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ABSTRACT 

 

N-gram language model is used to correct the errors that resulted from Optical character recognition 

process. However, the major problem facing N-gram language modeling is that it depends on finite training 

corpus. Therefore, some words will be missed from the corpus. They are called unknown words. If any N-

gram is missing, then the language model will assign a probability of zero to it. Smoothing is a task used to 

prevent assigning zero probability for missing N-gram in corpus. Each smoothing technique suffers 

different limitations, and selecting the appropriate smoothing technique depends on where it will be used. 

Therefore, the purpose of this study is to test these techniques on Arabic dataset, and determines which one 

of the techniques is the best for this language. This study evaluates the performance of four main smoothing 

techniques. The experimental results show that all smoothing techniques can reduce error rate. However, 

the best among them is the Katz Backoff technique. 

Keywords: Smoothing Techniques, N-gram Language Model, Performance Evaluation, OCR, Arabic 

Language 

 

1. INTRODUCTION  

 

N-gram language model is widely used in many 

applications such as spelling correction, optical 

character recognition (OCR), and speech 

recognition [1-3]. N-gram language model is a 

statistical probabilistic model. It is used to provide 

probability for sequence of words [4]. The value of 

“N” in the term "N-gram" can be 1, 2, 3, 4... n. The 

term itself represents a sequence of N neighboring 

words in a sentence. N-gram is called unigram 

when N=1, bigram when N=2 and trigram when 

N=3 and so on.  

The frequency of sentences in large corpus, 

determines the probability of a language model. 

This model can be used to detect and correct wrong 

words in a text. Potential word error will happen if 

the N-gram that contains this word is missing in 

large corpus. A correction of this error is based on 

high probability of other sentences. The most 

important point in this approach is that it does not 

require confusion set or predefined rules. However, 

large corpus is needed in order to build an accurate 

language model. Equation 1 is used to estimate the 

probability of an N-gram language model [4].  

 

Equation 1 shows that the conditional probability 

of a single word Wk is measured based on the 

previous history words. The character “N” 

represents the N-gram used, such as bigram or 

trigram. The term Wk represents a single word that 

needs to measure its probability in position k in a 

sentence. The symbol "|" denotes the conditional 

probability, and it means the word "given". The 

symbol C represents a frequency of a sentence. 

Lastly, the character k denotes a number of words in 

sequence. For example, to measure the probability 

of the word “stories” in the sentence “Most students 

love teacher stories” by using trigram language 

model, then Equation 1 will be changed as shown 

below:  

 

Major problem facing N-gram language model is 

that it depends on finite training corpus [4]. 

(1) 
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Therefore, some words will be missed from the 

corpus. They are called unknown words. If any N-

gram is missing, then the language model will give 

a probability of zero to it, and infinite value can be 

resulted. Smoothing is a task used to prevent 

assigning zero probability for missing N-gram in 

corpus [5]. Each smoothing technique suffers from 

different limitations, and selecting the appropriate 

technique depends on where it will be used in any 

topic [4]. This study implements a practical 

performance evaluation of main smoothing 

techniques that are used in OCR post-processing for 

Arabic language.   

Arabic language over the years is complex when 

processed by the optical character recognition. This 

is because Arabic characters are connected, and the 

shape of characters has a vertical overlapping 

between them [6-8]. These characteristics cause 

large error rate during the process of OCR,  

especially when the images contain noise or their 

scanning resolution is low [9, 10]. OCR system 

usually generates two types of errors: non-word 

errors and real word errors [11].  Non-word error 

occurred when the word generated from the OCR 

software does not exist in a specific language, such 

as the word "sder" in English language. The real 

word error occurred when the word generated from 

the OCR software exists in a specific language, but 

unsuitable for the sentence [12, 13]. The purpose of 

this study is to test smoothing techniques on Arabic 

dataset, and find which one is the best among them 

for this language. 

The paper is organized in five sections: section 1 

presented the introduction. Section 2 discusses the 

main smoothing techniques that will be used in 

performance evaluation. Section 3 explains the 

experimental design, measurements, testing dataset 

and training dataset. In section 4, developed 

interface, experimental results and discussion are 

presented. The last section includes conclusions and 

future work of our research. 

2. SMOOTHING TECHNIQUES 

 

This section will explain four main smoothing 

techniques that will be used in the performance 

evaluation. It focuses on how the probability is 

generated by these techniques, and the strengths 

and weakness of each technique.  

2.1 Laplace Smoothing 

 
Laplace smoothing, also called add-one 

smoothing belongs to the discounting category. 

This category consists, in addition to the Laplace 

smoothing, from Witten-Bell discounting, Good-

Turing, and absolute discounting [4]. The approach 

of discounting category is to transfer some mass of 

probability from seen N-grams to others that never 

be seen. This transfer will prevent assigning zero 

probability for missing N-gram in corpus. The 

result of this transfer does not reflect the real 

probability of each N-gram [4, 14]. Techniques of 

discounting category are simple, but they are not 

commonly used. They do not perform well in some 

calculation because much probability mass is 

moved to all unseen n-grams [2, 4]. Since all 

techniques under discounting category have the 

same approach, then this study will select Laplace 

smoothing as one of the comparative techniques for 

performance evaluation. If a language model uses 

Laplace smoothing, then this technique will change 

Equation 1 of a language model to handle zero 

probabilities by adding a value to all the counts as 

shown in an Equation 2 [4].  

 

Where, the term Pˆ denotes the probability after 

using smoothing technique, while the symbol “D” 

is the total number of possible (N−1) grams in 

corpus. The symbol “d” can take values such as 

0.5, 0.9. Whenever the value of “d” is smaller, the 

results will be better. This study will refer to this 

technique in experiments as LMULS, which means 

language model using Laplace smoothing.  

2.2 Linear Interpolation 

 
This technique belongs to the hierarchy category 

that focuses on hierarchy of N-gram orders [2, 4]. 

In linear interpolation technique, several N-gram 

orders will be added to handle zero probabilities. It 

always combines the probabilities calculated from 

all the N-gram orders. For example, the 

mathematical expression of this technique for 

trigram is calculated from combining trigram, 

bigram, and unigram as shown in Equation 3 [4]. 

 

Where the symbol ∝ is interpolation constant and 

it donates the weights of trigram, bigram, and 

unigram. The values of symbols ∝1, ∝2, and ∝3 

can be same if the weights of trigram, bigram, and 

unigram are equal. Otherwise, they will be 

different. Furthermore, the sum of values of ∝1, 

(2) 

(3) 
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∝2, and ∝3 must be equal to 1. Since large N-gram 

gives accuracy more than short N-gram, then this 

study will assign values of 0.5, 0.3, and 0.2 to the 

trigram, bigram, and unigram respectively. This 

technique does not perform well in some cases. For 

example, the bigram language model with 

interpolation technique will give high probability 

value to the context “student student” even the 

context "student student" cannot come in any 

meaningful sentence. This is because the unigram 

“student” is very common and interpolation 

technique will combine both probabilities of bigram 

and unigram together [15]. This study will refer to 

this technique in experiments as LMULI, which 

means language model using linear interpolation.  

2.3 Katz Backoff 

 
This technique also belongs to the hierarchy 

category [2, 4]. Language model with Backoff is 

built based on an (N-1) gram model. Its strategy is 

if N-gram is not found, switch to (N-1) gram and so 

on.  It used lower-order gram when higher-order 

gram gave zero probability. It recursively decreases 

a value of N until lower-order gram is available [4, 

16]. For example, if trigram gives non- zero 

probability, then no need to use lower-order gram. 

Otherwise, if it is not available, then bigram is 

used. Furthermore, if bigram does not exist, then 

unigram is used. The mathematical expression of 

Backoff trigram can be represented in Equation 4 

[16]. 

 

Note α’s are back-off constants [3]. This study 

will assign values of 0.3 and 0.2 to the bigram and 

unigram respectively. Backoff technique usually 

works well. However, it also suffers from the same 

problem of Interpolation technique. For example, 

suppose that the trigram "x y z" is not seeing due to 

the rules of the grammar, and the bigram "x y" is 

very common. The technique will switch to the 

bigram "x y", which its probability is high, instead 

of assigning the value of zero to trigram "x y z" 

[15]. This study will refer to this technique in 

experiments as LMUKB, which means language 

model using Katz Backoff.  

2.4 Kneyser-Ney 

 
This technique is based on main idea that words 

that have occurred in more sentences or contexts 

are more likely to occur in new context or sentence 

as well [4, 17]. Therefore, it depends on the 

frequency of different contexts for each word 

occurred in. For example, by assuming the sentence 

"I cannot read without my _____ ", has two 

candidates, glasses and Francisco to complete it. 

Francisco is more common than glasses. Therefore, 

previous smoothing techniques will prefer it. But 

Francisco is only occurring in context "San 

Francisco" and glasses are frequent in several 

contexts. Therefore, this technique will prefer the 

word glasses rather than Francisco. Kneyser-Ney 

technique is built based on Katz Backoff technique 

or based on linear interpolation technique, by 

adding context information to their equations [4]. 

Kneyser-Ney fails in some cases [17]. For 

example, by assuming the word "Thai" in the 

sentence "I want Thoi food", was misspelled as 

"Thoi", and the previous sentence has only two 

candidates, Thai and Chinese to complete it, then 

Kneyser-Ney category will prefer the word Chinese 

rather than the word Thai because the word Chinese 

has more contexts than the word Thai [4]. This 

study will implement Kneyser-Ney by adding 

context information to the Katz Backoff technique. 

This study will also refer to this technique in 

experiments as LMUKN, which means language 

model using Kneyser-Ney.  

3. EVALUATION SETTING 

 

This section will explain experimental design, 

measurement, testing dataset and training dataset.  

3.1 Experimental Design 

 
Five experiments will be performed to achieve a 

single goal of finding out the best smoothing 

techniques for reducing OCR error rate of Arabic 

language. This goal will be achieved by comparing 

output of five experiments in order to identify the 

best technique. All experiments are performed to 

convert testing images to a text. Tesseract OCR will 

be used to extract texts from input images in all 

experiments. Tesseract OCR is used by many 

researchers because it is one of the best free OCR 

engines [18-20]. Figure 1 shows how to conduct the 

experiments. 

(4) 
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Figure 1: Experimental Design  

Figure 1 shows that the result of Tesseract OCR 

in each experiment is a single output text. Part “A” 

in Figure 1 shows that the first experiment is 

performed without using any smoothing technique. 

The purpose of experiment one is to find accuracy 

of OCR without using any smoothing technique in 

order to compare it with the accuracy of existing 

techniques. Part “B” in Figure 1 will be 

implemented four times. However, the smoothing 

technique for each experiment will be different. 

Experiments two, three, four, and five will be 

implemented using LMULS, LMULI, LMUKB, 

and LMUKN techniques as described in sections 

2.1, 2.2, 2.3, and 2.4 respectively. The degree of N-

gram in the experiments two, three, four, and five is 

trigram language model.  

Figure 1 also shows that output of all 

experiments except the first will pass to the 

tokenization process, which means split text to an 

array of words using spaces between them as 

divider. The result of tokenization process is an 

array of words in each experiment except the first. 

Tokenization process is important to the smoothing 

techniques because these techniques cannot deal 

with output text directly, they can deal with the 

words of output text [1]. After applying smoothing 

techniques, array of words in each experiment 

except the first will be joined as a text. At this 

point, texts resulting from all experiments will pass 

to the alignment process.  

Alignment process is required because the output 

text in each experiment will be compared with 

reference text to calculate four metrics: word error 

rate (WER), non-word error rate (NWER), real 

word error rate (RWER), and character error rate 

(CER). The meaning of each metric and how to 

measure it is discussed in section 3.2. Alignment 

process is needed in comparison because some 

symbols in OCR engine may be deleted, 

misrecognized, or inserted [21]. For example, the 

symbol “d” may be recognized by OCR engine as 

two symbols “cl”. Another example, the two 

symbols “vv” may be recognized by OCR engine as 

one symbol “w”. The deleted, misrecognized, and 

inserted symbols will make some of the words 

either be split or merged, which makes the number 

of words of OCR output text unequal to the 

reference text [21, 22]. Therefore, this study needs 

to do alignment process between the OCR text and 

reference text so that it can measure error rate. 

 Alignment process means aligning each 

character in any reference text with similar 

character in OCR text. It is a complex process due 

to the high  calculations overhead needed, which is 

causing long processing time, especially when the 

numbers of the characters are greater than 2500 [20, 

23]. Figure 2 shows simple example on an 

alignment process between OCR output text and 

reference text. 

 

Figure 2: Simple Example on Alignment Process 

The alignment process will be performed by 

using Levenshtein distance with back trace [24]. 

This algorithm is the most widely used in OCR 

post-processing [1, 12]. This is because it is 

accurate in finding the difference between two 

sequences. However, it needs much processing time 

for large sequences [1, 25, 26]. After an alignment 

process, the four metrics can easily be measured. 

CER is calculated by comparing each character in 

output text with each character in reference text. 
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The comparison process means examining both 

characters if they are match or not. WER is 

calculated by comparing each word in output text 

with each word in reference text. NWER and 

RWER are calculated by examining each wrong 

word if it is in lexicon or not. If it exists in a 

lexicon, then it considers real word error, 

otherwise, it considers non-word error [21]. 

3.2 Measurements 

 
Word error rate (WER) is the main metric that 

use by most researchers in measuring error rate of 

OCR post-processing techniques [11, 27, 28]. 

However, this paper will use in addition to the word 

error rate, further metrics to check the impact of 

each smoothing technique on them. The metrics are 

non-word error rate (NWER), real word error rate 

(RWER), and character error rate (CER). NWER is 

a measure of the non-word errors in output OCR 

text, while RWER is a measure of the real word 

errors in the output of OCR text. Word error rate 

(WER) is used to measure the rate of all wrong 

words in OCR output text. It is a combination of 

non-word errors and real word errors. Lastly, 

character error rate (CER) refers to the inserted, 

deleted, and substituted characters in the output of 

the resulting text of OCR [1, 21, 27]. Equations 5, 

6, 7, and 8 below show how to compute WER, 

NWER, RWER, and CER respectively [1, 21, 29]. 

 

 

 

 

 

3.3 Testing and Training Dataset 

 
Most researchers used different sizes and types of 

testing dataset for Arabic language [1, 11, 29]. This 

paper will follow the same procedure used by [29] 

to produce testing images. This dataset has five 

characteristics. The first is that it contains 101258 

symbols within Arabic images. The symbol means 

the smallest meaningful unit within a writing 

system. The second is that, text is chosen randomly 

from formal Arabic websites on the Internet. The 

third is that it contains in addition to characters of a 

text, the special symbols, such as commas, brackets, 

etc. The fourth is that, it includes eight different 

Arabic fonts. The names of these fonts are Adobe 

Arabic, Simplified Arabic, Courier new, Tahoma, 

Traditional Arabic, Times New Roman, Arial, and 

Microsoft sans Serif. Lastly, each font will consist 

of six different sizes ranging from 10 to 20. The 

texts in these images act as reference during the 

testing process. In addition to that, reference text 

will be used to produce testing images. Arabic text 

is first printed on papers, and then the hardcopy are 

scanned at 300 dpi with a grey level in a modern 

scanner to generate testing dataset images. 

The corpus named “Arabic Gigaword Fourth 

Edition” will be used as training dataset for 

building the database of trigram language model. 

This corpus is produced by the linguistic data 

consortium at the Pennsylvania University [30]. It 

was collected over many years from Arabic news 

websites, and it contains more than 850 million of 

Arabic words. It works well for building the 

database of trigram language model because format 

structure of this corpus is not based on single 

words, but it is based on paragraphs [30, 31].  

4. EXPERIMENTS RESULTS 

 

 This section presents the results of the five 

experiments performed in this study. The goal of 

these experiments is to measure the performance of 

each smoothing technique. This can be achieved by 

making comparison of results of them. To 

implement the experiments, an interface is designed 

using VB.NET under MS Visual Studio.net 2012. 

The term “LMWUS” will be used to refer to the 

experiments 1 and it will mean results of OCR 

system without using any smoothing technique. 

Furthermore, this study will present four figures to 

represents the testing results. Each figure represents 

the results of comparison of a single metric.  

Testing results are shown in Figures 3 to 6.  

From Figures 3, 4, 5, and 6, it can be seen clearly 

that values of the metrics for each smoothing 

technique are different from each other. Overall, 

Figures 3, 4, 5, and 6 show that results of OCR 

system without using any smoothing technique 

(LMWUS) had the highest percentage values of 

WER, NWER, RWER, and CER than the others, 

with rates of 47.88%, 34.80%, 13.08% and 20.60% 

(5) 

(6) 

(7) 

(8) 
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respectively. This means OCR accuracy is still low 

for Arabic language.  

 

 

Figure 3: WER for Five Experiments 

 

Figure 4: NWER for Five Experiments 

 

Figure 5: RWER for Five Experiments 

 

Figure 6: CER for Five Experiments 

On the other hand, it can be seen that WER, 

NWER, RWER, and CER of LMUKB had lowest 

percentage values than the others, with rates of 

38.83%, 28.22%, 10.61% and 12.84% respectively. 

This implies that LMUKB is the best smoothing 

technique for correcting errors of Arabic OCR.  

Figure 3, 4, 5, and 6 also show that LMULI had a 

significant reduction in WER, NWER, RWER, and 

CER, with rates of 40.65%, 29.29%, 11.36% and 

17.77% respectively. However, LMULI is less 

efficiency than LMUKB in smoothing of OCR 

errors. This is because all values of metrics WER, 

NWER, RWER, and CER for LMULI are greater 

than values of LMUKB. Lastly, Figure 3, 4, 5, and 

6 show that LMULS had the least efficiency in 

WER, NWER, RWER, and CER than the others, 

with rates of 44.67%, 32.37%, 12.30% and 17.77% 

respectively. To sum up, results from five previous 

experiments show that it is difficult for accuracy of 

OCR engines to be 100% for Arabic language. 

Furthermore, they show LMUKB is the best 

smoothing technique for correcting errors of Arabic 

OCR.  

5. CONCLUSION AND FUTURE WORK 

 

This study presents the details of the 

performance evaluation of main smoothing 

techniques for Arabic OCR errors. The evaluation 

process of this study is performed based on 

experimental approach. All techniques were tested 

using the same testing dataset. As with any 

research, if a testing dataset is large, then the 

validity and reliability of the research are higher, 

while if testing dataset is too small, then it will be 

inappropriate to be used to determine the strength 

of each smoothing technique. Therefore, this study 

used large testing dataset in the evaluation process. 

The experimental results show that using any 

smoothing technique can reduce error rate. 

However, the best technique among them is 

LMUKB. Further research can be done to improve 

existing smoothing techniques so that they can 

handle high error rate of Arabic OCR. In addition 

to that, it can combine some existing OCR post-

processing techniques in a hybrid way to benefits 

from strengths of them.  
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