
Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

68

 AN EFFICIENT STATE METRIC MEMORY MANAGEMENT

METHOD FOR FLEXIBLE VITERBI DECODER

1
XU BANGJIAN,

 2
LIU ZONGLIN,

 3
YANG HUI,

 4
CHENG LING

1
Assoc Prof.,

2
Assoc.,Prof.,

 3
Postgraduate,

 4
Postgraduate

College of Computer, National University of Defense Technology, People’s Republic of China

E-mail:
1
chengling2013@yeah.net

ABSTRACT

Flexible Viterbi decoder becomes extremely important as a result of increasingly modern wireless

communication standards in SDR (Software Defined Radio) systems. In order to support multi-standard

service and area saving, a flexible Viterbi decoder chip with cascaded ACS (Add Compare Select) unit is

preferred. In such a decoder chip, there is a big irregular addressing problem for temporary ACS

computing results storing. To solve this, a generalized efficient state metric memory management method

has been developed. Analysis shows the design is highly flexible and efficient.

Keywords: Viterbi Decoder, Multi-standard, Reconfigurable Architecture, Software Defined Radio (SDR),

Cascaded ACS

1. INTRODUCTION

In recent years, flexibility is required in modern

communication system based on the concept of

software defined radio (SDR) . Usually, SDR is

composed of reconfigurable hardware which can be

reprogrammed to adapt to various wireless

protocols[1,2,3,4,5,6].

Convolutional channel decoding is such a

significant part in modern SDR systems. It requires

to work under different constraint length, code rate

and polynomial. The Viterbi algorithm for decoding

convolutional code is a maximum likelihood

algorithm based on the coding trellis . In the paper

[6], a flexible Viterbi decoder chip for

convolutional channel coding is presented with the

characteristic of efficiency and area saving, as it

computes partial states at every stage. It can decode

convolutional code with constraint length from 5 to

9, code rate 1/2, 1/3, 1/4 and user defined

polynomials.

However, a generalized efficient cascaded ACS

addressing algorithm suitable for such flexibility is

still lacking. In this paper, such algorithm is

presented. Such algorithms are very important

during designing process of such decoder chip.

2. FLEXIBLE VITERBI DECODER

ARCHITECTURE REVIEW

A flexible Viterbi decoder also consists of three

parts [6]:

1)Branch Metric Calculation Unit (BMCU).

2)Add Compare Select Unit (ACSU).

3)Survival Path Management Unit (SPMU).

In the paper [6], a fast cascaded ACSU is used in

order to provide the most important flexibility. The

cascaded ACSU is shown in figure 1, where
12 −= KM and () 04mod =i .

Figure 1: Diagram Of Cascaded ACSU

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

69

This structure updates 4 state metrics in two

stages once, similar to Radix-4 Viterbi decoder [2].

The key idea also inherits from [7,8,9,10,11,12] to

save chip area. However, the decoder is designed

for dealing with convolutional code of constraint

length from 5 to 9, code rate 1/2, 1/3, 1/4 and user

defined polynomials. By inserting registers between

stages, the decoder in [6] can also achieve a higher

throughput.

 Another important feature to provide flexibility

is the state metric memory management subsystem

without conflict as shown for 5=K in figure 2.

With this feature it can read from / write to these

banks in parallel [6].

Figure 2: (A) 4 Bank State Metric Memory (B) Data

Arrangement At K=5

3. FLEXIBLE VITERBI DECODER

ARCHITECTURE REVIEW

The ACSU contains a cascaded ACS for

butterfly computation with state metric memory

and address generation subsystem to provide

flexibility [6]. To simplify designing, 4 states are

used at the same time in figure 1. In normal cases,

this design is enough [3]. For different code

parameters, the state metric computation is

controlled by the address of read/write operation. It

defines the sequence of states that are to be

computed [6]. This is the state metric memory

management problem in such flexible Viterbi

decoder. The specific management method must

ensure that memory access conflict does not exist.

3.1 State Metric Memory Management Method

Review

Four banks of RAM are designed, and the in-

place replace schedule is applied [4,6]. The kernel

problem of state metric memory management is to

find a suitable initial data arrangement map for 4

banks at stage 0. iS and jS are put into the same

bank if the following inequations are both satisfied

for each 2 recursive stages as in Figure 2 (32 −K

indicates the element number in each bank) [6].

    4/4/ ji ≠ , and 32mod −≠ Kji

A method based on computer search for finding

the proper final arrangement is claimed in [6]. To

place state 0 to 255 in initial state metric memory

properly, a feasible scheme satisfying above

inequations is needed at each 2 recursive stages.
The address generation part is implemented by

circular shift of state id. It is shown [6] by Figure 3.

Figure 3: State Metric Address Generation Example

Detailed final memory management arrangement

for all flexible cases is not given in [6]. But by

analysis of next segment in this paper, the computer

search method used in [6] is not satisfactory, as the

number of search times is too huge. So it can’t be

assured to find a suitable result. This will lead to

confusion in practical designing process.

3.2 Rules and Difficulties of Computer Search

Method

To give the efficient method proposed by this

paper, detailed computer search procedure should

be discussed firstly. The input state id’s in Figure 1

are given as follows:

()22312 00BBBBi KK L−−= (1)

 ()22312 011 BBBBi KK L−−=+ (2)

()22312 102 BBBBi KK L−−=+ (3)

()22312 113 BBBBi KK L−−=+ (4)

where kB is a binary bit. Then the output state id’s

are given as follows:

() () 2004 2232 >>== − iBBBi K L (5)

() () 210144 2232 >>+==+ − iBBBMi K L (6)

() () 221024 2232 >>+==+ − iBBBMi K L (7)

() () 2311434 2232 >>+==+ − iBBBMi K L (8)

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

70

By applying in-place replace schedule, the

result of stage ()2+t will be written back to bank

location of stage t given by Equation (9):
i
t

i
t SS →+

4/
2

, 14/4/
2

++
+ → i

t
Mi

t
SS , 22/4/

2
++

+ → i
t

Mi
t SS ,

34/34/
2

++
+ → i

t
Mi

t SS (9)

Theorem 1: When K is an odd number, after
()

2
2

1
×

−K stages, the data arrangement map in

memory banks at stage ()1−+ Kt will be the same

as the map at stage t .When K is an even number,

after () 21 ×−K stages, the data arrangement map

in memory banks at stage ()12 −+ Kt will be the

same as the map at stage t .
Prove: Since after every 2 stages the

corresponding ouput state id is circular shifted from

input id by 2 bits as (5)~(8), it is easy to obtain this
conclusion.

Theorem 2: Per 4 consecutive states at arbitrary

stage t (such as i
tS , 1+i

tS , 2+i
tS , 3+i

tS , where

04mod =i), should be placed in 4 different banks

independently.

Prove: Since it is desired to parallel reading
these 4 consecutive states from 4 banks , this

conclusion is obvious.

Hence, the following rules can be concluded:

Rule 1: The initial data arrangement map for

every bank at stage 0 should satisfy    4/4/ ji ≠ , to

assure that 4 consecutive data do not exist in one

bank.

Rule 2: The initial data arrangement map for

every bank at stage 0 should satisfy 2 mod 3-Kji ≠ ,

to assure that 4 consecutive data do not exist in one
bank when parallel reading data from these 4 banks

at stage 2.

Rule 3: When K is an odd number, the initial

data arrangement map should be circular shifted

right by 2 bits for 







−

−
1

2

1K
 times. Every time the

new state id in each bank should also satisfy rule 1

and rule 2.

Rule 4: When K is an even number, the initial

data arrangement map should be circular shifted

right by 2 bits for ()2−K times. Every time the new

state id in each bank should also satisfy rule 1 and

rule 2.
According to rule 1, in the initial data

arrangement map, for all state id that can be put

into the same bank, the previous ()3−K bits of state

id’s binary code form a ()32 3 −×− KK dimension

matrix as following:

































11111111

101000

001000

110000

010000

100000

000000

MMMMMMMM

LL

LL

LL

LL

LL

LL

 (10)

which equals to a matrix with decimal number

given by equation (11):

() ′−−]12543210[3K
L (11)

For all state id that can be put into the same

bank, the whole ()1−K bits of state id’s binary code

form a () ()12 3 −×− KK dimension matrix as

following:

() () 































−− −− 0,121,12

0,51,5

0,41,4

0,31,3

0,21,2

0,11,1

0,01,0

3311111111

101000

001000

110000

010000

100000

000000

KK cc

cc

cc

cc

cc

cc

cc

MMMMMMMMMM

LL

LL

LL

LL

LL

LL

 (12)

where { }0,1, , mm cc is a pair of binary bits. It is easy

to see that there are ()52256
−K

 possible

combinations. For 9=K , this number is 16256 . This

number is huge. To reduce this number further, rule

3 and rule 4 can be applied to equation (12). After

circular shift right by 2 bits, equation (13) is given :

() () 































−− −− 11111111

101000

001000

110000

010000

100000

000000

0,121,12

0,51,5

0,41,4

0,31,3

0,21,2

0,11,1

0,01,0

33

MMMMMMMM

LL

LL

LL

LL

LL

LL

MM

KK cc

cc

cc

cc

cc

cc

cc

 (13)

So, now to obey rule 1, it is easy to see that

when    4/4/ nm = and 6>K , there are

{ } { }0,1,0,1, ,, nnmm cccc ≠ . This result will reduce the

combination number to () ()7-K5 22 33177624 =
−K

 . For

9=K , this number is 4331776 . This number is about
1610/1 of 16256 .

To reduce this number further, rule 2 can also

be applied to matrix (12). It is easy to see that when

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

71

52modm −= Kn and 6>K , there are

{ } { }0,1,0,1, ,, nnmm cccc ≠ . This result will reduce the

combination number to

() () () ()7777 2222 345681824
−−−−

=××
KKKK

For 9=K , this number is 43456 . This number is

still too large for computer searching, but is about
810/1 of 4331776 .

3.3 A New State Metric Memory Management

Method

To solve the problem, methods are developed

such as in [12,13]. But these methods are not well

suitable for the problem in this paper, as the

flexible decoder deals with different constraint

lengths, code rates and polynomials. In this paper, a

new method based on recursion construction is put
forward, and it is independently of the idea in [6].

Firstly, initial data arrangement map of 4 banks

for 5=K at stage 0 is given by Eq. (14) (each

column represents a bank, and each element is a

binary number):

 (14)

Then the initial data arrangement map for 7=K

at stage 0 is constructed as following:

(15)

Then the initial data arrangement map for 9=K at

stage 0 is constructed as following:





















=

3

2

1

0

M

M

M

M

M

 (16)

Where =0M





































































01_11_11_0000_11_11_0011_11_11_0010_11_11_00

00_10_11_0011_10_11_0010_10_11_0001_10_11_00

11_01_11_0010_01_11_0001_01_11_0000_01_11_00

10_00_11_0001_00_11_0000_00_11_0011_00_11_00

__

00_11_10_0011_11_10_0010_11_10_0001_11_10_00

11_10_10_0010_10_10_0001_10_10_0000_10_10_00

10_01_10_0001_01_10_0000_01_10_0011_01_10_00

01_00_10_0000_00_10_0011_00_10_0010_00_10_00

__

11_11_01_0010_11_01_0001_11_01_0000_11_01_00

10_10_01_0001_10_01_0000_10_01_0011_10_01_00

01_01_01_0000_01_01_0011_01_01_0010_01_01_00

00_00_01_0011_00_01_0010_00_01_0001_00_01_00

__

10_11_00_0001_11_00_0000_11_00_0011_11_00_00

01_10_00_0000_10_00_0011_10_00_0010_10_00_00

00_01_00_0011_01_00_0010_01_00_0001_01_00_00

11_00_00_0010_00_00_0001_00_00_0000_00_00_00

 (17)

=1M





































































10_11_11_0101_11_11_0100_11_11_0111_11_11_01

01_10_11_0100_10_11_0111_10_11_0110_10_11_01

00_01_11_0111_01_11_0110_01_11_0101_01_11_01

11_00_11_0110_00_11_0101_00_11_0100_00_11_01

__

01_11_10_0100_11_10_0111_11_10_0110_11_10_01

00_10_10_0111_10_10_0110_10_10_0101_10_10_01

11_01_10_0110_01_10_0101_01_10_0100_01_10_01

10_00_10_0101_00_10_0100_00_10_0111_00_10_01

__

00_11_01_0111_11_01_0110_11_01_0101_11_01_01

11_10_01_0110_10_01_0101_10_01_0100_10_01_01

10_01_01_0101_01_01_0100_01_01_0111_01_01_01

01_00_01_0100_00_01_0111_00_01_0110_00_01_01

__

11_11_00_0110_11_00_0101_11_00_0100_11_00_01

10_10_00_0101_10_00_0100_10_00_0111_10_00_01

01_01_00_0100_01_00_0111_01_00_0110_01_00_01

00_00_00_0111_00_00_0110_00_00_0101_00_00_01

 (18)

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

72

=2M





































































11_11_11_1010_11_11_1001_11_11_1000_11_11_10

10_10_11_1001_10_11_1000_10_11_1011_10_11_10

01_01_11_1000_01_11_1011_01_11_1010_01_11_10

00_00_11_1011_00_11_1010_00_11_1001_00_11_10

__

10_11_10_1001_11_10_1000_11_10_1011_11_10_10

01_10_10_1000_10_10_1011_10_10_1010_10_10_10

00_01_10_1011_01_10_1010_01_10_1001_01_10_10

11_00_10_1010_00_10_1001_00_10_1000_00_10_10

__

01_11_01_1000_11_01_1011_11_01_1010_11_01_10

00_10_01_1011_10_01_1010_10_01_1001_10_01_10

11_01_01_1010_01_01_1001_01_01_1000_01_01_10

10_00_01_1001_00_01_1000_00_01_1011_00_01_10

__

00_11_00_1011_11_00_1010_11_00_1001_11_00_10

11_10_00_1010_10_00_1001_10_00_1000_10_00_10

10_01_00_1001_01_00_1000_01_00_1011_01_00_10

01_00_00_1000_00_00_1011_00_00_1010_00_00_10

 (19)

=3M





































































00_11_11_1111_11_11_1110_11_11_1101_11_11_11

11_10_11_1110_10_11_1101_10_11_1100_10_11_11

10_01_11_1101_01_11_1100_01_11_1111_01_11_11

01_00_11_1100_00_11_1111_00_11_1110_00_11_11

__

11_11_10_1110_11_10_1101_11_10_1100_11_10_11

10_10_10_1101_10_10_1100_10_10_1111_10_10_11

01_01_10_1100_01_10_1111_01_10_1110_01_10_11

00_00_10_1111_00_10_1110_00_10_1101_00_10_11

__

10_11_01_1101_11_01_1100_11_01_1111_11_01_11

01_10_01_1100_10_01_1111_10_01_1110_10_01_11

00_01_01_1111_01_01_1110_01_01_1101_01_01_11

11_00_01_1110_00_01_1101_00_01_1100_00_01_11

__

01_11_00_1100_11_00_1111_11_00_1110_11_00_11

00_10_00_1111_10_00_1110_10_00_1101_10_00_11

11_01_00_1110_01_00_1101_01_00_1100_01_00_11

10_00_00_1101_00_00_1100_00_00_1111_00_00_11

(20)

It is easy to verify that the above equation (16)

satisfy all the requiring rules for 9,7,5=K . For

8,6=K , the initial data arrangement map of 4 banks

for 6=K at stage 0 is constructed as following by

inverting last 2 bits of each column:





































01_11_110_11_111_11_100_11_1

10_10_111_10_100_10_101_10_1

11_01_100_01_101_01_110_01_1

00_00_101_00_110_00_111_00_1

10_11_001_11_000_11_011_11_0

01_10_000_10_011_10_010_10_0

00_01_011_01_010_01_001_01_0

11_00_010_00_001_00_000_00_0

(21)

It is easy to verify that the above equation (21)

satisfy all the requiring rules for 6=K . Then the

initial data arrangement map for 8=K is given by

equation (22) :

=0M





































01_11_1_0010_11_1_0011_11_1_0000_11_1_00

10_10_1_0011_10_1_0000_10_1_0001_10_1_00

11_01_1_0000_01_1_0001_01_1_0010_01_1_00

00_00_1_0001_00_1_0010_00_1_0011_00_1_00

10_11_0_0001_11_0_0000_11_0_0011_11_0_00

01_10_0_0000_10_0_0011_10_0_0010_10_0_00

00_01_0_0011_01_0_0010_01_0_0001_01_0_00

11_00_0_0010_00_0_0001_00_0_0000_00_0_00

(22)

By inverting last bit of each column :





































=

00_11_1_0111_11_1_0110_11_1_0101_11_1_01

11_10_1_0110_10_1_0101_10_1_0100_10_1_01

10_01_1_0101_01_1_0100_01_1_0111_01_1_01

01_00_1_0100_00_1_0111_00_1_0110_00_1_01

11_11_0_0100_11_0_0101_11_0_0110_11_0_01

00_10_0_0101_10_0_0110_10_0_0111_10_0_01

01_01_0_0110_01_0_0111_01_0_0100_01_0_01

10_00_0_0111_00_0_0100_00_0_0101_00_0_01

1M

 (23)

By inverting second bit of each column in

reverse order :





































=

11_11_1_1000_11_1_1001_11_1_1010_11_1_10

00_10_1_1001_10_1_1010_10_1_1011_10_1_10

01_01_1_1010_01_1_1011_01_1_1000_01_1_10

10_00_1_1011_00_1_1000_00_1_1001_00_1_10

00_11_0_1011_11_0_1010_11_0_1001_11_0_10

11_10_0_1010_10_0_1001_10_0_1000_10_0_10

10_01_0_1001_01_0_1000_01_0_1011_01_0_10

01_00_0_1000_00_0_1011_00_0_1010_00_0_10

2M

 (24)

By inverting last 2 bits of each column in

reverse order :

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

73





































=

10_11_1_1101_11_1_1100_11_1_1111_11_1_11

01_10_1_1100_10_1_1111_10_1_1110_10_1_11

00_01_1_1111_01_1_1110_01_1_1101_01_1_11

11_00_1_1110_00_1_1101_00_1_1100_00_1_11

01_11_0_1110_11_0_1111_11_0_1100_11_0_11

10_10_0_1111_10_0_1100_10_0_1101_10_0_11

11_01_0_1100_01_0_1101_01_0_1110_01_0_11

00_00_0_1101_00_0_1110_00_0_1111_00_0_11

3M

 (25)

It is easy to verify that the matrix

[] ′= 3210 MMMMM composed of above results

as equation (16) satisfy all the requiring rules for

8,6=K .

4. CONCLUSIONS

In this paper, a simple recursive efficient state

metric memory management method for multi-

standard wireless communication Viterbi decoder is

presented. This method is very easy to extend to
other K value, and it is very important to solve

such irregular addressing problem in this kind of

viterbi decoder for efficiency and chip area saving.

Although not formulated through strictly theoretical

formulating, this method is easier to use for
engineers than existing methods.

ACKNOWLEDGEMENTS

This work was partly supported by National NSFC

of China (60903045).

REFRENCES:

 [1] D.A.F. El-Dib, M.I. Elmasry, “Low-power

register-exchange Viterbi decoder for high-

speed wireless communications,” Proceedings

of the 2002 IEEE International Symposium on
Circuits and Systems(ISCAS 2002), May 2002,

pp. 737–740.

 [2] P. J. Black and T. H. Meng, “A 140-Mb/s, 32-

state, radix-4 Viterbi decoder,” Solid-State
Circuits, IEEE Journal of, vol. 27, pp. 1877-

1885, 1992.

[3] D. Yeh, et al., “RACER: a reconfigurable

constraint-length 14 Viterbi decoder,” FPGAs
for Custom Computing Machines, 1996.

Proceedings. IEEE Symposium on, 1996, pp.

60-69.

[4] W. Ching-Wen and C. Yun-Nan, “Design of

Viterbi decoders with in-place state metric

update and hybrid traceback processing, ”

Signal Processing Systems, 2001 IEEE

Workshop on, 2001, pp. 5-15.

[5] B. Pandita and S. K. Roy, “Design and

implementation of a Viterbi decoder using

FPGAs,” VLSI Design, 1999. Proceedings.
Twelfth International Conference On, 1999, pp.

611-614.

[6] Li Zhou, et al., “A flexible viterbi decoder for

software defined radio”, Journal of Theoretical
and Applied Information Technology, 20th

January 2013. Vol. 47 No.2, pp. 702-706.

[7] C. M. Rader, "Memory Management in a

Viterbi Decoder," IEEE Trans. Commun.,
vol.COM-29, no.9, pp.1399-1401, 1981.

[8] P. G. Gulak and T. Kailath, "Locally Connected

VLSI Architectures for the Viterbi Algorithm,"

IEEE J. Select. Areas Commun., vol.6, no.3,
pp.527-537, 1988.

[9] K.A. Wen, T.S. Wen, and J.F. Wang, "A New

Transform Algorithm for Viterbi Decoding,"

IEEE Trans. Commun., vol.38, no.6, pp.764-
772, 1990.

[10] G. Fettweis and H. Meyr, "High-Speed Parallel

Viterbi Decoding: Algorithm and VLSI-
Architecture," IEEE Commun. Magazine,

pp.46-55, May 1991.

[11] H.-D. Lin and D. G. Messerschmitt, "Parallel

Viterbi Decoding Methods for Uncontrollable
and Controllable Sources," IEEE Trans.

Commun., vol.41, no.1, pp.62-69, 1993.

[12] M.D.Shieh, M.H.Sheu and W.S.Ju, “Efficient

Management of In-Place Path Metric Update
and Its Implementation for Viterbi Decoders”,

IEEE International Symposium on Circuits and

Systems, vol.4,pp.449-452, 1998

[13] C.M.Wu,M.D.Shieh,C.H.Wu and M.H.Sheu,
“An Efficient Approach for In-Place Scheduling

of Path Metric Update in Viterbi Decoders”,

IEEE International Symposium on Circuits and

Systems, May 28-31, 2000

