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ABSTRACT 

 

Testing is the best way to ensure software quality. However, this activity makes a huge challenge about 

limited time and financial resources. In order to achieve high quality, managers need to detect the defect 

prone parts of code and allocate the resources to them. Although many metrics, techniques and models 

have been proposed, effective identification of such parts is still a challenge. In this paper two new metrics, 

namely PIEDG and PIMDG are proposed for predicting defects based on dependency between the file level 

components of the code. The proposed metrics use the notion of participation of nodes in the software 

dependency graph to recognize the parts of the code which possess defects. This research also investigates 

the effect of ego graph on the software dependency global graph. The feasibility of the software defect 

predictor which is built based on the proposed metrics is evaluated. The experiments over the Eclipse bug 

dataset demonstrate promising results in anticipation of the software defects. 
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1. INTRODUCTION    

 In the software market, companies often face 

the dilemma to either deliver a software system 

with poor quality or lose the marketing 

opportunity. Both choices may have serious effects 

on the future of a company. Facing with defects 

from one release to the next may harm the image 

and trust of the users into the companies and 

postponing one release may contribute to business 

profit for the competitors [1]. 

Although software development is a troublous 

job and software testing can cost more than 65% 

of the existing resources, testing activities are 

often used as a “sanity checks” to minimize the 

risk of a defective system [1]. 

A big part of the job in testing activities relates 

to the important problem of minimizing the cost of 

testing activities. In the past, the important issue of 

assessing the cost of testing activities which 

should be devoted to a class was not addressed 

completely and the managers were left alone in 

strategic decision making on allocating the 

resources to concentrate on testing activities. For 

example, consider a manager who wants to 

promote essentially the quality of a big object-

oriented system in the next release. To do so, he 

needs to know that which classes are vital so as to 

concentrate the testing activities on them and 

allocate its resources to them. In fact, the vital 

classes can be the defect-prone ones. These are 

classes which have the high risk of producing 

defect and the classes through which a defect can 

spread everywhere across the system.  Providing a 

ranked list of the probable defect classes can help 

the manager in giving priority to testing activities 

based on his knowledge about the project. 

Therefore, the manager would get benefit from one 

method to recognize defective classes [1].   

In this paper, we tried to evaluate the effect of 

node participations in software coupling. This idea 

evaluates the effect of each dependency in EGO 

view on GLOBAL view. Therefore, two metrics 

are proposed for predicting defect based on 

dependency between the components of the code. 

The dependency is in file level. The idea is based 
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on participation of nodes in the software 

dependency graph. The objective of this work is to 

validate the feasibility of the software defect 

predictor which is built based on these metrics. 

This paper is organized as follows. Section two 

reviews the related works. Section three explains 

the software dependency graph. Section four 

proposes the new metrics. Section five includes the 

experimental evaluations of the proposed metrics. 

Finally, section six concludes the paper. 

 

2.  RELATED WORKS 

Defect prediction is a very active research field 

and many studies have addressed this issue using a 

variety of different methods and techniques [2]. 

They mainly use the metrics and machine learning 

techniques to build predictive models [3, 4]. One 

group of these metrics recognizes the software 

defect through measuring code characteristics such 

as McCabe complexity metrics. These metrics 

have been proposed by some researchers and can 

easily be extracted from the code [5-7]. Some 

groups of metrics help the software teams using 

the dependency between the components of the 

code such as modules, classes and files [8, 9]. 

These are known as dependency metrics. The last 

group of metrics uses historical data or previous 

defects to predicate defects [10]. They follow the 

intuition that systems with defects in the past will 

also have defects in the near future [1]. 

Nagappan et al. [6] predict the likelihood of 

post-release defect by using a regression model. 

They researched on 5 Microsoft projects. The 

results of the investigation suggest that the chosen 

metrics can be used to predict post-release defects, 

successfully. However, the authors also observe 

that there is no single set of metrics applicable to 

all projects.  

Ostrand et al. [10] used the information of the 

file status (such as new, changed and unchanged) 

to predict defective files. Then they used historical 

data from two large software systems with up to 

17 releases to predict the files with the highest 

defect density.  For each release of the two 

systems, the top 20% of the files with the highest 

predicted number of defects contained between 

71% and 92% of the defects actually detected, 

with an overall average of 83%. 

 

 Zimmerman et al [11] reported the existing 

defects on Eclipse code (releases 2, 2.1 and 3) to 

fixes. They calculated the mapping of packages 

and files to the number of their defects in each 

considered release (in the first six months before 

and after release) so that they could evaluate the 

effective metrics in predicting the defect of 

software. They conducted an empirical study using 

common complexity metrics to build prediction 

models. Their models showed that a combination 

of complexity metrics can predict defects, 

suggesting that the more complex a code, the more 

defective. This study uses their work as a 

comparison basis to evaluate the newly proposed 

metrics. 

 

Besides, Zimmerman & Nagappan [9] 

extended previous mentioned research and 

proposed to use network analysis on dependency 

graph. They showed that Network metrics derived 

from dependency graphs are able to predict defects 

in the system better than the complexity metrics 

and the recall for models built from network 

measures is by 10% points higher than for models 

built from complexity metrics. However, their 

results come from only one project (Windows 

Server 2003).  

  Turhan et al. [12] showed that defect 

prediction by dependency graph is much more 

successful than defect prediction by complexity 

metrics in big programs, however in short program 

there is not much difference. 

Tan et al. [13] proposed the use of both Latent 

Semantic Indexing (LSI) and a hierarchical 

clustering algorithm to group classes that are 

similar at the lexical level. The authors present 

models to predict faulty clusters. The results 

suggest that the predictive models build on the 

clusters outperform those based on classes in terms 

of precision, recall, and accuracy of the faults 

predicted.  

Menzies et al. [14], [15] used software 

clustering for defect predication of software. They 

evaluated learning for defect prediction from data 

local to a project or from multiple projects. 

Clustering the learning data is based on software 

metrics rather than the source code. This method is 

also used in [2]. The predictors obtained by 

combining small parts of different historical data 

sources (i.e., the clusters) are superior to either 

generalizations formed over all the data or local 

lessons formed from particular projects.  

He et al. [16] validated the feasibility of the 

predictor built with a simplified metric set for 

software defect prediction in different scenarios. 

Besides, they investigated practical guidelines for 

the choice of training data, classifier and metric 

subset of a given project. The results indicated  
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that (1) the choice of training data should depend 

on the specific requirement of prediction accuracy; 

(2) the predictor built with a simplified metric set 

works well and is very useful in case limited 

resources are supplied; (3) simple classifiers (e.g., 

Naive Bayes) also tend to perform well when 

using a simplified metric set for defect prediction; 

and (4) in several cases, the minimum metric 

subset can be identified to facilitate the procedure 

of general defect prediction with acceptable loss of 

prediction precision in practice. 

3. SOFTWARE DEPENDENCY GRAPH 

The dependencies can be shown by construing 

the entire software as a low level graph in which 

the graph nodes are files, packages or the existing 

classes and the edges show the relationship or 

dependency between the nodes. As a result, the 

dependencies are proposed in file, package or class 

level, respectively. Such a graph is called software 

dependency graph [9]. 

 In a dependency graph, the edges can be 

directed. The edges that exit out of a node are 

named as fan-out and the ones that enter in a node 

are named as fan-in. In this paper, each fan-out is 

considered as one dependency. For example, in the 

dependency graph of Figure 1, the fan-out of node 

A is 3.  

 

 

 

Figure1: Simple Dependency Graph 

 

4. PROPOSING THE NEW METRICS 

High coupling rate is definitely a weakness in 

software design. Also, fan-out is a proper gauge 

for coupling measurement. As a result, fan-out can 

be used as a measure of design quality. 

Consequently, numerical fan-out values can help 

to identify defect prone parts of code. 

 In Figure 1, the node A has three dependencies 

to the other nodes so the priority of this node is 

higher than that of the other nodes in order to 

check for possible faults. 

To design the new idea, the measure networks 

of Ego network and Global network which are 

proposed in network analysis have been used. 

These measures have been mentioned in [9]. One 

important distinction made in network analysis is 

between ego networks and global networks. 

 Every node in a network has a corresponding 

ego network that describes how the node is 

connected to its neighbors. (Nodes are often 

referred to as “ego” in network analysis.).So an 

ego network for a node consists of its 

neighborhood in the dependency graph. 

In contrast, the global network corresponds 

always to the entire dependency graph. While ego 

networks allow us to measure the local importance 

of a node with respect to its neighbors, global 

networks reveal the importance of a node within 

the entire software system [9]. 

 According to the implemented studies, 

calculated metrics to predict the software defects 

are mostly related to the ego network of each node. 

As mentioned, Ego is the presentation of 

dependency graph from the view point of each 

node. For instance, fan-out and fan-in metrics are 

at Ego level because they just calculate the related 

dependencies of each node regardless of the whole 

graph. But the global view towards the 

dependency graph leads into proposing metrics at 

global level and can be useful in predicting the 

faults. 

The new metrics in this study are proposed 

based on the idea of participation of nodes in the 

dependency graph. In other words, the 

participation of nodes in total coupling of 

dependency graph is considered to predict 

software defect. Unlike most of the existing 

metrics, this idea has a widespread view towards 

the graph. The proposed metrics are called PIEDG 

and PIMDG, and we call the set of these metrics 

PIDG.  

The first proposed metric, namely PIEDG 

(Participation of each node In the Existing 

Dependencies in a Graph) implies that the high 

rate of participation in the existing software 

coupling causes the defect-proneness of each class. 

A B 

C D 
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In other words, the amount of high 

participation of each node in the existing 

dependencies in the software dependency graph 

makes that node defect-prone. For instance, the 

value of PIEDG metric for the node A in Figure 1 

equals to 60%. Because the number of the existing 

dependencies in this graph is five of which three 

belongs to A. 

The second proposed metric, namely PIMDG 

(participation of each node in the maximum 

possible dependencies in a graph) implies that the 

high rate of participation in the maximum possible 

software coupling can help to predict the defects. 

In other words, the amount of high participation of 

each node in the maximum possible dependencies 

in the software dependency graph makes that node 

defect-prone. In addition, the maximum rate of 

dependencies for n nodes in an undirected mesh 

graph is n(n-1). As a result, the value of PIMDG 

feature for node A in Figure 1 equals to 25%. 

In this research, each node demonstrates one 

file in the eclipse project. In addition, the graph 

edges represent different types of dependencies 

between the files. The proposed metrics PIEDG 

and PIMDG are calculated based on the following 

relations. 

)(

)(
)(

gDep

fDep
fPIEDG =

                               (1) 

)1(

)(
)(

−
=

nn

fDep
fPIMDG

                                  (2) 

Dep(f): Dependencies from f to the other nodes. 

Dep(g): Number of total existing dependencies. 

n: Number of nodes in the dependency graph . 

After calculating these metrics, a wide variety 

of different classifiers can be used to test their 

ability in software fault prediction. The class 

attribute for this test is named “has-defect”. The 

value 1 demonstrates one or more defects that are 

found in the previous research works. Also the 

value 0 demonstrates that no fault have been found 

in the related class. 

 

 

 

5. EXPERIMENTAL EVALUATIONS 

To conduct the experiment, releases 2, 2.1 and 3 

of Eclipse project
1
 are used. In [11] Zimmerman et 

al. have computed the defects of the mentioned 

versions of this project in the file and package 

levels and have introduced many metrics known as 

Zimmerman’s metrics. The defect and metrics data 

of different release of this project are available 

online
2
. These data have been used as the basis of 

evaluation and comparison by this study. 

In this study, to build models or predictors out 

of metrics and then comparison with Zimmerman 

metrics the Weka software version 3,6,11 has 

been used. To do so, different classification 

algorithms have been used. The class variable 

predicts defectiveness or non-defectiveness of 

each file. Our model uses the PIDG metrics and is 

compared with the model built out of 198 

Zimmerman metrics. To test the models cross-

validation method has been used. 

The models or predictors built out of PIDG 

metrics to determine defect have been compared 

with the models and predictors built out of 

Zimmerman metrics with respect to accuracy and 

root mean squared error. Accuracy is the proximity 

of measurement results to the true value. Root 

mean squared error is a frequently used measure of 

the differences between values predicted by a 

model or a predictor and the values actually 

observed Tables 1, 2 and 3 show the comparative 

results on releases 2, 2.1 and 3 of Eclipse, 

respectively. These models have been built 

through 7 classifier algorithms. 

     

As can be seen in Table 1, our metrics have 

higher accuracy than Zimmerman metrics in most 

cases (4 out of 7, rows 1, 2, 5 and 7) and that the 

improvement up to 12% has also been achieved in 

BaysNet classifier. With respect to the root mean 

squared error, our metrics in most cases (4 out of 

7) show a better result and this improvement has 

been gotten up to 0.2 in .BaysNet 

                                                           
1
 http://www.eclipse.org/ 

2
 https://www.st.cs.uni-saarland.de/softevo/bug-

data/eclipse/ 
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 In Table 2, our metrics have been compared 

with Zimmerman metrics in Eclipse 2.1. As can be 

seen, PIDG metrics in most cases (5 out of 7) have 

higher accuracy than Zimmerman metrics and in 

some cases such as BaysNet classifier; the 

improvement up to 19 % has been achieved. In 

other cases, our metrics and Zimmerman metrics 

have almost the same performance. With respect to 

the root mean squared error our metrics in most 

cases (5 out of 7) show a better result and this 

improvement has been reached to 0.2 in BaysNet, 

and in the other cases our metrics and Zimmerman 

metrics show almost the same result. 

In Table 3, the comparison has been done on 

Eclipse 3. As can be seen, our metrics show a 

better result than Zimmerman with respect to 

accuracy and root mean squared error in 5 cases 

out of 7 (all rows except 3 and 6). 

In sum, the good results of the comparative 

evaluations with respect to the accuracy and root 

mean squared shows the effectiveness of our 

metrics in predicting software defect and it reveals 

that the amount of high participation of a 

component in existing dependencies of a graph 

and maximum possible dependencies of a graph 

causes the defect-proneness of that component. In 

addition, the few number of the used metrics can 

affect the speed of model making process. 

 

 

6. CONCLUTION 

 

In this study, PIDG metrics which includes 

participation in existing dependencies in a graph 

(PIEDG) and participation in maximum 

dependencies in a graph (PIMDG) metrics have 

been proposed. The experimental results over such 

metrics give an evidence on the importance of high 

software coupling in a weak design. This idea 

gives a global perspective of coupling in software 

dependency graph. The evaluation results also 

showed that PIDG produces models or predictors 

with higher accuracy than Zimmerman metrics in 

predicting the software defect and is effective for 

determining the defect-prone parts of the code. 
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                       Measure 

           Classifier 

Accuracy± Root mean squared 

error of Zimmermann’s metrics 

Accuracy± Root mean squared 

error  of  PIDG metrics 

bayes.BayesNet 71.7046 %  ± 0.526 83.638%±0.352 

bayes.NaiveBayes 84.2324 % ±0.3963 85.778  %±0.3581 

functions. Logistic 87.6356 % ±0.3054 86.0009 %±0.3312 

meta.ClassificationViaRegression 

+trees.M5P 

86.8777 % ±0.3166 86.0306 %±0.3257 

meta.END + trees.J48 85.1241 % ±0.3732 85.6206 %±0.3325 

trees.LADtree 87.2046 ±0.3113 85.9563 %±0.3573 

trees.FT 83.742  % ±0.3854 85.1836 %±0.337 

 

 

 

 

 

 

 

                           Measure 

Classifier 

Accuracy± Root mean squared error of 

Zimmermann’s metrics 

Accuracy± Root mean 

squared error  of  PIDG 
metrics 

bayes.BayesNet 69.7914% ± 0.545 84.1971% ± 0.3549 

bayes.NaiveBayes 83.1776% ± 0.4091 84.8107% ± 0.3693 

functions. Logistic 86.6232% ± 0.3236 85.5565%  ±  0.339 

meta.ClassificationViaRegression 

+trees.M5P 

84.9334% ± 0.3405 85.5565% ± 0.3333 

meta.END + trees.J48 83.0265% ± 0.3979 85.4527% ± 0.336 

trees.LADtree 86.3589% ± 0.3236 85.3866% ± 0.3338 

trees.FT 81.6199% ± 0.4093 85.5471%  ± 0.339 

                      Measure 

Classifier    

Accuracy± Root mean squared 

error of Zimmermann’s metrics 

Accuracy± Root mean 

squared error  of  PIDG 

metrics 

bayes.BayesNet 70.3474%  ± 0.5397 89.2748%  ± 0 .3144 

bayes.NaiveBayes 86.0041% ± 0.3734 88.2733% ± 0.3288 

functions. Logistic 89.5157% ±0.2912               89.427% ± 0.2974 

meta.ClassificationViaRegression 

+trees.M5P 

88.1212% ± 0.3074 89.3256% ±0.2957 

meta.END + trees.J48 86.4858% ± 0.3547 89.2748% ± 0.2975 

trees.LADtree                89.427% ± 0.2921               89.3002%  ± 0.297 

trees.FT 85.2434% ± 0.3677 89.4143% ± 0.2983 

 

 

 

 

Table1: The Comparison of The Models Built Out of PIDG Metrics and Those Built Out of 

Zimmerman Metrics on Eclipse 2 

Table3: The Comparison of The Models Built Out of PIDG Metrics and Those Built Out of 

Zimmerman Metrics on Eclipse 3 

Table2: The Comparison of The Models Built Out of PIDG Metrics and Those Built Out of 

Zimmerman Metrics on Eclipse 2.1 


