
Journal of Theoretical and Applied Information Technology
 31

st
 December 2015. Vol.82. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

432

SMOOTHING TECHNIQUES EVALUATION OF N-GRAM

LANGUAGE MODEL FOR ARABIC OCR POST-

PROCESSING

1
AHMED FARIS RAAID AL-MASOUDI,

 2
HISHAM SALAM RAFID AL-OBEIDI

1
PhD Student, Department of Computer Science, University of Baghdad, Iraq

2
Prof. Dr., Department of Computer Science, University of Technology, Iraq

E-mail:
1
ahmedfaris35@yahoo.com ,

2
hisham_salam_1965@yahoo.com

ABSTRACT

N-gram language model is used to correct the errors that resulted from Optical character recognition

process. However, the major problem facing N-gram language modeling is that it depends on finite training

corpus. Therefore, some words will be missed from the corpus. They are called unknown words. If any N-

gram is missing, then the language model will assign a probability of zero to it. Smoothing is a task used to

prevent assigning zero probability for missing N-gram in corpus. Each smoothing technique suffers

different limitations, and selecting the appropriate smoothing technique depends on where it will be used.

Therefore, the purpose of this study is to test these techniques on Arabic dataset, and determines which one

of the techniques is the best for this language. This study evaluates the performance of four main smoothing

techniques. The experimental results show that all smoothing techniques can reduce error rate. However,

the best among them is the Katz Backoff technique.

Keywords: Smoothing Techniques, N-gram Language Model, Performance Evaluation, OCR, Arabic

Language

1. INTRODUCTION

N-gram language model is widely used in many

applications such as spelling correction, optical

character recognition (OCR), and speech

recognition [1-3]. N-gram language model is a

statistical probabilistic model. It is used to provide

probability for sequence of words [4]. The value of

“N” in the term "N-gram" can be 1, 2, 3, 4... n. The

term itself represents a sequence of N neighboring

words in a sentence. N-gram is called unigram

when N=1, bigram when N=2 and trigram when

N=3 and so on.

The frequency of sentences in large corpus,

determines the probability of a language model.

This model can be used to detect and correct wrong

words in a text. Potential word error will happen if

the N-gram that contains this word is missing in

large corpus. A correction of this error is based on

high probability of other sentences. The most

important point in this approach is that it does not

require confusion set or predefined rules. However,

large corpus is needed in order to build an accurate

language model. Equation 1 is used to estimate the

probability of an N-gram language model [4].

Equation 1 shows that the conditional probability

of a single word Wk is measured based on the

previous history words. The character “N”

represents the N-gram used, such as bigram or

trigram. The term Wk represents a single word that

needs to measure its probability in position k in a

sentence. The symbol "|" denotes the conditional

probability, and it means the word "given". The

symbol C represents a frequency of a sentence.

Lastly, the character k denotes a number of words in

sequence. For example, to measure the probability

of the word “stories” in the sentence “Most students

love teacher stories” by using trigram language

model, then Equation 1 will be changed as shown

below:

Major problem facing N-gram language model is

that it depends on finite training corpus [4].

(1)

Journal of Theoretical and Applied Information Technology
 31

st
 December 2015. Vol.82. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

433

Therefore, some words will be missed from the

corpus. They are called unknown words. If any N-

gram is missing, then the language model will give

a probability of zero to it, and infinite value can be

resulted. Smoothing is a task used to prevent

assigning zero probability for missing N-gram in

corpus [5]. Each smoothing technique suffers from

different limitations, and selecting the appropriate

technique depends on where it will be used in any

topic [4]. This study implements a practical

performance evaluation of main smoothing

techniques that are used in OCR post-processing for

Arabic language.

Arabic language over the years is complex when

processed by the optical character recognition. This

is because Arabic characters are connected, and the

shape of characters has a vertical overlapping

between them [6-8]. These characteristics cause

large error rate during the process of OCR,

especially when the images contain noise or their

scanning resolution is low [9, 10]. OCR system

usually generates two types of errors: non-word

errors and real word errors [11]. Non-word error

occurred when the word generated from the OCR

software does not exist in a specific language, such

as the word "sder" in English language. The real

word error occurred when the word generated from

the OCR software exists in a specific language, but

unsuitable for the sentence [12, 13]. The purpose of

this study is to test smoothing techniques on Arabic

dataset, and find which one is the best among them

for this language.

The paper is organized in five sections: section 1

presented the introduction. Section 2 discusses the

main smoothing techniques that will be used in

performance evaluation. Section 3 explains the

experimental design, measurements, testing dataset

and training dataset. In section 4, developed

interface, experimental results and discussion are

presented. The last section includes conclusions and

future work of our research.

2. SMOOTHING TECHNIQUES

This section will explain four main smoothing

techniques that will be used in the performance

evaluation. It focuses on how the probability is

generated by these techniques, and the strengths

and weakness of each technique.

2.1 Laplace Smoothing

Laplace smoothing, also called add-one

smoothing belongs to the discounting category.

This category consists, in addition to the Laplace

smoothing, from Witten-Bell discounting, Good-

Turing, and absolute discounting [4]. The approach

of discounting category is to transfer some mass of

probability from seen N-grams to others that never

be seen. This transfer will prevent assigning zero

probability for missing N-gram in corpus. The

result of this transfer does not reflect the real

probability of each N-gram [4, 14]. Techniques of

discounting category are simple, but they are not

commonly used. They do not perform well in some

calculation because much probability mass is

moved to all unseen n-grams [2, 4]. Since all

techniques under discounting category have the

same approach, then this study will select Laplace

smoothing as one of the comparative techniques for

performance evaluation. If a language model uses

Laplace smoothing, then this technique will change

Equation 1 of a language model to handle zero

probabilities by adding a value to all the counts as

shown in an Equation 2 [4].

Where, the term Pˆ denotes the probability after

using smoothing technique, while the symbol “D”

is the total number of possible (N−1) grams in

corpus. The symbol “d” can take values such as

0.5, 0.9. Whenever the value of “d” is smaller, the

results will be better. This study will refer to this

technique in experiments as LMULS, which means

language model using Laplace smoothing.

2.2 Linear Interpolation

This technique belongs to the hierarchy category

that focuses on hierarchy of N-gram orders [2, 4].

In linear interpolation technique, several N-gram

orders will be added to handle zero probabilities. It

always combines the probabilities calculated from

all the N-gram orders. For example, the

mathematical expression of this technique for

trigram is calculated from combining trigram,

bigram, and unigram as shown in Equation 3 [4].

Where the symbol ∝ is interpolation constant and

it donates the weights of trigram, bigram, and

unigram. The values of symbols ∝1, ∝2, and ∝3

can be same if the weights of trigram, bigram, and

unigram are equal. Otherwise, they will be

different. Furthermore, the sum of values of ∝1,

(2)

(3)

Journal of Theoretical and Applied Information Technology
 31

st
 December 2015. Vol.82. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

434

∝2, and ∝3 must be equal to 1. Since large N-gram

gives accuracy more than short N-gram, then this

study will assign values of 0.5, 0.3, and 0.2 to the

trigram, bigram, and unigram respectively. This

technique does not perform well in some cases. For

example, the bigram language model with

interpolation technique will give high probability

value to the context “student student” even the

context "student student" cannot come in any

meaningful sentence. This is because the unigram

“student” is very common and interpolation

technique will combine both probabilities of bigram

and unigram together [15]. This study will refer to

this technique in experiments as LMULI, which

means language model using linear interpolation.

2.3 Katz Backoff

This technique also belongs to the hierarchy

category [2, 4]. Language model with Backoff is

built based on an (N-1) gram model. Its strategy is

if N-gram is not found, switch to (N-1) gram and so

on. It used lower-order gram when higher-order

gram gave zero probability. It recursively decreases

a value of N until lower-order gram is available [4,

16]. For example, if trigram gives non- zero

probability, then no need to use lower-order gram.

Otherwise, if it is not available, then bigram is

used. Furthermore, if bigram does not exist, then

unigram is used. The mathematical expression of

Backoff trigram can be represented in Equation 4

[16].

Note α’s are back-off constants [3]. This study

will assign values of 0.3 and 0.2 to the bigram and

unigram respectively. Backoff technique usually

works well. However, it also suffers from the same

problem of Interpolation technique. For example,

suppose that the trigram "x y z" is not seeing due to

the rules of the grammar, and the bigram "x y" is

very common. The technique will switch to the

bigram "x y", which its probability is high, instead

of assigning the value of zero to trigram "x y z"

[15]. This study will refer to this technique in

experiments as LMUKB, which means language

model using Katz Backoff.

2.4 Kneyser-Ney

This technique is based on main idea that words

that have occurred in more sentences or contexts

are more likely to occur in new context or sentence

as well [4, 17]. Therefore, it depends on the

frequency of different contexts for each word

occurred in. For example, by assuming the sentence

"I cannot read without my _____ ", has two

candidates, glasses and Francisco to complete it.

Francisco is more common than glasses. Therefore,

previous smoothing techniques will prefer it. But

Francisco is only occurring in context "San

Francisco" and glasses are frequent in several

contexts. Therefore, this technique will prefer the

word glasses rather than Francisco. Kneyser-Ney

technique is built based on Katz Backoff technique

or based on linear interpolation technique, by

adding context information to their equations [4].

Kneyser-Ney fails in some cases [17]. For

example, by assuming the word "Thai" in the

sentence "I want Thoi food", was misspelled as

"Thoi", and the previous sentence has only two

candidates, Thai and Chinese to complete it, then

Kneyser-Ney category will prefer the word Chinese

rather than the word Thai because the word Chinese

has more contexts than the word Thai [4]. This

study will implement Kneyser-Ney by adding

context information to the Katz Backoff technique.

This study will also refer to this technique in

experiments as LMUKN, which means language

model using Kneyser-Ney.

3. EVALUATION SETTING

This section will explain experimental design,

measurement, testing dataset and training dataset.

3.1 Experimental Design

Five experiments will be performed to achieve a

single goal of finding out the best smoothing

techniques for reducing OCR error rate of Arabic

language. This goal will be achieved by comparing

output of five experiments in order to identify the

best technique. All experiments are performed to

convert testing images to a text. Tesseract OCR will

be used to extract texts from input images in all

experiments. Tesseract OCR is used by many

researchers because it is one of the best free OCR

engines [18-20]. Figure 1 shows how to conduct the

experiments.

(4)

Journal of Theoretical and Applied Information Technology
 31

st
 December 2015. Vol.82. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

435

Figure 1: Experimental Design

Figure 1 shows that the result of Tesseract OCR

in each experiment is a single output text. Part “A”

in Figure 1 shows that the first experiment is

performed without using any smoothing technique.

The purpose of experiment one is to find accuracy

of OCR without using any smoothing technique in

order to compare it with the accuracy of existing

techniques. Part “B” in Figure 1 will be

implemented four times. However, the smoothing

technique for each experiment will be different.

Experiments two, three, four, and five will be

implemented using LMULS, LMULI, LMUKB,

and LMUKN techniques as described in sections

2.1, 2.2, 2.3, and 2.4 respectively. The degree of N-

gram in the experiments two, three, four, and five is

trigram language model.

Figure 1 also shows that output of all

experiments except the first will pass to the

tokenization process, which means split text to an

array of words using spaces between them as

divider. The result of tokenization process is an

array of words in each experiment except the first.

Tokenization process is important to the smoothing

techniques because these techniques cannot deal

with output text directly, they can deal with the

words of output text [1]. After applying smoothing

techniques, array of words in each experiment

except the first will be joined as a text. At this

point, texts resulting from all experiments will pass

to the alignment process.

Alignment process is required because the output

text in each experiment will be compared with

reference text to calculate four metrics: word error

rate (WER), non-word error rate (NWER), real

word error rate (RWER), and character error rate

(CER). The meaning of each metric and how to

measure it is discussed in section 3.2. Alignment

process is needed in comparison because some

symbols in OCR engine may be deleted,

misrecognized, or inserted [21]. For example, the

symbol “d” may be recognized by OCR engine as

two symbols “cl”. Another example, the two

symbols “vv” may be recognized by OCR engine as

one symbol “w”. The deleted, misrecognized, and

inserted symbols will make some of the words

either be split or merged, which makes the number

of words of OCR output text unequal to the

reference text [21, 22]. Therefore, this study needs

to do alignment process between the OCR text and

reference text so that it can measure error rate.

 Alignment process means aligning each

character in any reference text with similar

character in OCR text. It is a complex process due

to the high calculations overhead needed, which is

causing long processing time, especially when the

numbers of the characters are greater than 2500 [20,

23]. Figure 2 shows simple example on an

alignment process between OCR output text and

reference text.

Figure 2: Simple Example on Alignment Process

The alignment process will be performed by

using Levenshtein distance with back trace [24].

This algorithm is the most widely used in OCR

post-processing [1, 12]. This is because it is

accurate in finding the difference between two

sequences. However, it needs much processing time

for large sequences [1, 25, 26]. After an alignment

process, the four metrics can easily be measured.

CER is calculated by comparing each character in

output text with each character in reference text.

Journal of Theoretical and Applied Information Technology
 31

st
 December 2015. Vol.82. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

436

The comparison process means examining both

characters if they are match or not. WER is

calculated by comparing each word in output text

with each word in reference text. NWER and

RWER are calculated by examining each wrong

word if it is in lexicon or not. If it exists in a

lexicon, then it considers real word error,

otherwise, it considers non-word error [21].

3.2 Measurements

Word error rate (WER) is the main metric that

use by most researchers in measuring error rate of

OCR post-processing techniques [11, 27, 28].

However, this paper will use in addition to the word

error rate, further metrics to check the impact of

each smoothing technique on them. The metrics are

non-word error rate (NWER), real word error rate

(RWER), and character error rate (CER). NWER is

a measure of the non-word errors in output OCR

text, while RWER is a measure of the real word

errors in the output of OCR text. Word error rate

(WER) is used to measure the rate of all wrong

words in OCR output text. It is a combination of

non-word errors and real word errors. Lastly,

character error rate (CER) refers to the inserted,

deleted, and substituted characters in the output of

the resulting text of OCR [1, 21, 27]. Equations 5,

6, 7, and 8 below show how to compute WER,

NWER, RWER, and CER respectively [1, 21, 29].

3.3 Testing and Training Dataset

Most researchers used different sizes and types of

testing dataset for Arabic language [1, 11, 29]. This

paper will follow the same procedure used by [29]

to produce testing images. This dataset has five

characteristics. The first is that it contains 101258

symbols within Arabic images. The symbol means

the smallest meaningful unit within a writing

system. The second is that, text is chosen randomly

from formal Arabic websites on the Internet. The

third is that it contains in addition to characters of a

text, the special symbols, such as commas, brackets,

etc. The fourth is that, it includes eight different

Arabic fonts. The names of these fonts are Adobe

Arabic, Simplified Arabic, Courier new, Tahoma,

Traditional Arabic, Times New Roman, Arial, and

Microsoft sans Serif. Lastly, each font will consist

of six different sizes ranging from 10 to 20. The

texts in these images act as reference during the

testing process. In addition to that, reference text

will be used to produce testing images. Arabic text

is first printed on papers, and then the hardcopy are

scanned at 300 dpi with a grey level in a modern

scanner to generate testing dataset images.

The corpus named “Arabic Gigaword Fourth

Edition” will be used as training dataset for

building the database of trigram language model.

This corpus is produced by the linguistic data

consortium at the Pennsylvania University [30]. It

was collected over many years from Arabic news

websites, and it contains more than 850 million of

Arabic words. It works well for building the

database of trigram language model because format

structure of this corpus is not based on single

words, but it is based on paragraphs [30, 31].

4. EXPERIMENTS RESULTS

 This section presents the results of the five

experiments performed in this study. The goal of

these experiments is to measure the performance of

each smoothing technique. This can be achieved by

making comparison of results of them. To

implement the experiments, an interface is designed

using VB.NET under MS Visual Studio.net 2012.

The term “LMWUS” will be used to refer to the

experiments 1 and it will mean results of OCR

system without using any smoothing technique.

Furthermore, this study will present four figures to

represents the testing results. Each figure represents

the results of comparison of a single metric.

Testing results are shown in Figures 3 to 6.

From Figures 3, 4, 5, and 6, it can be seen clearly

that values of the metrics for each smoothing

technique are different from each other. Overall,

Figures 3, 4, 5, and 6 show that results of OCR

system without using any smoothing technique

(LMWUS) had the highest percentage values of

WER, NWER, RWER, and CER than the others,

with rates of 47.88%, 34.80%, 13.08% and 20.60%

(5)

(6)

(7)

(8)

Journal of Theoretical and Applied Information Technology
 31

st
 December 2015. Vol.82. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

437

respectively. This means OCR accuracy is still low

for Arabic language.

Figure 3: WER for Five Experiments

Figure 4: NWER for Five Experiments

Figure 5: RWER for Five Experiments

Figure 6: CER for Five Experiments

On the other hand, it can be seen that WER,

NWER, RWER, and CER of LMUKB had lowest

percentage values than the others, with rates of

38.83%, 28.22%, 10.61% and 12.84% respectively.

This implies that LMUKB is the best smoothing

technique for correcting errors of Arabic OCR.

Figure 3, 4, 5, and 6 also show that LMULI had a

significant reduction in WER, NWER, RWER, and

CER, with rates of 40.65%, 29.29%, 11.36% and

17.77% respectively. However, LMULI is less

efficiency than LMUKB in smoothing of OCR

errors. This is because all values of metrics WER,

NWER, RWER, and CER for LMULI are greater

than values of LMUKB. Lastly, Figure 3, 4, 5, and

6 show that LMULS had the least efficiency in

WER, NWER, RWER, and CER than the others,

with rates of 44.67%, 32.37%, 12.30% and 17.77%

respectively. To sum up, results from five previous

experiments show that it is difficult for accuracy of

OCR engines to be 100% for Arabic language.

Furthermore, they show LMUKB is the best

smoothing technique for correcting errors of Arabic

OCR.

5. CONCLUSION AND FUTURE WORK

This study presents the details of the

performance evaluation of main smoothing

techniques for Arabic OCR errors. The evaluation

process of this study is performed based on

experimental approach. All techniques were tested

using the same testing dataset. As with any

research, if a testing dataset is large, then the

validity and reliability of the research are higher,

while if testing dataset is too small, then it will be

inappropriate to be used to determine the strength

of each smoothing technique. Therefore, this study

used large testing dataset in the evaluation process.

The experimental results show that using any

smoothing technique can reduce error rate.

However, the best technique among them is

LMUKB. Further research can be done to improve

existing smoothing techniques so that they can

handle high error rate of Arabic OCR. In addition

to that, it can combine some existing OCR post-

processing techniques in a hybrid way to benefits

from strengths of them.

REFRENCES:

[1] I. Q. Habeeb, S. A. Yusof, and F. B. Ahmad,

"Two Bigrams Based Language Model for

Auto Correction of Arabic OCR Errors,"

International Journal of Digital Content

Technology and its Applications, vol. 8, pp. 72

- 80, February 28 2014.

Journal of Theoretical and Applied Information Technology
 31

st
 December 2015. Vol.82. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

438

[2] A. Islam and D. Inkpen, "Real-word spelling

correction using Google Web 1T n-gram with

backoff," in Natural Language Processing and

Knowledge Engineering, 2009. NLP-KE 2009.

International Conference on, 2009, pp. 1-8.

[3] V. Gupta, M. Lennig, and P. Mermelstein, "A

language model for very large-vocabulary

speech recognition," Computer Speech &

Language, vol. 6, pp. 331-344, 1992.

[4] D. Jurafsky and J. H. Martin, Speech and

language processing: An introduction to

natural language processing, computational

linguistics, and speech recognition, 2nd ed.:

Pearson Education India, 2009.

[5] D. Jurafsky and J. H. Martin, Speech and

language processing: An introduction to

natural language processing, computational

linguistics, and speech recognition: Pearson

Education India, 2000.

[6] I. Aljarrah, O. Al-Khaleel, K. Mhaidat, M. a.

Alrefai, A. Alzu'bi, and M. Rabab'ah,

"Automated System for Arabic Optical

Character Recognition with Lookup

Dictionary," Journal of Emerging

Technologies in Web Intelligence, vol. 4, pp.

362-370, 2012.

[7] M. Labidi, M. Khemakhem, and M. Jemni,

"Grid’5000 Based Large Scale OCR Using the

DTW Algorithm: Case of the Arabic Cursive

Writing," Recent Advances in Document

Recognition and Understanding, p. 73, 2011.

[8] M. Oujaoura, R. El Ayachi, M. Fakir, B.

Bouikhalene, and B. Minaoui, "Zernike

moments and neural networks for recognition

of isolated Arabic characters," International

Journal of Computer Engineering Science, vol.

2, pp. 17-25, 2012.

[9] H. Al-Rashaideh, "Preprocessing phase for

Arabic Word Handwritten Recognition,"

Информационные процессы, vol. 6, 2006.

[10] M. S. Khorsheed, "Off-line Arabic character

recognition–a review," Pattern analysis &

applications, vol. 5, pp. 31-45, 2002.

[11] Y. Bassil and M. Alwani, "Ocr post-processing

error correction algorithm using google online

spelling suggestion," arXiv preprint

arXiv:1204.0191, 2012.

[12] J. F. Daðason, "Post-Correction of Icelandic

OCR Text," (Master's thesis, University of

Iceland, Reykjavik, Iceland), 2012.

[13] K. Kukich, "Techniques for automatically

correcting words in text," ACM Computing

Surveys (CSUR), vol. 24, pp. 377-439, 1992.

[14] W. Gale and K. Church, "What is wrong with

adding one," Corpus-based research into

language, pp. 189-198, 1994.

[15] C. D. Manning and H. Schütze, Foundations of

statistical natural language processing: MIT

press, 1999.

[16] S. Katz, "Estimation of probabilities from

sparse data for the language model component

of a speech recognizer," Acoustics, Speech and

Signal Processing, IEEE Transactions on, vol.

35, pp. 400-401, 1987.

[17] B.-J. P. Hsu, "Language modeling for limited-

data domains," Massachusetts Institute of

Technology, 2009.

[18] C. Patel, A. Patel, and D. Patel, "Optical

character recognition by open source OCR tool

tesseract: A case study," International Journal

of Computer Applications, vol. 55, pp. 50-56,

2012.

[19] Google Inc. (2015, January 02). Tesseract-ocr

v3.02. Available:

https://code.google.com/p/tesseract-ocr/

[20] W. B. Lund, D. J. Kennard, and E. K. Ringger,

"Combining multiple thresholding binarization

values to improve OCR output," in IS&T/SPIE

Electronic Imaging, 2013, pp. 86580R-

86580R-11.

[21] I. Q. Habeeb, S. A. Yusof, and F. B. Ahmad,

"Improving Optical Character Recognition

Process for Low Resolution Images,"

International Journal of Advancements in

Computing Technology, vol. 6, pp. 13 - 21,

May 30 2014.

[22] W. B. Lund, D. D. Walker, and E. K. Ringger,

"Progressive alignment and discriminative

error correction for multiple OCR engines," in

Document Analysis and Recognition (ICDAR),

2011 International Conference on, 2011, pp.

764-768.

[23] C. Notredame, "Recent evolutions of multiple

sequence alignment algorithms," PLoS

computational biology, vol. 3, p. e123, 2007.

[24] X. Cai, "Approximate Sequence Alignment,"

Peking University, 2013.

[25] K. U. Schulz and S. Mihov, "Fast string

correction with Levenshtein automata,"

International Journal on Document Analysis

and Recognition, vol. 5, pp. 67-85, 2002.

[26] P. Mitankin, "Universal levenshtein automata.

building and properties," Master’s thesis, Sofia

University, Bulgaria, 2005.

[27] W. B. Lund, E. K. Ringger, and D. D. Walker,

"How well does multiple OCR error correction

generalize?," in IS&T/SPIE Electronic

Imaging, 2014, pp. 90210A-90210A-13.

Journal of Theoretical and Applied Information Technology
 31

st
 December 2015. Vol.82. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

439

[28] W. B. Lund and E. K. Ringger, "Improving

optical character recognition through efficient

multiple system alignment," in Proceedings of

the 9th ACM/IEEE-CS joint conference on

Digital libraries, 2009, pp. 231-240.

[29] M. S. M. El-Mahallawy, "A large scale HMM-

based omni front-written OCR system for

cursive scripts," (PhD thesis, Cairo University,

Cairo, Egypt), 2008.

[30] A. AbdelRaouf, C. A. Higgins, T. Pridmore,

and M. Khalil, "Building a multi-modal Arabic

corpus (MMAC)," International Journal on

Document Analysis and Recognition (IJDAR),

vol. 13, pp. 285-302, 2010.

[31] R. Parker, D. Graff, K. Chen, J. Kong, and K.

Maeda, "Arabic Gigaword," Linguistic Data

Consortium, University of Pennsylvania,

Philadelphia, 2009.

