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ABSTRACT 

 

In the article, the methodological questions are considered of the complexity evaluation of large-block 

cloud computing with enhanced accuracy. The objective of our work is solving in the cloud of the 

mathematical simulation problems with special requirements for accuracy. In particular, we consider 

obtaining a precise and trustworthy solution for the problems with complex connections between sub-

problems in the form of large blocks and the computation time considerably exceeding the time of 

information transmission between them. A methodology is proposed of the complexity evaluation for such 

problems used for creation of the optimal productivity computing systems, operating in a cloudy 

environment. 

 

Keywords: Large-Block Parallel Computing, Cloud Computing, Precision Computation, Precise And 

Trustworthy Solution Of Problems, Floating Point Arithmetic With Enhanced Accuracy. 

 

1. INTRODUCTION 

The objective of the work is the cloud-oriented 

solving of a broad class of problems based on 

mathematical models with a complex topology. In 

addition, this class is characterized by a large 

volume of floating-point calculations with stricter 

requirements for the result’s reliability. Among 

such problems there are, for example, the problem 

of finding a partial system of combinations of the 

works on the water body recreation in an industrial 

region, the problem of designing a ventilation 

system in the enclosed bounded spaces with a 

complex configuration and many others. The 

problems of this kind require a responsible 

solution, because the obtained results may 

influence the volume of capital investments, life 

safety, or the rated quality of products. Similar 

problems were considered in the 80s in the works 

of G.M. Ostrovsky [1-3] devoted to decomposition 

of complex chemical-engineering schemes. In 

reality, the gain in computation time on the 

uniprocessor computers was achieved by finding 

an optimal iterated set (OIS) and reducing the 

dimension of the overall system of nonlinear 

equations; it was possible to find the cuts of the 

digraph of technological system such that the total 

number of variables used for iterative calculation 

of the mathematical model was minimal (for 

example, a model of chemical plant with the 

number of process vessels about 100). The 

problem of optimal decomposition was solved by 

the branch-and-bound method, by the ordered 

exhaustive search of the digraph arcs, intended to 

be cut, on the matrix of contours, and by inclusion 

of the variables corresponding to the arc to an OIS 

of minimal cardinality. After finding the OIS, 

global iterations were performed by the Newton-

Raphson method or its modifications: instead of a 

huge system of nonlinear equations (SNE), it was 

possible to reduce the problem to a SNE well 

suited to simple solution. In the 80s, the power of 

the domestic ES computers did not suffice to find 

the optimal technological parameters on the basis 

of a mathematical model of chemical manufactory; 

in such cases, even in abridged versions, the SNEs 

were solved very slowly. 
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Currently, an opportunity has appeared to solve 

in the cloud the problems of global optimization 

not only in the deterministic case, but also in the 

conditions of uncertainty, which inevitably arise 

when the observability of the studied object is low. 

The amount of computation in such problems 

increases sharply in comparison with the 

deterministic setting, and a solution must be found 

in a multidimensional domain with the dimension 

greater than the dimension of the original 

deterministic problem. In the past, the solution of 

the optimization problems under uncertainty was 

usually limited to those rare cases when it was 

sufficient to solve simply the overall problem in 

terms of its localization to a single process or 

apparatus. Besides, in the conditions of strong 

nonlinearity of the constraints, it is practically 

impossible to obtain the solution of such problems 

by constructing the analytic convex hulls, and this 

increases the already high computational 

complexity. If, even in the conditions of 

analytically obtained convex hulls, we go to the 

level of the system of objects (for example, the 

shop floor), the need for high-performance 

parallelizing is obvious, as well as the fact that 

some elements of the computational system are 

large-block ones. 

It should be noted that, when the dimension of 

the large-block problems of mathematical 

modeling increases, the understanding of the 

accuracy of the resulting solution is lost. Can one 

trust the obtained solution? If, for example, there 

are used in the calculations the multistage 

mathematical models of the kinetics of organic 

synthesis reactions, the reaction rates may vary by 

some orders of magnitude, and the system of 

differential equations becomes rigid. To such 

problems there are reduced the mathematical 

models of explosive processes, the processes of 

combustion and firing. 

The practice of computing using the software 

packages of numerical methods gives reason to 

believe that even in solving the test problems 

associated with rigid systems, the precision of the 

floating point representation format of numbers 

with 16 decimal digits in the mantissa is not 

sufficient. It is necessary to engage the classes 

and/or functions for working with the arithmetic of 

enhanced accuracy. In this case, the time of 

calculation (particularly, involving standard 

mathematical functions such as exp(x)) increases 

dramatically. Even a low-dimensional problem 

which was before solved easily turns into a 

challenging computational problem. 

It is not always possible to use the now 

traditional methods of parallelization developed for 

structurally simple problems (for example, for a 

number of problems in mathematical physics) with 

a very large number of similar elements (finite 

elements, finite differences). On the other hand, in 

the case of transition to a level, where an 

individual process vessel becomes an element of 

any significant system, there arises a tendency to 

consider a structurally simple element requiring 

the use of a powerful computing platform (cluster), 

so again there takes shape a large computing block, 

whereas the system as a whole becomes large-

block. 

The character of the parallel computing 

organization in the new conditions requires, above 

all, new theoretical justifications and methods of 

large-block parallelization in the cloud, taking into 

account the requirements of obtaining a precise 

and trustworthy solution and the possible presence 

of global iterative cycles in the calculation system. 

A motivation for the creation of a new theory is the 

need to evaluate the computational complexity as a 

minimization criterion: in the conditions of 

complicated calculation topologies it is important 

to correctly distribute the tasks with respect to 

resources, achieving a significant reduction in the 

total calculation time. 

The proposed methodology of assessing the 

complexity of large-block high-performance 

computing is aimed at constructing the architecture 

of the solution in a cloud, whose resources are 

used for precise-trustworthy solving the complex 

problems of mathematical modeling and 

optimization with the above specific features. The 

basis of this methodology is the representation of 

the cloud architecture as a weighted directed graph 

with the arcs identified with the blocks enlarged by 

aggregation. The weight of these arcs corresponds 

to the theoretical complexity of the numerical 

methods, because the aggregation of the entire set 

of computational subtasks implies that one block 

solves one typical problem of computational 

mathematics. Moreover, the formulas of the 

complexity estimates should include the size of 

mantissa, the dimension of the problem, the 

required accuracy of the solution (if there are 

present in the local method the iterative cycles 

such as while (...), for example, the iterative 

methods for solving SNE). Next, the vertices of the 

digraph are identified with the cloud servers, 

distributing the initial data and initiating the 

calculations in clusters or individual computers (if, 
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for example, a university computer network is 

used) [4].  

In this article we use the terminology and 

notations used in the monograph [5]. The questions 

of the complexity theory were considered earlier 

by the authors in [6-9]. 

The studies are carried out in accordance with 

the Project No. 1346 from the register of state 

tasks for the higher education institutions and 

scientific organizations of the Russian Federation 

in the field of scientific research. 

 

2. GENERAL THEORETICAL 

STATEMENTS  

 

We assume that the structure of the problem is 

known to us from the results of structural 

identification of the studied system S���  in 

accordance with the research goals (in reality, S��� 
is the initial system, for example, a shop floor for 

the acetylene manufacturing; a natural-industrial 

system of a region etc.); and this structure is a 

digraph G��� � �V���, D���, Γ����, where V��� is the 

set of vertices, D��� is the set of arcs, Γ��� are the 

weight characteristics of the arcs. Next, n��� ��V����  is the number of vertices, m��� � �D���� ��Γ���� is the number of arcs of the digraph of a 

structurally complex computational problem. It is 

required to find a digraph of the cloud 

computational system (CCS) for solving the 

original problem, so that the overall computational 

complexity becomes minimal: 

��∗ ≡ ��∗, �∗, Γ∗�� � ���min� Θ ���������, 

where Θ  is an estimate of the computational 

complexity of the digraph � � ������� . The 

function �������  characterizes the process of 

structural identification at the stage of the CCS 

synthesis. 

Each of the arcs of the sought-for digraph �  identifies a calculation characterized by the 

following values: 

1. Computational complexity Θ����; 

2. The number �����  of digits in the 

mantissa in the realization of 

arithmetic operations;	 
3. The number !����	of input variables 

that participate in the organization of 

the iterative process under the 

condition that this arc is cut. 

We should note that in the simplest case 

(without aggregation of computations) the 

parametricity γ#, k � 1, m  is a functional of the 

form  γ� � γ��Θ����, &����, !�����. 

We suggest  

γ� � !���� ' (),*+,�-*�,�-*� ' (.,*+/0�-*�12k0�-*� , 

where  

1. E,,# 4 1  is a parameter determined by 

experts, and is a measure of verification of the 

mathematical description of the simulated object 

with respect to the original system S��� ; for 

example, a phenomenological model usually has a 

higher measure of verification than a model 

constructed according to the "black box" principle 

and based on approximating the experimental data; 

into the parameter E,,#  one can include, for 

example, such indicators as the completeness of 

taking into account the factors and the 

correspondence to the studied phenomenon of the 

parameters of the mathematical model; thus, the 

parameter E,,#  expresses the preference for the 

mathematical description, and if it equals 1, the 

role of the computational complexity d#	of the arc 

in its resultant parametricity is minimal.  

2. E6,# 4 1  is a parameter determining the 

increase of parametricity γ# as the number of digits 

of the mantissa grows; it is natural to assume that, 

if for example, we want to compare the 

parametricity of two arcs, in one of which the 

number of digits equals 100, and in the other, 50, 

the latter is preferable for the iteration; on the other 

hand, a significant influence on the choice of the 

arc to be cut may have the amount of contours 

being broken: the bigger it is, the greater is the 

information load of this arc; we propose to 

evaluate this parameter as the contourness of the 

arc d#;  

3. ι# 4 1  is an indicator, characterizing the 

sensitivity of the calculation time to the increase of 

the number of digits in the calculations connected 

with the arc d# ; it is defined as the sensitivity 

degree of the quantity Θ�d#�  to the increase of 

requirements for the precision of the obtained local 

solution in the arc d# ; for example, if in the 

calculations of arc there is used the Gauss method 

for solving the systems of linear algebraic 

equations (SLAE) of dimension n, and, in turn, the 

greater the dimension n, the more precise, at a 

principal level, is the calculation of d# (this kind of 

problem can occur, for example, in the finite-

difference approach to the numerical solution of 

partial differential equations), then ι#~3 , since, 

with the increase of the dimension of SLAE, the 
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computational complexity of this method is 

proportional to the cubed dimension of SLAE. 

2.1. Basic notations and terms  

We will assume that the digraph G is a result of 

structural identification of a cloud computational 

system (CCS) S, which is the object of study. The 

structure of the system is stationary, so the process 

of its identifying, the structuring Str�S� , is a 

mapping which associates to the system S  a 

weighted digraph G 

 Str�<�: < → �. (1) 

 

The complexity estimate θ�S�  is an integral 

quantitative characteristic of the overall 

computational load of the CCS, an indicator which 

facilitates ordering of various structures of CCS, 

proposed from outside, and choosing an option that 

has minimal complexity, other factors being equal 

[10]. 

The functioning of the system S is subject to the 

objectives of its existence, and this is reflected by 

an automorphism reflecting the purpose of 

calculations  �@A�<�: < → <. (2) 

The digraph G is the medium within which there 

are solved the problems T�G� � �TC�G�, . . . � , 

coordinated with Aim�S�. 

Solving the problems from the tuple T�G�  is 

carried out on the scale θ�G� after substituting the 

complexity estimates of the system S  by the 

complexity estimates of the digraph  θ��� � �FG�θ�<��. (3) 

which means that “ θ���  is a characteristic of θ�<�” [5]. Such transition is correct only for the 

stationary and pseudo-stationary CCS, whose 

structure remains unchanged in time (or during 

some time, for the pseudo-stationary ones), or, in 

other words, for the systems, which are in the state 

of a classical block-scheme. 

The digraph G is a tuple G � �V, D, Γ�. The tuple G includes  

− � � �HI , @ � 1. . J�  is the tuple of 

vertices; 

− � � ��� � �FG�HI → HK�, L �1. . A; @, N ∈ P1, JQ, @ R N�  is the tuple of 

arcs; 

− Γ � �γ� , L � 1. . A; γ�:=:	���  is the 

tuple of parametricities; the functor γ���� 

redefines γ� and is a procedural model of the arc 

parameterization process, γ�:=:	��  means " γ� 

corresponds to ��". 

Further as the text goes, one may encounter the 

union of an arbitrary tuple with the empty tuple to 

the right from the concatenation sign: the operation 

does not change the content of the tuple, i.e. ∀A � �. . . �, B � �. . . �: B ⟸ A ∪ ∅ ⇒ |B| � |A| . 

However, if, as a result of concatenation, the 

empty element is to supplement the content of the 

tuple, we will use λ -functions in our notations: B ⇐ A ∪ λ∅ ⇒ |B| \ |A| � 1, where λ∅ � �∅� is a 

nameless tuple.  

Hereinafter, in the graphic illustrations and 

some formulas, the vertices “v^” may be denoted 

by aliases (auxiliary names) “i”.  

The CCS digraph G has the following specific 

features:  

 

1) parametricities are real scalars greater than 

one: γ� 4 1. Thus, one plays the role of the 

reference value for parametricities. To the 

arc �� � �HI → HK�  there is associated the 

weight γ� ∈ _`C,	L � 1. . A, where _`C is the set of positive 

real numbers with the reference point 1.  

2) let us confine ourselves to digraphs without 

isolated vertices and multiple arcs, and this 

restriction corresponds to the condition  �∃HI ∈ �: ∃N R @: �HI → HK ∨ HK → HI�� ∧∃LC, Ld: ��e � ��f . 
(4) 

 

The antipodes not satisfying (4) are shown in 

Figure 1.  
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Figure 1. Examples of digraphs for which condition (4) 

does not hold:  

digraph �	C includes an isolated vertex, digraph �	d 

includes multiple arcs 

 

2.2. Associative representations of the elements 

of the CCS digraph  

  

It is important to specify in advance what 

semantic associations arise in the representation of 

the CCS structure: what exactly is associated with 

arcs, and what, with the vertices? In our case, it is 

most convenient to assign the main computational 

load to the arcs, whereas the vertices act as servers, 

performing the distribution of information-

computational flows. Figure 2 illustrates the 

semantic basis of the information-computational 

load attributed to an arc of the digraph. Note the 

following: 

1) the arc ��  has two possible states: the 

normal and the cut ones; in the latter the 

information-computational load includes not only 

the calculations, but also the functions of 

controlling the iterative cycle followed by a signal 

of completion/incompletion of iterations;     

2) the information-computational load of the 

arc in the normal state is determined by the 

computational complexity of the calculation 

module M��Z���; A����, where Z��� is the vector of 

the state variables, resulting from the calculations, dimX��� � j� ; A���  vector of parameters that 

control the characteristics of computing in the 

calculation module, dimA��� � ��.  

3) the resultant information-computational 

load of the arc in the condition of cut �'�:=:	k'� may 

differ from the ordinary level dl�:=:γm� ; the more 

parameters are included into the vector A���, i.e., 

the larger the number �� , the greater is the arc’s 

load. 

4) selection of the arc for cutting and the 

subsequent organization of an iterative cycle is 

performed on the basis of total computational 

complexity k� �	∘ �γm�, k'�� , where ∘  is the 

functional abstractor.  

The essence of the information-computational 

flow is represented by a knowledge frame, it 

includes the procedural models M#�Z�#�; A�#�� and γ# �	∘ �γm#, γ'#� . The information component is 

represented in the flow by the vectors Z�#�  and A�#�, whereas the computational one, by the above 

procedural models, and, if possible (if the arc is 

cut), by a procedural model of the arc cutting in the 

form of a predicate o# � o#�A�#�, M#� ∈pfalse, truew . The value false corresponds to 

continuation of iterations, whereas true, to the end 

of cycle. In the case when all o# � true, k � 1. . β∗ 

we take that the computational load in the system 

equals zero (here β∗ is the total number of the arcs 

being cut). 

 

 
Figure 2. Computational Load Of An Arc Of The 

Digraph 

  

2.3. Comparability of the CCS digraphs  

 

The structural properties of a CCS digraph are 

expressed by the collection of two tuples: the tuple 

of vertices V  and the tuple of arcs D . The 

parametric properties are expressed by the tuple Γ. 

The structural properties have priority in the graph 

ranking. It is necessary to introduce appropriate 

definitions. 

Definition 1.  

A weighted digraph G is comparable in structure 

with a non-weighted digraph G , this fact being 

denoted as G ⇄ G , if the weighted adjacency 

matrix of the weighted digraph G  and the 

adjacency matrix of the non-weighted digraph G 

are equal up to the sign of the number  

z{� � |}J�X�,� � |}J�X� ~ , ��IK � �FG/γ�:=:�@ → N�1,																	�IK � �FG/∃�@ → N� ⇒ 1 ↬ 01, �IK � G@�J��IK�� ; @, N
� 1. . J� � ���F. (5) 



Journal of Theoretical and Applied Information Technology 
 10

th
 December 2015. Vol.82. No.1 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
18 

 

where � � |}J�X�  means that " �  is rendered 

concrete by X" [5], ↬ means "else". 

Definition 2.  

The weighted digraphs GC  and Gd  are called 

identical in structure, this being denoted by GC~Gd, if ∃GC: GC ⇄ GC, ∃Gd: Gd ⇄ Gd, GC � Gd⇒ GC~Gd 
 

(6) 

The weighted digraphs may have the same 

structure and proportionally dependent 

parametricities. 

Definition 3. 

The digraphs G�C� and G�d�, which are identical 

in structure and are similar in that the 

parametricities G�d�  can be obtained from the 

parametricities G�C� by multiplication by a positive 

coefficient, are called comparable, this being 

denoted by G�C� ⇌ G�d� , if there holds the 

condition  

���C� � |}J�XC�, ��d�
� |}J�Xd�; ��IK�C�
� α	�IK�d��; @, N � 1. . J, @R N, α	 � 0� � ���F. 

(7) 

The notation of the form "y=con(x) " means 

"y is rendered concrete by x". 

 

3.    AXIOMATICS OF THE INTEGRAL 

ESTIMATES OF THE CCS 

COMPUTATIONAL COMPLEXITY 

(INITIAL STAGE)  

 

 

To formalize the estimate θ�G� , we need a 

number of complexity axioms. They are the 

theoretical basis of derivation of the formulas for 

the quantitative evaluation of the CCS complexity.  

Axiom 1 (on the estimates of complexity of 

comparable digraphs). 

If GC ⇌ Gd  and 1 � α	 � 	 α , then they are 

comparable in complexity; moreover, if the 

complexity θ�GC�  is known, then the quantity θ�Gd� is proportional to θ�GC�, namely  θ��d� � ��α�θ��C�, ��α�: ∀α �∘: ��∘� ���α� � ��α��, α� � α. 
(8) 

 

In formula (8), the function υ�α�  acts as a 

constant of proportionality, while, in the 

formulation of the axiom, a restriction in the form 

of a double inequality is imposed on the value of α. 

 

4. METHOD OF LEXICOGRAPHIC 

NUMBERING OF THE STRONGLY 

CONNECTED DIGRAPHS  

 

In accordance with the well-known axioms of 

complexity due to George Klir [11], the 

complexity of a system, consisting of a number of 

subsystems, is not less than the complexity of the 

entire system. At the same time, it is quite clear 

that a complexity estimate is constructive only 

when the George Klir’s axiom is fulfilled up to the 

"equality" sign for isolated subsystems. Therefore, 

formalization of complexity estimates should be 

agreed by the method of application to the 

indivisibility of the system into subsystems, i.e., in 

the development of estimates the system’s digraph 

should be strongly connected. 

Hypothesis 1. If at our disposal we had a way of 

lexicographic numbering of strongly connected 

digraphs, then next there would arise a tendency to 

associate this numbering with the complexity 

estimates, i.e., to produce thus a digitization of the 

complexity scale (Figure 3).  

 

Figure 3. Illustration To The Hypothesis About The 

Growth Of The Complexity Estimates Of Digraphs 

Under Their Lexicographic Listing When The 

Parametricities Are Constant 

 

To substitute the abstractor ∘ �G�  to a specific 

function, we associate with the digraph G  an 

invariant ��G�, a unique integer  ����: ∃�′, �′ R � ⇒ ���� � ���′� ∧ ∀�′ ⊂�: ���� �� � � ��′�. 
 

The uniqueness of ��G� consists in the fact that 

there do not exist two digraphs with the same 
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��G�, and for any subgraph its invariant is always 

strictly less than the invariant of the digraph to 

which it belongs. In fact, ��G� is an estimate of 

the structural complexity of digraph according to 

the number of its arcs. Besides the known axioms 

of complexity, this estimate takes into account a 

consistent statement: "If a digraph G contains more 

arcs in comparison with the digraph G�, it is more 

complex".     

The idea of calculating the invariant ��G� 

consists in accumulation of the bits starting from 

the low-order digits, according to the adjacency 

matrix X, with the subsequent conversion of the bit 

strings into a non-negative integer. 

 

(9)

 

where the operation "." is concatenation; "" is the 

empty string; "". �IK  is a bit string ( "0"  or "1" , 

depending on the value �IK � 0 ∨ 1 ); the 

expression"0+bit_string" means that the 

"bit_string" is transformed into the corresponding 

positive integer; �	� is the operation of taking the 

integer part of a number; �� is the complete digraph 

with the number of vertices coinciding with the 

number of vertices of the digraph �.  

Figure 4 shows an example illustrating the 

calculation of ��G�.  

 

(See in the appendix) 
Figure 4. An example of a digraph invariant 

 

5. STRUCTURAL DECOMPOSITION OF THE 

CCS DIGRAPH  

 

In general, the CCS digraph may initially 

include strongly connected components 

(bicomponents) or, if they were not present 

initially, in the process of calculating θ�G�	 the 

digraph G is recursively simplified, and there 

appear bicomponents. Thus, it is necessary to 

formalize two radically different states of the CCS 

digraph:  

1. digraph � is strongly connected;  

2. digraph � is not strongly connected.  

In the first case, the reachability matrix  

H � ��IK��'�, �IK � {∃�@ →. . . → N� ∨ @ � N ⇒ 1,				∃�@ →. . . → N� ⇒ 0, @, N � 1. . J (10) 

is completely filled by ones; in the second, only 

partially.  

If reachability matrix has at least one zero 

element, then the digraph G  of the system S 

contains at least two bicomponents corresponding 

to the strongly connected subsystems. In fact, a 

parallel is drawn between the concepts of a 

"strongly connected subsystem" and a 

"bicomponent" [12]. Figure 5 shows three 

digraphs: 1) a strongly connected one; 2) a tree of 

bicomponents; 3) a tree of vertices. 

 

Figure 5. Three variants of a digraph (bicomponents are 

in the ovals) 

 

Figure 5 illustrates the need to consider three 

aspects of the formalization of θ�G�:  

 

1) evaluating the complexity of trees of 

vertices; 

2) evaluating the complexity of trees of 

bicomponents; 

3) choosing the simplifying operations 

to bring a strongly connected digraph 

to the state of a tree. 

 

6.  AXIOMATICS OF INTEGRAL 

ESTIMATES OF THE CCS 

COMPUTATIONAL COMPLEXITY: 

EVALUATION OF THE COMPLEXITY 

OF TREE-LIKE STRUCTURES  

 

The structure of the tree-like CCS is described 

in the form of a tree of calculations [13]. A digraph G is called a tree (Remark 1), if it has no contours; 

and, to separate these digraphs into a separate 

class, we introduce for them a special notation G�.  

To evaluate the complexity of trees, we 

formulate the following axioms: 

Axiom 1 (complexity of the elementary tree). 
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A complexity estimate for the elementary tree 

with two vertices is no less than the weight of the 

arc that joins them.  ����C � 2, ����d � 1 ⇒ θ���� 4 γC, (11) 

Axiom 2 (complexity estimate for the trees with 

comparable structures). 

If the trees G�C  and G�d  are identical in their 

structure, G�C~G�d , and the total weight of arcs of 

the tree G�C is greater than the total weight of arcs 

of the tree G�d, a complexity estimate for the first 

tree cannot be less than a complexity estimate for 

the second one  

� γC,�
|��e|f
��C � � γd,�

|��f|f
��C ⇒ θ���C� 4 θ���d�. (12) 

Axiom 3 (on the relation between the complexity 

of a tree and a subtree). 

The complexity of any subtree G�′ ⊂ G�  is less 

than the complexity of the tree which contains it  ��′ ⊆ �� ⇒ θ���′� � θ����. (13) 

In accordance with the adopted axioms, two 

variants of formulas are proposed for estimating 

the complexity of trees, whereas each option is 

made agree with the set of axioms (11)-(13): 

Variant # 1 – evaluation of the tree complexity by 

the total weight of the arcs 

θ�C����� � � γ�
|��|f
��C ,	 (14) 

Variant # 2 – evaluation of the tree complexity 

while taking into account the load of the paths  

θ�d����� � � � γ¡�ℙ�,K�|ℙ*|
K�C

0
��C , (15) 

 

where & is the total number of all possible paths 

from the vertices, belonging to the set of 

exogenous vertices 
£→ of the tree ��, to the vertices, 

belonging to the set of endogenous vertices 
¤← (see 

the illustration in Figure 6).  

 

 
 

Figure 6. Illustration for the formula (15) 

 

The selection of a criterion for the complexity 

evaluation of the CCS with a tree-like structure 

depends on the nature of calculations [14]:  

1) A CCS < is a tree-like calculation module 

executed by independent computing devices. In 

such cases the estimate θ�C����� is suitable: it is an 

upper bound of computational complexity. On the 

other hand, this estimate can be used also in the 

case of distributed calculations with dependent 

computing devices, but not as a complexity 

estimate, but as an estimate of the overall 

computing capacity of CCS; this estimate can be 

used in designing the parallelization schemes: the 

smaller the computing capacity, the lower is the 

cost of the calculations themselves; there arises the 

problem of minimizing θ�C�����  on the set of 

variants of the parallelization schemes. 

2) The estimate θ�d�����  can be applied to 

the cases where CCS is a collection of computing 

devices with a tree-like structure, whereas the 

main computational load is not on the arithmetic 

operations, but on the transmission of large 

volumes of information; a complexity estimate is 

proportional to the total loading of channels by the 

information flows during the stable period with a 

constant structure of calculations; the larger the 

average amount of information per a channel, the 

more loaded it is and the greater is the contribution 

of this channel to the overall complexity 

evaluation for the entire tree-like structure; for 

such cases, formula (15) is appropriate. 

 

 

7. COMPLEXITY ESTIMATE FOR THE 

HIERARCHIC CCS  

 

 The hierarchic CCSs differ from the tree-like 

CCSs by that bicomponents play the part of 
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vertices. From the viewpoint of the graph theory, 

the structure of the hierarchic CCS is a tree of 

strongly connected subgraphs (SCS). 

To evaluate the complexity of the trees of SCSs 

(abbreviated as TSCS), it is necessary to convert 

TSCS into a tree of generalized vertices, a Hertz 

digraph, find the weight of the generalized arcs and 

apply to the obtained result the formulas for 

estimating the complexity of the trees of vertices 

[15-16]. 

     Previously we adopted the concept that the 

complexity of calculations, concentrated in an arc, 

is associated with the weight of the arc, whereas 

the vertices are identified with the nodes of data 

distribution (data servers) (Remark 2). Extending 

this assumption to TSCS, it is quite logical to 

associate the complexity of an individual SCS with 

the weight of a generalized arc coming from the 

SCS. In the case when the SCS has several 

generalized arcs coming from it, the weight of each 

of them is reduced by as many times as there are 

generalized arcs coming from the generalized 

vertex. 

On the conceptual level, to go from a tree of 

SCSs to a tree of vertices, we need a method of 

conversion of a tree of SCSs into a Hertz digraph, 

and this will require: 

1) a method of unique concretization of 

SCS;  

2) a method of evaluation of the SCS 

complexity; 

3) a method of weighing the generalized 

arcs.  

As a result, there will be formed a tree of 

generalized vertices, the complexity of which is 

evaluated according to the rules formulated earlier 

in the section 6. 

 

7.1. Method of unique concretization of SCS  

 

We need to construct a quasi-triangular form of 

the adjacency matrix X¦: X¦ � con�G�, X¦:=:G, G ⇄G, X¦:=:X, where X  is the traditional non-weighted 

adjacency matrix of the initial digraph G. To this 

end, we turn to the method of constructing 

procedural models on the basis of operator 

equations.  

A procedural model of construction a quasi-

triangular form X¦  of the adjacency matrix X  is 

verified by checking the following condition 

(which is illustrated in Figure 7):  

 

①: λ�β� ≡ {�ª@|��«I\I� � ���F, @ � 1. . β�: ® ∪I�C
¯ 	 ��«I ∪ I� � �°~ � ���F		 ∧

								∀βC � β: λ�βC� � 0, I:=:�«I , I � ��K�I�, N � 1. . ΥI�, ²¦³:=: ∪I�C
¯ 	 ��«I ∪ I�,

②: �«Ie ≺ �«If ≺. . . ≺ �«I¶: ∀N ∈ P1, β \ 1Q: ∃· � N: ∃L, ¸��� � �H�e →∘�� : H�e ∈ �«I¹º ,
 (16) 

 

where λ�β�  is a λ -predicate, ª@|���  is the 

predicate equal to true, if digraph �  is strongly 

connected. The usage of a λ-predicate in this case 

if justified by that the first condition contains one 

and the same predicate twice, and it is the only one 

in this condition. 

 

(See in the appendix) 
Figure 7. Illustration to the condition (16) 

 

If a procedural model of constructing the matrix X¦  and the SCS G»^ , corresponding to this matrix 

together with the tuples of outgoing arcs ^, i �1. . β , is written in the form of a conventional 

algorithm, then verification of the condition (16) is 

carried out as follows:  

• there is formed a sufficiently representative 

(Remark 3) selection of initial digraphs �: ª@|���;  

• to all paragraphs of this selection the procedure 

is applied of identifying the SCS, and the result 

is stored in an array of tuples;  

• each of the elements of the resulting array is 

checked for the conditions ① and ②;  

• if it appears that both two conditions are met 

for each element of the array, the conclusion is 

made about successful verification.  

 

In Figure 8 there is given an example of 

construction of a tree of SCSs. In this example the 

digraph is split into three SCSs G � con�G»C ≺G»d ≺ G»¼�, whereas the corresponding tree has two 

aggregation functors: 

 χC�γC,#e..¾� ≡ χC�γ�2 → 3�, γ�2 → 5�, γ�7 →6��  and χd�γd,#	e..Â� ≡ χd�γ�3 → 1�, γ�5 →4�, γ�6 → 1�, γ�6 → 4��. 

 

(See in the appendix) 
Figure 8. Illustration to anti-lexicographic sorting of the 

vector Ä 

 

It should be noted that the SCS resulting from 

the anti-lexicographic sorting of the bit strings, the 

components of vector Ä , form a hierarchical 

structure. 

A procedural model of searching SCS is a map Dec: G → �G»^, ^, i � 1. . β� . We propose the 

following procedural model for searching SCS  
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�F|

≜

Æ
ÇÇÇ
ÇÇÇ
ÇÈ

É: 0 Ê Ä	ÉË 4 0 Ê Ä	ÉËÌe , N � 1. . J \ 1 ⇒ λ�L� � 0 Ê J.K�C ��K ,

�«I �
Æ
ÇÇÇ
ÇÈÆ

È∀L ∈ ÉÍ..|�«Î|: λ�L� � @�FA;
· � 1 Ê Ï�0:=:�@ � 1�� ⋎ ���«K�IÑC

K�C ÒÓ
Ô ⋏

I � Ö ×� ®�H����, H����� , ����, �k�����° :
�� ∈ �«I, �� ∉ �«I

Ù∘
��C Ó

ÚÚÚ
ÚÔ , @ � 1. . β

Ó
ÚÚÚ
ÚÚÚ
ÚÔ

	

. 

(17)

 

Consider the expression (17). The result of 

calculations in the procedural model Dec  is a 

permutation É/1. . n1 � �ÉC, Éd, . . . , ÉÛ�  of the 

segment of natural numbers from 1 to n. If, 

following this permutation, we also simultaneously 

rearrange the rows and columns of the transposed 

adjacency matrix, we obtain a quasi-triangular 

form X¦, on the basis of which we find the SCS G»^, 
along with a set of tuples of outgoing arcs ^, i �1. . β. The condition of comparison of the elements, 

sorted in the anti-lexicographic order, is reflected 

by the inequality 0 Ê Ä	ÉÜ 4 0 Ê Ä	ÉÜÌe , j � 1. . n \
1. The ending of the strings. Þ"" Êßà�Û� �n \ i Ê 1�á 

in the vector Ä  serves for lexicographic 

numbering of vertices within the SCS, in 

accordance with the numbering of the vertices in 

the original digraph. Recall that the expression 0+ 

"bit_ string" is equal to an integer obtained from 

the direct binary code recorded in the bit string 

from left to right, starting from the most significant 

bit. 

Figure 9 shows the result of sorting, it 

corresponds to the digraph in Figure 8. It is shown 

how the ending of the bit strings in the vector Ä 

helps building the numbers of vertices in the 

framework of SCS according to ascending of 

indices: for example, G»C  is characterized by the 

vertices �vd, vâ� rather than �vâ, vd�. 

 
 

Figure 9. Illustration to the procedural model (17) 

 

Note that, according to the above principles, to 

find SCS it is not necessary in the detection 

process to find the contours of the digraph, one 

only needs to know the reachability matrix. 

 

7.2. Method of searching SCS in the presence of 

cutpoints in the CCS graph  

 

In some cases, evaluation of the computational 

load using the complexity estimates is made 

difficult by the petal topology of CCS, when the 

central place in the system is assigned to the cloud 

server with the protected data, or when a separate 

subsystem is formed by the cloud server, directly 

connected, at the same time, with several 

computing substations with a strong connected 

structure and, possibly, clusters. Figure 10 

illustrates in a general form a grid-system aimed at 

solving a hypothetical problem with global 

iterations [17]. Consider the CCS digraph in Figure 

11. It is shown without the cut arc corresponding 

to the global iteration cycle. The problem of 

structuring in which the cloud server, along with 

computing substations, is combined into a single 

bicomponent, is that all three elements are 

considered as a whole; the iteration cycles may 

contain undesirable association of the cloud server 

with the vertices belonging to computing 

substations, as shown in Figure 12. The variant b) 

is different in that, as a result of decomposition, 

there are found two contour SCSs instead of one 

component as in the variant a), these are Gã C  and G»d . The working of the computing substations 

corresponding to these SCSs, is now controlled by 

two iterative cycles Ts1 and Ts2, and, at that, the 

cutpoint CP does not lose its significance as the 

coordinator of computations. In this case (Remark 

4) the complexity estimate is equal to the total 

complexity θ�Gã C ∪ Gã d� � θ�Gã C� Ê θ�Gã d�.  

In some cases, the cloud server can be regarded 

as an independent subsystem as shown in Figure 

13, then the number of cutpoints increases. If the 

cloud server is connected to two substations, it is 

natural to assume that there are exactly two 

cutpoints in the Gã ¼ subsystem, i.e., their number is 

equal to the number of substations associated with 

the server. 

The situations, when in structuring the CCS 

there appear the cutpoints in the resulting digraph, 

are possible in the organizations of grid systems 

within the large network information systems with 

several clusters, which are geographically distant 

from each other, when the backbone lines are 

loaded quite heavily, being the lines of computer 
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communication of the general geographic scope 

[18-19]. 

Note also that, as a cloud server, there can be, 

for example, the branch server. 

With regard to the problems of organization of 

high-performance cloud computing, such situations 

are possible, for example, when solving systems of 

equations of large dimension, divided into two (or 

more) blocks with one (or more) equation on the 

separation boundary (the equation of conjugation 

[20]). In such cases, one can find a permutation of 

the rows and columns of the adjacency matrix, 

applying which this matrix acquires a pseudo-

quasi-diagonal form, as shown in Figure 14. 

Generally speaking, bicomponents and the 

contour subgraphs may be considered strongly 

connected subgraphs of different types, and, on 

formal grounds, in a digraph either types can exist 

simultaneously. However, a differentiated 

approach to the enumeration of subgraphs (with 

their subdivision into types) significantly 

complicates the further formalization. It is 

reasonable to equate bicomponents, in which there 

are no cutpoints, with the contour subgraphs if we 

use a bouquet model of decomposition. The choice 

of the specific procedural model of the digraph 

decomposition into SCSs depends on the specific 

situation in which the complexity is evaluated by 

gradual simplification of the system under study 

with the further composition of the estimates of 

primitive structures, going up from the lower level 

of decomposition. With respect to cloud 

computing, one of the factors in favor of the 

method of contour subgraphs is the original 

structure of connecting of cloud servers. For 

example, if there are connections of the "star" type 

in the scheme and the problem is set of evaluating 

the stability of working of the cloud system, then 

the contour subgraphs are preferred over 

bicomponents. 

(See in the appendix) 
Figure 10. Example of a grid system with global 

iterations and a cloud server 

 

(See in the appendix) 
Figure 11. Structuring of a grid system: the case of one 

bicomponent 

 

(See in the appendix) 
Figure 12. Variants for decomposition of the CCS 

digraph in Figure 11: 

a) without taking into account a cutpoint; b) taking into 

account a cutpoint 

 

(See in the appendix) 

Figure 13. The variant of structuring, when the cloud 

server is represented as a contour SCS 

 

 

 

 

(See in the appendix) 
Figure 14. General form of the adjacency matrix for a 

system of equations of large dimension with the equation 

of conjugation of blocks 

 

 

8. THE METHOD OF STRUCTURAL-

PARAMETRIC MINIMIZATION OF 

THE CCS DIGRAPH  

 

A CCS digraph may contain the elements that 

contribute to an increase in computation time of 

the complexity estimation, which adversely affects 

the application of these estimates in the online 

regime. Among these elements, hindering the 

analysis of complexity, there are the branches of 

calculations performed serially and hidden parallel 

branches of calculations. In Figure 15 there are 

shown: an example of the digraph (G), including 

redundant elements, and the result of structural-

parametric minimization (SPM), the digraph G’.  

 

(See in the appendix) 
Figure 15. Example of a CCS digraph with redundant 

elements 

 

Transitive computational flow 2 → 4 → 5 (the 

arcs are highlighted by thick lines) is replaced by 

the generalized arc 2 ⇒ 5 , its parametricity is 

shown in Figure 15 in the form of a question mark: 

it is required to determine how it will be evaluated. 

Through the generalized arc (such arcs are marked 

by double lines) 2 ⇒ 5  there goes computational 

flow, which is performed parallel to the 

computational flow in the initial arc 2→5 of the 

CCS digraph (it is marked by circles and by dotted 

line connecting them): these arcs have the same 

initial and end vertices. The parametricity of the 

generalized arc of the digraph G’ is also shown in 

the form of a question mark. 

Evaluation of the complexity of parallel 

computational flows should take into account the 

character of their carrying out: if these flows are 

processed in parallel, then the complexity 

evaluation must be coordinated with the critical 

line, whose complexity is maximum.  

There is another important point, which is 

illustrated in Figure 16: after replacing the 

transitive branch by a generalized arc, a reversing 
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analysis of the previously analyzed structures, 

there are used the accumulated knowledge with the 

ready answers. The first in the list of the tested and 

ready to be included into the database knowledge 

there should be strongly connected digraphs of 

small dimension, consisted of 2 and 3 vertices. For 

them, we need to derive the complexity estimation 

formulas. 

The criterion ��G� (formula (9)) allows ordering 

the list of strongly connected digraphs, which are 

representation of the simplest topology of iterative 

and cyclic calculations. We need to remove from 

this list isomorphic digraphs, and, for the 

remaining digraphs, to find the estimation formulas 

for the complexity θ (G) in the form of absolute 

predicates. 

It should be noted that in the criterion ��G� the 

weight of the arcs is not used and ∀G: G � G ⇒G ⇐ G\Γ. Beyond the issues of indexing of the list 

elements, in this section we will use the restored G	 ⇐ 	G ∪ Γ. 

Consider the codes of all possible strongly 

connected digraphs with three vertices, ranking 

them in the order of increasing of the 

criterion	���G�: 23, 25, 27, 29, 31, 38, 39, 45, 46, 

47, 54, 55, 57, 58, 59, 61, 62, 63. Due to its 

uniqueness, the criterion ���G�  is taken as the 

basis of constructing the isomorphism diagrams for 

the class of strongly connected digraphs with the 

given vertex dimension |G|C. The arrows in these 

diagrams go from right to left, coming to the codes 

of the basic digraphs. Figure 17 shows the results 

of studying the isomorphism of the above-

mentioned list of digraphs according to the 

criterion ���G� , in the form of a diagram of 

isomorphisms. A failure with respect to the arc 

dimension |G|d  is observed immediately, starting 

with the code 23: there corresponds to it a digraph 

with 4 arcs, whereas to the code 25 there 

corresponds a digraph with three arcs. There is 

clearly a violation of the principle of assigning the 

invariants (9). In Figure 17, the basic codes are 

marked in gray, i.e. the corresponding isomorphic 

digraphs have the code ���G�, the value of which 

exceeds the basic code. 

(See in the appendix) 
Figure 17. The codes �����	of digraphs with three 

vertices and the number of arcs (below) 

 

10. COMPLEXITY OF A DIPOLE  

A dipole is a strongly connected digraph; let us 

adopt for it the notation of the form G�¼�
, where the 

superscript “3” is the value of the invariant 

�� z G�¼��. There are two vertices and two arcs in 

the dipole: 

 

��¼� � ��, �, Γ�, � � �HC, Hd�, � � ��C, �d�,�C � �HC → Hd�, �d � �Hd → HC�, Γ � �γC:=:�C, γd:=:�d�. (18) 

 

The dipole G�¼�
 is shown in Figure 18. It is a 

mathematical description of the structure of the 

simplest CCS. The dipole vertices correspond to 

the blocks of the information distribution (servers), 

whereas the arc, to the computing resources 

(computers, clusters, cloud platforms) [21]. 

 
 

Figure 18. A dipole and its weighted adjacency matrix 

 

Evaluation of the complexity of systems is 

produced by a series of simplifications 

implemented in the same way. In the cognitive 

subtext, a series of simplifications can be 

represented as a tree of recursion when calculating 

the complexity estimates, as it is demonstrated in 

Figure 19. 

The structure of the initial state of CCS is 

represented by a strongly connected digraph 

G R G�¼�, bic�G� � true . It is required to estimate 

the computational complexity of CCS. For this 

purpose, the initial digraph undergoes gradual 

decomposition. The initial state of the digraph is 

assumed to be the zero stage. With regard to CCS, 

it is the dipole that is the final structure in the tree 

of recursive calculation of the complexity estimate. 

In the process of evaluating the complexity of 

large-block calculations with global iterations it is 

a dipole that is a crucially important CCS. Finding 

a way to transform a dipole into the disconnected 

state, and simultaneously making the complexity 

evaluation, one can evaluate the complexity of the 

entire CCS. At that, in addition to the dipole one 

must be able to evaluate the complexity of the trees 

of calculations (see sect. 6).  

 

(See in the appendix) 
Figure 19. An example of tree recursion: � is the CCS 

digraph in its original state; Β � 3 is the number of 

  

γC 

γd 

X � 
γC γd  1 2 ��¼� � 
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levels of hierarchy; βI , @ � 0. . Β is the width of the levels 

in the tree of recursion 

 

Returning to Figure 18, it is easy to notice the 

presence of two alternatives for disconnecting a 

dipole: either a break of the arc (1→2), or a break 

of the arc (2→1). In CCS a break of any arc is 

connected with the need to iterate with respect to 

one or more variables, transmitted as a result of the 

information distribution at the vertices for the 

subsequent calculation in the arcs of digraph. To 

resolve the alternative, it is necessary to take into 

account that the arcs are a topological 

representation of the computational process, and 

the choice of the arc, along which the iteration is to 

be performed, is determined by the complexity of 

arcs and their articulation in the CCS digraph. We 

should at once make a reservation that, before 

calculating the overall evaluation of the 

complexity of the entire CCS, the parametricities 

of all arcs of the digraph, without exception, 

should to be known beforehand. 

Procedurally, a computing dipole can be 

conveniently presented as a CCS with alternative 

choice of the iteration order: either the cut of the 

arc dC  is a procedural realization of sect. 2, or, 

conversely, the arc dd	 acts as such. Figure 20 

shows a graphical interpretation of the procedural 

model of a dipole as an iterative CCS. A dipole has 

"input" and "output": at the input there is 

performed taking off the information, the vertex vC 

is marked by the sign "-", whereas the vertex vd, at 

the output by the sign "+", respectively: it is the 

returning of information. In this case, the dipole 

can be considered as non-automorphic digraph. 

 

��¼�~�′�¼�, ��¼� � �pHC, Hdw, p�C � �1 → 2�, �d � �2 → 1�w�,
�′�¼� � �pHd, HCw, p�C � �2 → 1�, �d � �1 → 2�w�.  (19) 

 

In the procedural block "a" there acts the 

mapping wC , producing transformation of the 

original information, the vector of tuples x� into a 

subvector xC�d� ⊏ x�;  there takes place the 

refinement of the composition of the initial 

approximation with respect to the reverse 

calculation flow coming from the "+" -vertex of 

the dipole to its "-" -vertex. The switch Sw0 

changes the course of setting the initial 

approximation and, thus, the order of iteration 

cycles. In the "on" position, the initial information 

is sent to the procedural block "a", whereas in the 

"off" position, the initial information, the vector of 

tuples x�, is sent to the vertex of the dipole with 

the indication "-", into the procedural block "b", 

where the selection of information for the vertex 2 

is carried out by the mapping wd.  

 

(See in the appendix) 
Figure 20. Dipole as a procedural model of iterative 

CCS 

 

The main computational load falls on the blocks 

"c" and "d". There act the maps ϕC  and ϕd , the 

calculations are carried out in the direction from 

the vertex labeled by "-" to the vertex labeled "+" 

(ϕC) and, vice versa (ϕd). In the comparators "e" 

and "f", there is performed the calculation of the 

predicates U�C,d��•�  and, if the predicate is true, 

then the calculations are finished, "Exit". 

Otherwise, the information, previously obtained 

from the procedural blocks "b" and "c", is passed 

to the vertices of the dipole for further iterations. 

On the way from the vertex to the procedural block 

there are the switches Sw1 and Sw2 (the down 

arrow means "the way is closed", the up one, on 

the contrary, means "the way is open"). They 

control the operation of the dipole; in any case, 

there operate either one of the comparators or both. 

It is necessary to determine how exactly the 

comparators are set, there depends on it the overall 

computational complexity of the dipole: it should 

be minimal; an estimate of the total complexity of 

the CCS digraph is built on this. 

An estimate of the dipole complexity includes 

two quantities: 

1. Complexity of the simplification 

procedure θì , as a result of which the 

dipole becomes a tree (the index "s" 

stands for "simplification"); 

2. Complexity of the arc θí , obtained as 

result of simplification (the index «r» 

stands for "residual", i.e. θí  is the residual 

complexity). 

Let us formulate the axiomatics. Taking into 

account that in the working of dipole there are 

possible two variants of turning on the 

comparators, then the axioms are also two. 

Axiom 5 (complexity of the dipole with one 

comparator). 

The complexity of the dipole in the conditions 

when only one of the computational blocks 

bypasses the comparator does not exceed the total 

complexity of the entire dipole as a single system, 

namely, 
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θ z ��¼�� 4 θîí ≡ θî Ê θí . (20) 

Axiom 6 (complexity of the dipole with two 

comparators). 

In the general case, the estimate of the dipole 

complexity is calculated as a minimum of two 

estimates: the complexity estimate for iterations, 

resulting from the cut of the arc 1→2 and a similar 

estimate for the arc 2→1 

θ z ��¼�� � minpγC�1 Ê γd�, γd�1 Ê γC�w.  (21) 

It should be noted that in the future the formula 

(21) will have to be concretized for the catalog of 

typical blocks associated with the computational 

methods. For the non-typical blocks it is necessary 

to obtain the experimental characteristics: the 

parametricities γC  and γd  as the functions of the 

calculation accuracy and the characteristics of the 

dimension of the problems being solved. In the 

Figure 21 there is presented the experimental 

dependence of the calculation time for the Gauss 

method of solving the systems of linear algebraic 

equations as a function of the dimension n of the 

system and the number p of digits of the mantissa 

p.  

 

 
 

Figure 21. Dependence of the calculation time for the 

system of linear algebraic equations (sec.) on the 

dimension of the system and the size of the mantissa 

 

To approximate the experimental dependence 

shown in Figure 21, we used the dependence T�n, p� � αn¼pd Ê βn¼pÊγndpd Ê δndp . 

Particularly, for the Gauss method we obtained the 

following values: 10-10×(α � 1.88, β � 59.1, γ �10.4, δ � 184�.  Similar studies were carried out 

for a number of methods for solving linear 

algebraic systems, the approximation coefficients 

were found. The obtained data led to the 

conclusion about the applicability of formula (21): 

the maximum deviation in the case, when in the 

dipole arcs there participated the solution of linear 

algebraic systems, did not exceed 5% of the 

relative error. 

 

11. PROCEDURAL MODEL FOR 

EVALUATING THE 

COMPUTATIONAL COMPLEXITY OF 

CCS  

 

One of the outcome of the development of a 

methodology for assessing the computational 

complexity of CCS is a procedural model, which 

takes into account all aspects of the developed 

theory. 1. Input (recursive adapter): digraph � � ��, �, Γ�. 2. Is the digraph strongly connected? ª@|��� � 1? If "yes", then go to item 

12.  3. Structural decomposition: subdivide � into SCSI , @ � 1. . β. 4. θ� � 0. 5. Cycle over SCSI, @ � 1. . β. 6. Input (recursive adapter): digraph G 

= SCSi. 7. θ� � θ� Ê θ. 8. End of the cycle over i. 9. ô � ô�. 10. Output: θ.  11. Up to isomorphism, is the digraph G 

present in the knowledge base of 

complexity estimates (the knowledge 

base is indexed by invariants of 

strongly connected digraphs)? If 

"Yes", then make an inquiry into the 

knowledge base, obtain an estimate θ ≡ θ���  and exit the recursive 

adapter with the value θ. 12. Carry out SPM of the digraph � � mınö÷÷÷÷÷÷ø���. 13. Construction of the matrix of 

contours Cú���. 14. ô� � ûü�ý_���  (the largest of all 

possible real numbers in the С++ 

language). 15. Cycle over the arcs of the matrix of 

contours, @ � 1. . A. 16. Cut of the arc �′ � �\p�Iw. 17. Input (recursive adapter): G = 

digraph �′ 18. Refine the complexity estimate θ � γI�1 Ê θ�. 
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19. θ	 � 	 θ�? Is the estimate decreasing? 

If "NO", then exit the cycle over i. 20. Store the estimate θ� � θ. 21. End of cycle over i. 22. Exit with the value θ � θ�. 
 

 

12. CONCLUSION  

 

A theoretical basis is developed for evaluating 

the complexity of large-block cloud computing, 

using the arithmetic with enhanced accuracy, 

which includes the methods and procedural models 

intended for designing CCSs. Currently, the work 

is underway towards the further elaboration of the 

complexity estimates for real-world computing 

dipoles. The computational experiments are carried 

out on the use of the arithmetic with enhanced 

accuracy in various numerical methods with the 

further approximation of the obtained results of 

testing. It is planned to obtain specific expressions 

for the parametricity functionals of the arcs of the 

CCS digraph in solving a number of large-block 

problems of mathematical modeling. 
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Remarks  

 

1. In this case, a specification is appropriate: 

a tree of vertices. 

2. An alternative is the load on the vertices 

in the form of a vertex potential. In our 

opinion, such an approach may greatly 

complicate the evaluation of complexity, 

especially when the digraph is strongly 

connected. Under such approach, any 

calculations associated with the estimates 

of complexity presuppose solving the 

Kirchhoff system of equations. 

3. The issues of completeness of the digraph 

selection are not considered here, it is a 

separate research topic. 

4. In order not to confuse the contour SCSs 

with bicomponents, we will use as 

superscript not "~", but the sign "." 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

APPENDIX 

 

 
 

Figure 4. An example of a digraph invariant 

 

 
 

Figure 7. Illustration to the condition (16) 
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Figure 11. Structuring of a grid system: the case of one bicomponent 

H�<NGC� 

H��·C� 

H��·d� 

H�<F�� H�<NGd� 

H�H�<NGC� ∪ H�<FC� ∪ H�<NGd�� 

H�<FC� 

H�<Fd� 

Bicomponent 

 



Journal of Theoretical and Applied Information Technology 
 10

th
 December 2015. Vol.82. No.1 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
33 

 

 
Figure 12. Variants for decomposition of the CCS digraph in Figure 11: 

a) without taking into account a cutpoint; b) taking into account a cutpoint 

 
Figure 13. The variant of structuring, when the cloud server is represented as a contour SCS 
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Figure 14. General form of the adjacency matrix for a system of equations of large dimension with the 

equation of conjugation of blocks 

 

 
Figure 15. Example of a CCS digraph with redundant elements 

 

 
 

 

Figure 17. The codes �����	of digraphs with three vertices and the number of arcs (below) 
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Figure 19. An example of tree recursion: � is the CCS digraph in its original state; Β � 3 is the number of 

levels of hierarchy; βI , @ � 0. . Β is the width of the levels in the tree of recursion 
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Figure 20. Dipole as a procedural model of iterative CCS 
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