
Journal of Theoretical and Applied Information Technology
 31

st
 December 2015. Vol.82. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

440

SOFTWARE DEFECT PREDICTION USING PARTICIPATION

OF NODES IN SOFTWARE COUPLING

1
MARYAM SHEKOFTEH,

2
KEYVAN MOHEBBI,

3
JAVAD KAMYABI

1
Department Of Computer Engineering, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran

2
Department Of Electrical and Computer Engineering, Mobarakeh Branch, Islamic Azad University,

Mobarakeh, Isfahan, Iran
3
 Department of E-Learning, Shiraz University, Shiraz, Iran

E-mail:
1
 shekofteh@iausarv.ac.ir,

2
k.mohebbi@mau.ac.ir,

3
javadkamiabi@live.com

ABSTRACT

Testing is the best way to ensure software quality. However, this activity makes a huge challenge about

limited time and financial resources. In order to achieve high quality, managers need to detect the defect

prone parts of code and allocate the resources to them. Although many metrics, techniques and models

have been proposed, effective identification of such parts is still a challenge. In this paper two new metrics,

namely PIEDG and PIMDG are proposed for predicting defects based on dependency between the file level

components of the code. The proposed metrics use the notion of participation of nodes in the software

dependency graph to recognize the parts of the code which possess defects. This research also investigates

the effect of ego graph on the software dependency global graph. The feasibility of the software defect

predictor which is built based on the proposed metrics is evaluated. The experiments over the Eclipse bug

dataset demonstrate promising results in anticipation of the software defects.

Keywords: Defect, Prediction, Software, Metrics, Dependency Graph

1. INTRODUCTION

 In the software market, companies often face

the dilemma to either deliver a software system

with poor quality or lose the marketing

opportunity. Both choices may have serious effects

on the future of a company. Facing with defects

from one release to the next may harm the image

and trust of the users into the companies and

postponing one release may contribute to business

profit for the competitors [1].

Although software development is a troublous

job and software testing can cost more than 65%

of the existing resources, testing activities are

often used as a “sanity checks” to minimize the

risk of a defective system [1].

A big part of the job in testing activities relates

to the important problem of minimizing the cost of

testing activities. In the past, the important issue of

assessing the cost of testing activities which

should be devoted to a class was not addressed

completely and the managers were left alone in

strategic decision making on allocating the

resources to concentrate on testing activities. For

example, consider a manager who wants to

promote essentially the quality of a big object-

oriented system in the next release. To do so, he

needs to know that which classes are vital so as to

concentrate the testing activities on them and

allocate its resources to them. In fact, the vital

classes can be the defect-prone ones. These are

classes which have the high risk of producing

defect and the classes through which a defect can

spread everywhere across the system. Providing a

ranked list of the probable defect classes can help

the manager in giving priority to testing activities

based on his knowledge about the project.

Therefore, the manager would get benefit from one

method to recognize defective classes [1].

In this paper, we tried to evaluate the effect of

node participations in software coupling. This idea

evaluates the effect of each dependency in EGO

view on GLOBAL view. Therefore, two metrics

are proposed for predicting defect based on

dependency between the components of the code.

The dependency is in file level. The idea is based

Journal of Theoretical and Applied Information Technology
 31

st
 December 2015. Vol.82. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

441

on participation of nodes in the software

dependency graph. The objective of this work is to

validate the feasibility of the software defect

predictor which is built based on these metrics.

This paper is organized as follows. Section two

reviews the related works. Section three explains

the software dependency graph. Section four

proposes the new metrics. Section five includes the

experimental evaluations of the proposed metrics.

Finally, section six concludes the paper.

2. RELATED WORKS

Defect prediction is a very active research field

and many studies have addressed this issue using a

variety of different methods and techniques [2].

They mainly use the metrics and machine learning

techniques to build predictive models [3, 4]. One

group of these metrics recognizes the software

defect through measuring code characteristics such

as McCabe complexity metrics. These metrics

have been proposed by some researchers and can

easily be extracted from the code [5-7]. Some

groups of metrics help the software teams using

the dependency between the components of the

code such as modules, classes and files [8, 9].

These are known as dependency metrics. The last

group of metrics uses historical data or previous

defects to predicate defects [10]. They follow the

intuition that systems with defects in the past will

also have defects in the near future [1].

Nagappan et al. [6] predict the likelihood of

post-release defect by using a regression model.

They researched on 5 Microsoft projects. The

results of the investigation suggest that the chosen

metrics can be used to predict post-release defects,

successfully. However, the authors also observe

that there is no single set of metrics applicable to

all projects.

Ostrand et al. [10] used the information of the

file status (such as new, changed and unchanged)

to predict defective files. Then they used historical

data from two large software systems with up to

17 releases to predict the files with the highest

defect density. For each release of the two

systems, the top 20% of the files with the highest

predicted number of defects contained between

71% and 92% of the defects actually detected,

with an overall average of 83%.

 Zimmerman et al [11] reported the existing

defects on Eclipse code (releases 2, 2.1 and 3) to

fixes. They calculated the mapping of packages

and files to the number of their defects in each

considered release (in the first six months before

and after release) so that they could evaluate the

effective metrics in predicting the defect of

software. They conducted an empirical study using

common complexity metrics to build prediction

models. Their models showed that a combination

of complexity metrics can predict defects,

suggesting that the more complex a code, the more

defective. This study uses their work as a

comparison basis to evaluate the newly proposed

metrics.

Besides, Zimmerman & Nagappan [9]

extended previous mentioned research and

proposed to use network analysis on dependency

graph. They showed that Network metrics derived

from dependency graphs are able to predict defects

in the system better than the complexity metrics

and the recall for models built from network

measures is by 10% points higher than for models

built from complexity metrics. However, their

results come from only one project (Windows

Server 2003).

 Turhan et al. [12] showed that defect

prediction by dependency graph is much more

successful than defect prediction by complexity

metrics in big programs, however in short program

there is not much difference.

Tan et al. [13] proposed the use of both Latent

Semantic Indexing (LSI) and a hierarchical

clustering algorithm to group classes that are

similar at the lexical level. The authors present

models to predict faulty clusters. The results

suggest that the predictive models build on the

clusters outperform those based on classes in terms

of precision, recall, and accuracy of the faults

predicted.

Menzies et al. [14], [15] used software

clustering for defect predication of software. They

evaluated learning for defect prediction from data

local to a project or from multiple projects.

Clustering the learning data is based on software

metrics rather than the source code. This method is

also used in [2]. The predictors obtained by

combining small parts of different historical data

sources (i.e., the clusters) are superior to either

generalizations formed over all the data or local

lessons formed from particular projects.

He et al. [16] validated the feasibility of the

predictor built with a simplified metric set for

software defect prediction in different scenarios.

Besides, they investigated practical guidelines for

the choice of training data, classifier and metric

subset of a given project. The results indicated

Journal of Theoretical and Applied Information Technology
 31

st
 December 2015. Vol.82. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

442

that (1) the choice of training data should depend

on the specific requirement of prediction accuracy;

(2) the predictor built with a simplified metric set

works well and is very useful in case limited

resources are supplied; (3) simple classifiers (e.g.,

Naive Bayes) also tend to perform well when

using a simplified metric set for defect prediction;

and (4) in several cases, the minimum metric

subset can be identified to facilitate the procedure

of general defect prediction with acceptable loss of

prediction precision in practice.

3. SOFTWARE DEPENDENCY GRAPH

The dependencies can be shown by construing

the entire software as a low level graph in which

the graph nodes are files, packages or the existing

classes and the edges show the relationship or

dependency between the nodes. As a result, the

dependencies are proposed in file, package or class

level, respectively. Such a graph is called software

dependency graph [9].

 In a dependency graph, the edges can be

directed. The edges that exit out of a node are

named as fan-out and the ones that enter in a node

are named as fan-in. In this paper, each fan-out is

considered as one dependency. For example, in the

dependency graph of Figure 1, the fan-out of node

A is 3.

Figure1: Simple Dependency Graph

4. PROPOSING THE NEW METRICS

High coupling rate is definitely a weakness in

software design. Also, fan-out is a proper gauge

for coupling measurement. As a result, fan-out can

be used as a measure of design quality.

Consequently, numerical fan-out values can help

to identify defect prone parts of code.

 In Figure 1, the node A has three dependencies

to the other nodes so the priority of this node is

higher than that of the other nodes in order to

check for possible faults.

To design the new idea, the measure networks

of Ego network and Global network which are

proposed in network analysis have been used.

These measures have been mentioned in [9]. One

important distinction made in network analysis is

between ego networks and global networks.

 Every node in a network has a corresponding

ego network that describes how the node is

connected to its neighbors. (Nodes are often

referred to as “ego” in network analysis.).So an

ego network for a node consists of its

neighborhood in the dependency graph.

In contrast, the global network corresponds

always to the entire dependency graph. While ego

networks allow us to measure the local importance

of a node with respect to its neighbors, global

networks reveal the importance of a node within

the entire software system [9].

 According to the implemented studies,

calculated metrics to predict the software defects

are mostly related to the ego network of each node.

As mentioned, Ego is the presentation of

dependency graph from the view point of each

node. For instance, fan-out and fan-in metrics are

at Ego level because they just calculate the related

dependencies of each node regardless of the whole

graph. But the global view towards the

dependency graph leads into proposing metrics at

global level and can be useful in predicting the

faults.

The new metrics in this study are proposed

based on the idea of participation of nodes in the

dependency graph. In other words, the

participation of nodes in total coupling of

dependency graph is considered to predict

software defect. Unlike most of the existing

metrics, this idea has a widespread view towards

the graph. The proposed metrics are called PIEDG

and PIMDG, and we call the set of these metrics

PIDG.

The first proposed metric, namely PIEDG

(Participation of each node In the Existing

Dependencies in a Graph) implies that the high

rate of participation in the existing software

coupling causes the defect-proneness of each class.

A B

C D

Journal of Theoretical and Applied Information Technology
 31

st
 December 2015. Vol.82. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

443

In other words, the amount of high

participation of each node in the existing

dependencies in the software dependency graph

makes that node defect-prone. For instance, the

value of PIEDG metric for the node A in Figure 1

equals to 60%. Because the number of the existing

dependencies in this graph is five of which three

belongs to A.

The second proposed metric, namely PIMDG

(participation of each node in the maximum

possible dependencies in a graph) implies that the

high rate of participation in the maximum possible

software coupling can help to predict the defects.

In other words, the amount of high participation of

each node in the maximum possible dependencies

in the software dependency graph makes that node

defect-prone. In addition, the maximum rate of

dependencies for n nodes in an undirected mesh

graph is n(n-1). As a result, the value of PIMDG

feature for node A in Figure 1 equals to 25%.

In this research, each node demonstrates one

file in the eclipse project. In addition, the graph

edges represent different types of dependencies

between the files. The proposed metrics PIEDG

and PIMDG are calculated based on the following

relations.

)(

)(
)(

gDep

fDep
fPIEDG =

 (1)

)1(

)(
)(

−
=

nn

fDep
fPIMDG

 (2)

Dep(f): Dependencies from f to the other nodes.

Dep(g): Number of total existing dependencies.

n: Number of nodes in the dependency graph .

After calculating these metrics, a wide variety

of different classifiers can be used to test their

ability in software fault prediction. The class

attribute for this test is named “has-defect”. The

value 1 demonstrates one or more defects that are

found in the previous research works. Also the

value 0 demonstrates that no fault have been found

in the related class.

5. EXPERIMENTAL EVALUATIONS

To conduct the experiment, releases 2, 2.1 and 3

of Eclipse project
1
 are used. In [11] Zimmerman et

al. have computed the defects of the mentioned

versions of this project in the file and package

levels and have introduced many metrics known as

Zimmerman’s metrics. The defect and metrics data

of different release of this project are available

online
2
. These data have been used as the basis of

evaluation and comparison by this study.

In this study, to build models or predictors out

of metrics and then comparison with Zimmerman

metrics the Weka software version 3,6,11 has

been used. To do so, different classification

algorithms have been used. The class variable

predicts defectiveness or non-defectiveness of

each file. Our model uses the PIDG metrics and is

compared with the model built out of 198

Zimmerman metrics. To test the models cross-

validation method has been used.

The models or predictors built out of PIDG

metrics to determine defect have been compared

with the models and predictors built out of

Zimmerman metrics with respect to accuracy and

root mean squared error. Accuracy is the proximity

of measurement results to the true value. Root

mean squared error is a frequently used measure of

the differences between values predicted by a

model or a predictor and the values actually

observed Tables 1, 2 and 3 show the comparative

results on releases 2, 2.1 and 3 of Eclipse,

respectively. These models have been built

through 7 classifier algorithms.

As can be seen in Table 1, our metrics have

higher accuracy than Zimmerman metrics in most

cases (4 out of 7, rows 1, 2, 5 and 7) and that the

improvement up to 12% has also been achieved in

BaysNet classifier. With respect to the root mean

squared error, our metrics in most cases (4 out of

7) show a better result and this improvement has

been gotten up to 0.2 in .BaysNet

1
 http://www.eclipse.org/

2
 https://www.st.cs.uni-saarland.de/softevo/bug-

data/eclipse/

Journal of Theoretical and Applied Information Technology
 31

st
 December 2015. Vol.82. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

444

 In Table 2, our metrics have been compared

with Zimmerman metrics in Eclipse 2.1. As can be

seen, PIDG metrics in most cases (5 out of 7) have

higher accuracy than Zimmerman metrics and in

some cases such as BaysNet classifier; the

improvement up to 19 % has been achieved. In

other cases, our metrics and Zimmerman metrics

have almost the same performance. With respect to

the root mean squared error our metrics in most

cases (5 out of 7) show a better result and this

improvement has been reached to 0.2 in BaysNet,

and in the other cases our metrics and Zimmerman

metrics show almost the same result.

In Table 3, the comparison has been done on

Eclipse 3. As can be seen, our metrics show a

better result than Zimmerman with respect to

accuracy and root mean squared error in 5 cases

out of 7 (all rows except 3 and 6).

In sum, the good results of the comparative

evaluations with respect to the accuracy and root

mean squared shows the effectiveness of our

metrics in predicting software defect and it reveals

that the amount of high participation of a

component in existing dependencies of a graph

and maximum possible dependencies of a graph

causes the defect-proneness of that component. In

addition, the few number of the used metrics can

affect the speed of model making process.

6. CONCLUTION

In this study, PIDG metrics which includes

participation in existing dependencies in a graph

(PIEDG) and participation in maximum

dependencies in a graph (PIMDG) metrics have

been proposed. The experimental results over such

metrics give an evidence on the importance of high

software coupling in a weak design. This idea

gives a global perspective of coupling in software

dependency graph. The evaluation results also

showed that PIDG produces models or predictors

with higher accuracy than Zimmerman metrics in

predicting the software defect and is effective for

determining the defect-prone parts of the code.

REFRENCES:

 [1] S. Kpodjedo, F. Ricca, P. Galinier and YG.

Guéhéneuc, “design evolution metrics for

defect prediction in object oriented systems”,

Empirical Software Engineering, Springer,

Vol. 16, 2011, pp. 141-175.

[2] G. Scanniello, C Gravino, A. Marcus, T

Menzies, “Class Level Fault Prediction

Using Software Clustering”, Automated

Software Engineering (ASE), IEEE/ACM

28th International Conference on, 2013, pp.

640- 645.

[3] R. Malhotra, “A systematic review of machine

learning techniques for software fault

prediction”, Applied Soft computing,

Elsevier, Vol. 27, 2015, pp. 504-518,.

[4] Y. Suresh, L. Kumar, SK. Rath, “Statistical and

machine learning methods for software fault

prediction using CK metric”, Hindawi

Publishing Corporation ISRN Software

Engineering, 2014, pp. 1-16.

[5] Basili VR, Briand LC, Melo VL, “A validation

of object orient design metrics as quality

indicators”. IEEE Transactions on Software

Engineering, 1996, pp. 75–761.

[6] N. Nagappan, T. Ball, A. Zeller, “Mining

metrics to predict component failure”,

In:International conference on software

engineering. China, 2006, pp. 452–461.

[7] R. Subramanyam, MS. Krishnan, “Empirical

analysis of CK metrics for object-oriented

design complexity implications for software

defect”,. IEEE Trans Software Eng 29:,

2003, pp. 29–310.

[8] J. Kamyabi, F. Maleki, A. Sami, “Software

defect prediction using Transitive

dependencies on software dependency

graph”, Computer Science and Convergence,

Springer, 2012, pp. 241-249.

[9] N. Nagappan, T. Zimmermann, “Predicting

defects using network analysis on

dependency graph”. In: The 30th

international conference on software

engineering (ICSE ‘08). Leipzig, Germany,

2008, pp. 531–540.

[10] T.J. Ostrand, E.J. Weyuker and R.M. Bell,

“Predicting the location and number of faults

in large software systems”, IEEE

Transactions on Software Engineering, Vol.

31, 2005, pp. 340-355.

[11] Thomas Zimmermann, Rahul Premraj, and

Andreas Zeller. “Predicting defects for

eclipse”, In Proceedings of the Third

International Workshop on Predictor Models

in Software Engineering, May 2007.

[12] A. Bener, A. Tosun, B. Turhan, “Validation

of network measures as indicators of

defective modules in software systems”. In:

5th International conference on predictor

models in software engineering, Vancouver,

Canada, 2009.

Journal of Theoretical and Applied Information Technology
 31

st
 December 2015. Vol.82. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

445

[13] X. Tan, X. Peng, S. Pan, and W. Zhao,

“Assessing software quality by program

clustering and defect prediction,” in

Proceedings of the Working Conference on

Reverse Engineering. IEEE Computer

Society, 2011, pp. 244–248.

[14] T. Menzies, A. Butcher, D. Cok, A. Marcus,

L. Layman, F. Shull, B. Turhan, and T.

Zimmermann, “Local vs. global lessons for

defect prediction and effort estimation,”

IEEE Trans. on Softw. Eng., no. PrePrints,

2013, pp. 1-15,.

[15] T. Menzies, A. Butcher, A. Marcus, T.

Zimmermann, and D. R. Cok, “Local vs.

global models for effort estimation and

defect prediction,” in Proceedings of the

International Conference on Automated

Software Engineering. IEEE Computer

Society, 2011, pp. 343–351.

[16] P. He, B. Li, X. Liu, J. Chen, Y. Ma, “An

empirical study on software defect prediction

with a simplified metric set”, Information

and Software Technology, Elsevier, vol. 59,

2015, pp. 170-190.

Journal of Theoretical and Applied Information Technology
 31

st
 December 2015. Vol.82. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

446

 Measure

 Classifier

Accuracy± Root mean squared

error of Zimmermann’s metrics

Accuracy± Root mean squared

error of PIDG metrics

bayes.BayesNet 71.7046 % ± 0.526 83.638%±0.352

bayes.NaiveBayes 84.2324 % ±0.3963 85.778 %±0.3581

functions. Logistic 87.6356 % ±0.3054 86.0009 %±0.3312

meta.ClassificationViaRegression

+trees.M5P

86.8777 % ±0.3166 86.0306 %±0.3257

meta.END + trees.J48 85.1241 % ±0.3732 85.6206 %±0.3325

trees.LADtree 87.2046 ±0.3113 85.9563 %±0.3573

trees.FT 83.742 % ±0.3854 85.1836 %±0.337

 Measure

Classifier

Accuracy± Root mean squared error of

Zimmermann’s metrics

Accuracy± Root mean

squared error of PIDG
metrics

bayes.BayesNet 69.7914% ± 0.545 84.1971% ± 0.3549

bayes.NaiveBayes 83.1776% ± 0.4091 84.8107% ± 0.3693

functions. Logistic 86.6232% ± 0.3236 85.5565% ± 0.339

meta.ClassificationViaRegression

+trees.M5P

84.9334% ± 0.3405 85.5565% ± 0.3333

meta.END + trees.J48 83.0265% ± 0.3979 85.4527% ± 0.336

trees.LADtree 86.3589% ± 0.3236 85.3866% ± 0.3338

trees.FT 81.6199% ± 0.4093 85.5471% ± 0.339

 Measure

Classifier

Accuracy± Root mean squared

error of Zimmermann’s metrics

Accuracy± Root mean

squared error of PIDG

metrics

bayes.BayesNet 70.3474% ± 0.5397 89.2748% ± 0 .3144

bayes.NaiveBayes 86.0041% ± 0.3734 88.2733% ± 0.3288

functions. Logistic 89.5157% ±0.2912 89.427% ± 0.2974

meta.ClassificationViaRegression

+trees.M5P

88.1212% ± 0.3074 89.3256% ±0.2957

meta.END + trees.J48 86.4858% ± 0.3547 89.2748% ± 0.2975

trees.LADtree 89.427% ± 0.2921 89.3002% ± 0.297

trees.FT 85.2434% ± 0.3677 89.4143% ± 0.2983

Table1: The Comparison of The Models Built Out of PIDG Metrics and Those Built Out of

Zimmerman Metrics on Eclipse 2

Table3: The Comparison of The Models Built Out of PIDG Metrics and Those Built Out of

Zimmerman Metrics on Eclipse 3

Table2: The Comparison of The Models Built Out of PIDG Metrics and Those Built Out of

Zimmerman Metrics on Eclipse 2.1

