calculations needed if source point s exist out of

selected landmark set of nodes as illustrated in

figure 6. Practically and in the real world

application, it is almost impossible to calculate and

store the shortest path trees as shown in figure 7.

The performance figures of applying landmark

approach on set of random graphs with different

density degrees are shown in figure 7 and figure 8

where the compression technique introduces

valuable cost saving.

Figure 4. Landmark Graph

Compression approach requires less space and

keeps preserving the properties of the original

graph. Therefore, compression approach is error

free. Our Experiments show a considerable saving

in performance in dense graphs and more in sparse

ones in most of the trials.

Journal of Theoretical and Applied Information Technology
 10

th
 January 2016. Vol.83. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

144

Landmark procedure depends on preprocessing

in computing the shortest paths trees between nodes

with reference to landmarks. Although the

landmark approach do not guarantee the intended

approximation, it has been approved to perform

well in suitable context [23]. The main

improvements of using landmark algorithm is to

calculate shortest paths between every landmark

node to each other node in the graph as illustrated

in figure 6 and figure 7. The other challenge is in

the way of finding the best collection of landmark

nodes to cover the graph.

Figure 5. Graph G with 8 Landmark Points

The comparison results between the new

improving algorithms show the performance in

terms of running time units of the graph reduction

with candidate subgraph and the landmark

approach as shown in Table 2 and figure 7. These

improving algorithms show better performance on

different graph densities especially in sparse

graphs. Shortest path computation on landmark

nodes is fast, SP(li,lj)=c, since the computation is

previously calculated. The problem occurs when

the given source points do not exist in selected

landmark in which direct shortest path SP(s,t)

requires less effort than going through landmarks.

Landmark SP(li,lj)=c

Figure 6. Landmark SP Procedure

The distance computation of SP(s,t) is

performed in one of the following choices: of SP1

or SP. SP1(s,t) is the direct calculation without

recognizing landmarks. SP(s,t) using

SP2(s,Li)+SP3(Li,t) in which landmark is used.

Although landmark approach is recognizable

improvement and very beneficial, SP1(s,t) could

be less or equal to SP2+SP3 in terms of distance

based on the selected nodes:

 SP1(s,t)<=SP2(s,li)+SP3(li,t). (1)

TABLE II. COMPARISON OF GRAPH COMPRESSION WITH

CANDIDATES VS LANDMARK APPROACHES

Out

Degree

Dijkstra

Candidate

 subgraph

Compression

with

candidate

k=15%*N

Landmark

k=10%*N

k=5%*N

1 4.99 1.16 0.73 6.59
3.49

2.19

2 7.88 2.40 1.40 8.80
7.20

4.19

3 9.12 2.96 1.49
10.79

8.89 4.48

4 10.70 3.16 1.69
12.49

9.47 5.07

5 12.13 3.37 2.85
13.18

10.11 8.56

N1

N2

N3

N5

N6

N7

N10

N37

N38

N14

N36

N39

N40N43

N42

N15

N45

N13

N16

N11

N8

N22

N20

N12

N46

N47

N18

N48

N50

N19

N51

N24

N23

N21

N54

N56

N49

N53

N26

N25

N29

N28 N35

N55

N57

N31

N30

N32

N33

N58

N61

N60

5

3

7

2

3

6

1

2

3

5

2

3

6

3

6

7

5

9

11

4

1

7

7

9

3

10

9

9
2

4

6

5

4

3

1

5

6

7

3

7

5

5

2

2

6

6

1

4

3

5

2

7

4

4

12

3

2

8

11

5

11
6

12

8
13

6

2

6

4

5

2

N62

N63

3

7

4

N64

2 N65

6

N67

1

6

N664

11

N59

1

N34

N52

N44

N27

N4

N17

N41

N9

SP1=SP(s,t)

SP3=SP(li,t)

Area2: G’=

G-{landmarks}.

Area1:
Landmarks

Selected nodes

S

t

Journal of Theoretical and Applied Information Technology
 10

th
 January 2016. Vol.83. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

145

8. RESULTS

The performance of both algorithms are shown in

table 2. The comparison figures between the

heuristic of shortest path computation using graph

compression with applied selection of candidate

subgraph and the approach of using landmark show

that the graph compression by excluding irrelevant

nodes that do not connect source with destination

outperforms landmark approach in different graph

densities and sizes, and therefore outperforms the

classical naïve procedure. The overhead in

landmark approach is basically embodiment in the

huge computations of shortest path trees that is

concentrated in the selected set of landmark nodes.

Figure 7. Comparison between Shortest Path Techniques

and Lankmark Approach

For a graph G={V,E,w}, the new compression

technique benefits from different graph

representations and preprocessed preparation to

generate a reduced graph G’ while preserving the

properties of the original graph. The new approach

improves finding shortest path using the candidate

subgraph along with compression technique. The

statistical figures result in better performance when

applying the graph compression together with the

exclusion of the irrelevant nodes using candidate

subgraphs approach.

 These experimental statistical figures show the

average performance of applying the new approach

on set of random graphs with different density

degrees. That is, the applied new procedure for

improving shortest path finding in weighted graphs

outperforms the classical procedures and

outperforms the approach of using landmark

technique.

Figure 8. Performance of Shoprtest Path Techniques

9. CONCLUSION

In this paper we present and discuss the heuristic

approach of finding shortest path using

compression with candidate subgraph and the

approach of using landmark. Given a weighted

directed graph G={V,E,w}, an efficient and

improved algorithm for finding shortest paths

between a given source <s> and destination <t>

using candidate subgraph along with graph

compression is implemented and discussed.

The candidate and compression procedures are

applied on random generated weighted directed

graphs that vary in sizes and range from sparse to

dense. The approach of using landmark to find

shortest path is applied on the same graphs and

compared in terms of performance. In the practical

phase, we found that the algorithm of computing

shortest path using graph compression with

candidate subgraph technique outperforms the

performance of landmark approach and other

improving algorithms with the given properties and

constraints. Graph compression along with

candidate subgraph heuristic shows obvious

improved performance on random generated sparse

graphs. As a heuristic algorithm, the complexity

will always be bounded by the complexity of

known normal algorithms, i.e., it will not exceed

O((|V|+|E|)log |V|) for each source <s> and each

destination <t> while it shows tangible cost saving

in the real practical applications such as in real

communication and data networks.

With respect to previous improvements, we

achieve notable improvements and tangible

performance while preserving graph properties. The

average performance of applying the graph

Journal of Theoretical and Applied Information Technology
 10

th
 January 2016. Vol.83. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

146

compression approach on set of random graphs

with different density degrees as sparse and dense

is discussed. Landmark approach is discussed and

practically applied on different graphs. A

comparison between the different algorithms are

established and discussed. The applied new

procedure for improving shortest path finding in

weighted random graphs outperforms both the

classical procedure and the approach of using

landmark technique especially when applied on real

world applications.

ACKNOWLEDGEMENTS

This research is funded by The Scientific

Research Council, Ministry of Education and

Higher Education, State of Palestine under a project

number of 01/12/2013, and Palestine Polytechnic

University. The authors would like to thank the

research assistants Ms. Walaa Nasereddin and Ms.

Salma Dirbashi for their help in implementing the

algorithms.

REFERENCES

[1] E. W. Dijkstra, "A note on Two Problems in

Connexion with Graphs", Numerische

Mathematik 1: 269 271.

doi:10.1007/BF01386390.

[2] F. Zhang, A. Qiu, and Q. Li,"Improve on

Dijkstra Shortest Path Algorithm for Huge

Data". Chinese academy of surveying and

mapping: China, 2005.

[3] F. Khamayseh and N. Arman,"An Efficient

Heuristic Shortest Path Algorithm Using

Candidate Subgraphs". International

Conference on Intelligent Systems and

Applications. Hammamet, Tunisia. 22-24

March, 2014.

[4] F. Simek and I. Simecek,"Improvement of

Shortest Path Algorithms through Graph

Partitioning". International Conference

Presentation of Mathematics. Liberec, Czech

Republic, 2011.

[5] H. N. Djidjev, G. E. Pantziou, and C. D.

Zaroliagis,"Improved Algorithms for Dynamic

Shortest Paths". Algorithmica (2000) 28: 367–

389.

[6] J. B. Orlin, K. Kamesh Madduri, K. Subramani,

and M. Williamson,"A faster algorithm for the

single source shortest path problem with few

distinct positive lengths". J. of Discrete

Algorithms, 8, 2 (June 2010), 189-198

[7] L. Xiao, L. Chen, and J. Xiao, "A new

algorithm for shortest path problem in large-

scale graph". Appl. Math, 6(3), 657-663.

[8] F. Khamayseh and N. Arman."Improvement of

Shortest-Path Algorithms Using Subgraphs'

Heuristics", Journal of Theoretical and Applied

Information Technology, 2015. Vol. 76, No.1.

[9] L. Yunpeng, J. Yichuan, Z. Yong. "A new

Single-source shortest path algorithm for

nonnegative weight graph", Cornell university

library, retrieved May 9th, 2015 from

http://arxiv.org/abs/1412.1870v6.

[10] N. Arman and F. Khamayseh, “A Path-

Compression Approach for Improving Shortest-

Path Algorithms”, International Journal of

Electrical and Computer Engineering (IJECE),

Vol.5, No.4, September 2015.

[11] Y. Huang, Q. Yi, and M. Shi, "An Improved

Dijkstra Shortest Path Algorithm". Proceedings

of the 2nd International Conference on

Computer Science and Electronics Engineering

(ICCSEE 2013). Hangzhou, China, Paris:

Atlantis Press, March 2013: 226-229.

[12] F. Khamayseh and N. Arman,"An Efficient

Multiple Source Single Destination (MSSD)

Heuristic Algorithm Using Nodes Exclusions",

International Journal of Soft Computing, Vol.

10, No. 3, 2015.

[13] N. Arman, (2005). “An Efficient Algorithm for

Checking Path Existence Between Graph

Vertices”. Proceedings of the 6th International

Arab Conference on Information Technology

(ACIT’2005), pp. 471-476, December 6-8,

2005, Al-Isra Private University, Amman,

Jordan.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest,

and C. Stein, "Dijkstra's Algorithm.

Introduction to Algorithms", (Second ed.).

Section 24.3: pp. 595–601. MIT Press and

McGraw-Hill. ISBN 0-262-03293-7.

[15] K. Filippova. & M. Strube. "Sentence fusion via

dependency graph compression". Proceeding of

EMNLP-08, 2008, pp. 177–185.

[16] J. Zhang, J. Li, X. Fan, Z. Deng, “Research on

Real-Time Optimal Path Algorithm of Urban

Transport”, TELKOMNIKA Indonesian Journal

of Electrical Engineering, Vol.12, No.5, May

2014, pp. 3515 ~ 3520.

[17] W. Yahya1, A. Basuki2, J. Jiang. "The

Extended Dijkstra’s-based Load Balancing for

OpenFlow Network", International Journal of

Electrical and Computer Engineering (IJECE),

Vol. 5, No. 2, April 2015, pp. 289~296.

Journal of Theoretical and Applied Information Technology
 10

th
 January 2016. Vol.83. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

147

[18] F. Katja, "Multi-Sentence Compression:

Finding Shortest Paths in Word Graphs",

Proceedings of the 23rd International

Conference on Computational Linguistics

(Coling 2010), pages 322–330, Beijing, August

2010.

[19] L. Freeman. A set of measures of centrality

based on betweenness. Sociometry, 40(1):35–

41, 1977.

[20] W. Frank Takes and Walter A. Kosters,

"Adaptive Landmark Selection Strategies for

Fast Shortest Path Computation in Large Real-

World Graphs", The Netherlands, Web

Intelligence (WI) and Intelligent Agent

Technologies (IAT), 2014 IEEE/WIC/ACM

International Joint Conferences on (Vol:1).

[21] F. Volodymyr, T. Konstantin and D. Marlon

Dumas, “Memory-Efficient Fast Shortest Path”

Estimation in Large Social Networks,

Proceedings of the Eighth International AAAI

Conference on Weblogs and Social Media,

Association for the Advancement of Artificial

Intelligence, 2014.

[22] Q. Miao, C. Hong, C. Lijun, X. Y. Jeffrey,

"Approximate Shortest Distance Computing: A

Query-Dependent Local Landmark Scheme",

Proceedings of the 2012 IEEE 28th

International Conference on Data Engineering,

p.462-473, April 01-05, 2012.

[23] K. Tretyakov , A. Armas-Cervantes , L. García-

Bañuelos , J. Vilo , M. Dumas, “Fast fully

dynamic landmark-based estimation of shortest

path distances in very large graphs”,

Proceedings of the 20th ACM international

conference on Information and knowledge

management, October 24-28, 2011, Glasgow,

Scotland, UK [doi>10.1145/2063576.2063834].

AUTHOR PROFILES:

Dr. Faisal Khamyseh is a Computer Science

assistant professor. He received his BSc in

Computer Information – Advanced Computer

Careers, from Southern Illinois University, USA

1992, and MSc in Computer Science from same

university in 1995, and his PhD in Computers and

Information Systems from the College of

Computers and Information, Helwan University,

Egypt, in 2009. Currently working at Palestine

Polytechnic University as instructor and head of

Dept. of Information Technology and as instructor

of MSc in Informatics. Dr. Khamayseh is a

researcher in software engineering research unit at

college of Information Technology and Computer

Engineering. He is interested in Computer

Algorithms, Software Engineering and E-learning.

Dr. Nabil Arman is a Computer Science professor

at Palestine Polytechnic University. He received his

BS in Computer Science with high honors from

Yarmouk University, Jordan in 1990 and an MS in

Computer Science from The American University

of Washington, DC USA in 1997, and his PhD

from the School of Information Technology and

Engineering, George Mason University, Virginia,

USA in 2000. At Palestine Polytechnic University,

he worked as the MS Informatics Program

Coordinator and the head of the Department of

Mathematics and Computer Science. Currently, he

is the Dean of the College of Information

Technology and Computer Engineering. Dr. Arman

is interested in Database and Knowledge-Base

Systems, Algorithms, and Automated Software

Engineering. He has published more than thirty

refereed conference and journal papers.

