
Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

13

EVALUATION OF COMPLEXITY OF THE LARGE-BLOCK

CLOUD COMPUTING USING ARITHMETIC WITH

ENHANCED ACCURACY

1
VLADIMIR EFIMOVICH PODOLSKIY,

2
SERGEY STEPANOVICH TOLSTYKH

3
ANTON MIKHAILOVICH BABICHEV,

4
SVETLANA GERMANOVNA TOLSTYKH

1
Tambov Regional Center of New Information Technologies

2,3,4
Tambov State Technical University

Sovetskaya Str., 106, Tambov, 392000 Russia

E-mail:
1
director@director.tixmcnit.tambov.su,

2
inf@tstu.ru,

3
zhelkzhelk@yandex.ru,

4
svetlanatolstyh@mail.ru

ABSTRACT

In the article, the methodological questions are considered of the complexity evaluation of large-block

cloud computing with enhanced accuracy. The objective of our work is solving in the cloud of the

mathematical simulation problems with special requirements for accuracy. In particular, we consider

obtaining a precise and trustworthy solution for the problems with complex connections between sub-

problems in the form of large blocks and the computation time considerably exceeding the time of

information transmission between them. A methodology is proposed of the complexity evaluation for such

problems used for creation of the optimal productivity computing systems, operating in a cloudy

environment.

Keywords: Large-Block Parallel Computing, Cloud Computing, Precision Computation, Precise And

Trustworthy Solution Of Problems, Floating Point Arithmetic With Enhanced Accuracy.

1. INTRODUCTION

The objective of the work is the cloud-oriented

solving of a broad class of problems based on

mathematical models with a complex topology. In

addition, this class is characterized by a large

volume of floating-point calculations with stricter

requirements for the result’s reliability. Among

such problems there are, for example, the problem

of finding a partial system of combinations of the

works on the water body recreation in an industrial

region, the problem of designing a ventilation

system in the enclosed bounded spaces with a

complex configuration and many others. The

problems of this kind require a responsible

solution, because the obtained results may

influence the volume of capital investments, life

safety, or the rated quality of products. Similar

problems were considered in the 80s in the works

of G.M. Ostrovsky [1-3] devoted to decomposition

of complex chemical-engineering schemes. In

reality, the gain in computation time on the

uniprocessor computers was achieved by finding

an optimal iterated set (OIS) and reducing the

dimension of the overall system of nonlinear

equations; it was possible to find the cuts of the

digraph of technological system such that the total

number of variables used for iterative calculation

of the mathematical model was minimal (for

example, a model of chemical plant with the

number of process vessels about 100). The

problem of optimal decomposition was solved by

the branch-and-bound method, by the ordered

exhaustive search of the digraph arcs, intended to

be cut, on the matrix of contours, and by inclusion

of the variables corresponding to the arc to an OIS

of minimal cardinality. After finding the OIS,

global iterations were performed by the Newton-

Raphson method or its modifications: instead of a

huge system of nonlinear equations (SNE), it was

possible to reduce the problem to a SNE well

suited to simple solution. In the 80s, the power of

the domestic ES computers did not suffice to find

the optimal technological parameters on the basis

of a mathematical model of chemical manufactory;

in such cases, even in abridged versions, the SNEs

were solved very slowly.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

14

Currently, an opportunity has appeared to solve

in the cloud the problems of global optimization

not only in the deterministic case, but also in the

conditions of uncertainty, which inevitably arise

when the observability of the studied object is low.

The amount of computation in such problems

increases sharply in comparison with the

deterministic setting, and a solution must be found

in a multidimensional domain with the dimension

greater than the dimension of the original

deterministic problem. In the past, the solution of

the optimization problems under uncertainty was

usually limited to those rare cases when it was

sufficient to solve simply the overall problem in

terms of its localization to a single process or

apparatus. Besides, in the conditions of strong

nonlinearity of the constraints, it is practically

impossible to obtain the solution of such problems

by constructing the analytic convex hulls, and this

increases the already high computational

complexity. If, even in the conditions of

analytically obtained convex hulls, we go to the

level of the system of objects (for example, the

shop floor), the need for high-performance

parallelizing is obvious, as well as the fact that

some elements of the computational system are

large-block ones.

It should be noted that, when the dimension of

the large-block problems of mathematical

modeling increases, the understanding of the

accuracy of the resulting solution is lost. Can one

trust the obtained solution? If, for example, there

are used in the calculations the multistage

mathematical models of the kinetics of organic

synthesis reactions, the reaction rates may vary by

some orders of magnitude, and the system of

differential equations becomes rigid. To such

problems there are reduced the mathematical

models of explosive processes, the processes of

combustion and firing.

The practice of computing using the software

packages of numerical methods gives reason to

believe that even in solving the test problems

associated with rigid systems, the precision of the

floating point representation format of numbers

with 16 decimal digits in the mantissa is not

sufficient. It is necessary to engage the classes

and/or functions for working with the arithmetic of

enhanced accuracy. In this case, the time of

calculation (particularly, involving standard

mathematical functions such as exp(x)) increases

dramatically. Even a low-dimensional problem

which was before solved easily turns into a

challenging computational problem.

It is not always possible to use the now

traditional methods of parallelization developed for

structurally simple problems (for example, for a

number of problems in mathematical physics) with

a very large number of similar elements (finite

elements, finite differences). On the other hand, in

the case of transition to a level, where an

individual process vessel becomes an element of

any significant system, there arises a tendency to

consider a structurally simple element requiring

the use of a powerful computing platform (cluster),

so again there takes shape a large computing block,

whereas the system as a whole becomes large-

block.

The character of the parallel computing

organization in the new conditions requires, above

all, new theoretical justifications and methods of

large-block parallelization in the cloud, taking into

account the requirements of obtaining a precise

and trustworthy solution and the possible presence

of global iterative cycles in the calculation system.

A motivation for the creation of a new theory is the

need to evaluate the computational complexity as a

minimization criterion: in the conditions of

complicated calculation topologies it is important

to correctly distribute the tasks with respect to

resources, achieving a significant reduction in the

total calculation time.

The proposed methodology of assessing the

complexity of large-block high-performance

computing is aimed at constructing the architecture

of the solution in a cloud, whose resources are

used for precise-trustworthy solving the complex

problems of mathematical modeling and

optimization with the above specific features. The

basis of this methodology is the representation of

the cloud architecture as a weighted directed graph

with the arcs identified with the blocks enlarged by

aggregation. The weight of these arcs corresponds

to the theoretical complexity of the numerical

methods, because the aggregation of the entire set

of computational subtasks implies that one block

solves one typical problem of computational

mathematics. Moreover, the formulas of the

complexity estimates should include the size of

mantissa, the dimension of the problem, the

required accuracy of the solution (if there are

present in the local method the iterative cycles

such as while (...), for example, the iterative

methods for solving SNE). Next, the vertices of the

digraph are identified with the cloud servers,

distributing the initial data and initiating the

calculations in clusters or individual computers (if,

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

15

for example, a university computer network is

used) [4].

In this article we use the terminology and

notations used in the monograph [5]. The questions

of the complexity theory were considered earlier

by the authors in [6-9].

The studies are carried out in accordance with

the Project No. 1346 from the register of state

tasks for the higher education institutions and

scientific organizations of the Russian Federation

in the field of scientific research.

2. GENERAL THEORETICAL

STATEMENTS

We assume that the structure of the problem is

known to us from the results of structural

identification of the studied system S��� in

accordance with the research goals (in reality, S���
is the initial system, for example, a shop floor for

the acetylene manufacturing; a natural-industrial

system of a region etc.); and this structure is a

digraph G��� � �V���, D���, Γ����, where V��� is the

set of vertices, D��� is the set of arcs, Γ��� are the

weight characteristics of the arcs. Next, n��� ��V���� is the number of vertices, m��� � �D���� ��Γ���� is the number of arcs of the digraph of a

structurally complex computational problem. It is

required to find a digraph of the cloud

computational system (CCS) for solving the

original problem, so that the overall computational

complexity becomes minimal:

��∗ ≡ ��∗, �∗, Γ∗�� � ���min� Θ ���������,

where Θ is an estimate of the computational

complexity of the digraph � � ������� . The

function ������� characterizes the process of

structural identification at the stage of the CCS

synthesis.

Each of the arcs of the sought-for digraph � identifies a calculation characterized by the

following values:

1. Computational complexity Θ����;

2. The number ����� of digits in the

mantissa in the realization of

arithmetic operations;	
3. The number !����	of input variables

that participate in the organization of

the iterative process under the

condition that this arc is cut.

We should note that in the simplest case

(without aggregation of computations) the

parametricity γ#, k � 1, m is a functional of the

form γ� � γ��Θ����, &����, !�����.

We suggest

γ� � !���� ' (),*+,�-*�,�-*� ' (.,*+/0�-*�12k0�-*� ,

where

1. E,,# 4 1 is a parameter determined by

experts, and is a measure of verification of the

mathematical description of the simulated object

with respect to the original system S��� ; for

example, a phenomenological model usually has a

higher measure of verification than a model

constructed according to the "black box" principle

and based on approximating the experimental data;

into the parameter E,,# one can include, for

example, such indicators as the completeness of

taking into account the factors and the

correspondence to the studied phenomenon of the

parameters of the mathematical model; thus, the

parameter E,,# expresses the preference for the

mathematical description, and if it equals 1, the

role of the computational complexity d#	of the arc

in its resultant parametricity is minimal.

2. E6,# 4 1 is a parameter determining the

increase of parametricity γ# as the number of digits

of the mantissa grows; it is natural to assume that,

if for example, we want to compare the

parametricity of two arcs, in one of which the

number of digits equals 100, and in the other, 50,

the latter is preferable for the iteration; on the other

hand, a significant influence on the choice of the

arc to be cut may have the amount of contours

being broken: the bigger it is, the greater is the

information load of this arc; we propose to

evaluate this parameter as the contourness of the

arc d#;

3. ι# 4 1 is an indicator, characterizing the

sensitivity of the calculation time to the increase of

the number of digits in the calculations connected

with the arc d# ; it is defined as the sensitivity

degree of the quantity Θ�d#� to the increase of

requirements for the precision of the obtained local

solution in the arc d# ; for example, if in the

calculations of arc there is used the Gauss method

for solving the systems of linear algebraic

equations (SLAE) of dimension n, and, in turn, the

greater the dimension n, the more precise, at a

principal level, is the calculation of d# (this kind of

problem can occur, for example, in the finite-

difference approach to the numerical solution of

partial differential equations), then ι#~3 , since,

with the increase of the dimension of SLAE, the

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

16

computational complexity of this method is

proportional to the cubed dimension of SLAE.

2.1. Basic notations and terms

We will assume that the digraph G is a result of

structural identification of a cloud computational

system (CCS) S, which is the object of study. The

structure of the system is stationary, so the process

of its identifying, the structuring Str�S� , is a

mapping which associates to the system S a

weighted digraph G

 Str�<�: < → �. (1)

The complexity estimate θ�S� is an integral

quantitative characteristic of the overall

computational load of the CCS, an indicator which

facilitates ordering of various structures of CCS,

proposed from outside, and choosing an option that

has minimal complexity, other factors being equal

[10].

The functioning of the system S is subject to the

objectives of its existence, and this is reflected by

an automorphism reflecting the purpose of

calculations �@A�<�: < → <. (2)

The digraph G is the medium within which there

are solved the problems T�G� � �TC�G�, . . . � ,

coordinated with Aim�S�.

Solving the problems from the tuple T�G� is

carried out on the scale θ�G� after substituting the

complexity estimates of the system S by the

complexity estimates of the digraph θ��� � �FG�θ�<��. (3)

which means that “ θ��� is a characteristic of θ�<�” [5]. Such transition is correct only for the

stationary and pseudo-stationary CCS, whose

structure remains unchanged in time (or during

some time, for the pseudo-stationary ones), or, in

other words, for the systems, which are in the state

of a classical block-scheme.

The digraph G is a tuple G � �V, D, Γ�. The tuple G includes

− � � �HI , @ � 1. . J� is the tuple of

vertices;

− � � ��� � �FG�HI → HK�, L �1. . A; @, N ∈ P1, JQ, @ R N� is the tuple of

arcs;

− Γ � �γ� , L � 1. . A; γ�:=:	��� is the

tuple of parametricities; the functor γ����

redefines γ� and is a procedural model of the arc

parameterization process, γ�:=:	�� means " γ�

corresponds to ��".

Further as the text goes, one may encounter the

union of an arbitrary tuple with the empty tuple to

the right from the concatenation sign: the operation

does not change the content of the tuple, i.e. ∀A � �. . . �, B � �. . . �: B ⟸ A ∪ ∅ ⇒ |B| � |A| .

However, if, as a result of concatenation, the

empty element is to supplement the content of the

tuple, we will use λ -functions in our notations: B ⇐ A ∪ λ∅ ⇒ |B| \ |A| � 1, where λ∅ � �∅� is a

nameless tuple.

Hereinafter, in the graphic illustrations and

some formulas, the vertices “v^” may be denoted

by aliases (auxiliary names) “i”.

The CCS digraph G has the following specific

features:

1) parametricities are real scalars greater than

one: γ� 4 1. Thus, one plays the role of the

reference value for parametricities. To the

arc �� � �HI → HK� there is associated the

weight γ� ∈ _`C,	L � 1. . A, where _`C is the set of positive

real numbers with the reference point 1.

2) let us confine ourselves to digraphs without

isolated vertices and multiple arcs, and this

restriction corresponds to the condition �∃HI ∈ �: ∃N R @: �HI → HK ∨ HK → HI�� ∧∃LC, Ld: ��e � ��f .
(4)

The antipodes not satisfying (4) are shown in

Figure 1.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

17

Figure 1. Examples of digraphs for which condition (4)

does not hold:

digraph �	C includes an isolated vertex, digraph �	d

includes multiple arcs

2.2. Associative representations of the elements

of the CCS digraph

It is important to specify in advance what

semantic associations arise in the representation of

the CCS structure: what exactly is associated with

arcs, and what, with the vertices? In our case, it is

most convenient to assign the main computational

load to the arcs, whereas the vertices act as servers,

performing the distribution of information-

computational flows. Figure 2 illustrates the

semantic basis of the information-computational

load attributed to an arc of the digraph. Note the

following:

1) the arc �� has two possible states: the

normal and the cut ones; in the latter the

information-computational load includes not only

the calculations, but also the functions of

controlling the iterative cycle followed by a signal

of completion/incompletion of iterations;

2) the information-computational load of the

arc in the normal state is determined by the

computational complexity of the calculation

module M��Z���; A����, where Z��� is the vector of

the state variables, resulting from the calculations, dimX��� � j� ; A��� vector of parameters that

control the characteristics of computing in the

calculation module, dimA��� � ��.

3) the resultant information-computational

load of the arc in the condition of cut �'�:=:	k'� may

differ from the ordinary level dl�:=:γm� ; the more

parameters are included into the vector A���, i.e.,

the larger the number �� , the greater is the arc’s

load.

4) selection of the arc for cutting and the

subsequent organization of an iterative cycle is

performed on the basis of total computational

complexity k� �	∘ �γm�, k'�� , where ∘ is the

functional abstractor.

The essence of the information-computational

flow is represented by a knowledge frame, it

includes the procedural models M#�Z�#�; A�#�� and γ# �	∘ �γm#, γ'#� . The information component is

represented in the flow by the vectors Z�#� and A�#�, whereas the computational one, by the above

procedural models, and, if possible (if the arc is

cut), by a procedural model of the arc cutting in the

form of a predicate o# � o#�A�#�, M#� ∈pfalse, truew . The value false corresponds to

continuation of iterations, whereas true, to the end

of cycle. In the case when all o# � true, k � 1. . β∗

we take that the computational load in the system

equals zero (here β∗ is the total number of the arcs

being cut).

Figure 2. Computational Load Of An Arc Of The

Digraph

2.3. Comparability of the CCS digraphs

The structural properties of a CCS digraph are

expressed by the collection of two tuples: the tuple

of vertices V and the tuple of arcs D . The

parametric properties are expressed by the tuple Γ.

The structural properties have priority in the graph

ranking. It is necessary to introduce appropriate

definitions.

Definition 1.

A weighted digraph G is comparable in structure

with a non-weighted digraph G , this fact being

denoted as G ⇄ G , if the weighted adjacency

matrix of the weighted digraph G and the

adjacency matrix of the non-weighted digraph G

are equal up to the sign of the number

z{� � |}J�X�,� � |}J�X� ~ , ��IK � �FG/γ�:=:�@ → N�1,																	�IK � �FG/∃�@ → N� ⇒ 1 ↬ 01, �IK � G@�J��IK�� ; @, N
� 1. . J� � ���F. (5)

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

18

where � � |}J�X� means that " � is rendered

concrete by X" [5], ↬ means "else".

Definition 2.

The weighted digraphs GC and Gd are called

identical in structure, this being denoted by GC~Gd, if ∃GC: GC ⇄ GC, ∃Gd: Gd ⇄ Gd, GC � Gd⇒ GC~Gd

(6)

The weighted digraphs may have the same

structure and proportionally dependent

parametricities.

Definition 3.

The digraphs G�C� and G�d�, which are identical

in structure and are similar in that the

parametricities G�d� can be obtained from the

parametricities G�C� by multiplication by a positive

coefficient, are called comparable, this being

denoted by G�C� ⇌ G�d� , if there holds the

condition

���C� � |}J�XC�, ��d�
� |}J�Xd�; ��IK�C�
� α	�IK�d��; @, N � 1. . J, @R N, α	 � 0� � ���F.

(7)

The notation of the form "y=con(x) " means

"y is rendered concrete by x".

3. AXIOMATICS OF THE INTEGRAL

ESTIMATES OF THE CCS

COMPUTATIONAL COMPLEXITY

(INITIAL STAGE)

To formalize the estimate θ�G� , we need a

number of complexity axioms. They are the

theoretical basis of derivation of the formulas for

the quantitative evaluation of the CCS complexity.

Axiom 1 (on the estimates of complexity of

comparable digraphs).

If GC ⇌ Gd and 1 � α	 � 	 α , then they are

comparable in complexity; moreover, if the

complexity θ�GC� is known, then the quantity θ�Gd� is proportional to θ�GC�, namely θ��d� � ��α�θ��C�, ��α�: ∀α �∘: ��∘� ���α� � ��α��, α� � α.
(8)

In formula (8), the function υ�α� acts as a

constant of proportionality, while, in the

formulation of the axiom, a restriction in the form

of a double inequality is imposed on the value of α.

4. METHOD OF LEXICOGRAPHIC

NUMBERING OF THE STRONGLY

CONNECTED DIGRAPHS

In accordance with the well-known axioms of

complexity due to George Klir [11], the

complexity of a system, consisting of a number of

subsystems, is not less than the complexity of the

entire system. At the same time, it is quite clear

that a complexity estimate is constructive only

when the George Klir’s axiom is fulfilled up to the

"equality" sign for isolated subsystems. Therefore,

formalization of complexity estimates should be

agreed by the method of application to the

indivisibility of the system into subsystems, i.e., in

the development of estimates the system’s digraph

should be strongly connected.

Hypothesis 1. If at our disposal we had a way of

lexicographic numbering of strongly connected

digraphs, then next there would arise a tendency to

associate this numbering with the complexity

estimates, i.e., to produce thus a digitization of the

complexity scale (Figure 3).

Figure 3. Illustration To The Hypothesis About The

Growth Of The Complexity Estimates Of Digraphs

Under Their Lexicographic Listing When The

Parametricities Are Constant

To substitute the abstractor ∘ �G� to a specific

function, we associate with the digraph G an

invariant ��G�, a unique integer ����: ∃�′, �′ R � ⇒ ���� � ���′� ∧ ∀�′ ⊂�: ���� �� � � ��′�.

The uniqueness of ��G� consists in the fact that

there do not exist two digraphs with the same

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

19

��G�, and for any subgraph its invariant is always

strictly less than the invariant of the digraph to

which it belongs. In fact, ��G� is an estimate of

the structural complexity of digraph according to

the number of its arcs. Besides the known axioms

of complexity, this estimate takes into account a

consistent statement: "If a digraph G contains more

arcs in comparison with the digraph G�, it is more

complex".

The idea of calculating the invariant ��G�

consists in accumulation of the bits starting from

the low-order digits, according to the adjacency

matrix X, with the subsequent conversion of the bit

strings into a non-negative integer.

(9)

where the operation "." is concatenation; "" is the

empty string; "". �IK is a bit string ("0" or "1" ,

depending on the value �IK � 0 ∨ 1); the

expression"0+bit_string" means that the

"bit_string" is transformed into the corresponding

positive integer; �	� is the operation of taking the

integer part of a number; �� is the complete digraph

with the number of vertices coinciding with the

number of vertices of the digraph �.

Figure 4 shows an example illustrating the

calculation of ��G�.

(See in the appendix)
Figure 4. An example of a digraph invariant

5. STRUCTURAL DECOMPOSITION OF THE

CCS DIGRAPH

In general, the CCS digraph may initially

include strongly connected components

(bicomponents) or, if they were not present

initially, in the process of calculating θ�G�	 the

digraph G is recursively simplified, and there

appear bicomponents. Thus, it is necessary to

formalize two radically different states of the CCS

digraph:

1. digraph � is strongly connected;

2. digraph � is not strongly connected.

In the first case, the reachability matrix

H � ��IK��'�, �IK � {∃�@ →. . . → N� ∨ @ � N ⇒ 1,				∃�@ →. . . → N� ⇒ 0, @, N � 1. . J (10)

is completely filled by ones; in the second, only

partially.

If reachability matrix has at least one zero

element, then the digraph G of the system S

contains at least two bicomponents corresponding

to the strongly connected subsystems. In fact, a

parallel is drawn between the concepts of a

"strongly connected subsystem" and a

"bicomponent" [12]. Figure 5 shows three

digraphs: 1) a strongly connected one; 2) a tree of

bicomponents; 3) a tree of vertices.

Figure 5. Three variants of a digraph (bicomponents are

in the ovals)

Figure 5 illustrates the need to consider three

aspects of the formalization of θ�G�:

1) evaluating the complexity of trees of

vertices;

2) evaluating the complexity of trees of

bicomponents;

3) choosing the simplifying operations

to bring a strongly connected digraph

to the state of a tree.

6. AXIOMATICS OF INTEGRAL

ESTIMATES OF THE CCS

COMPUTATIONAL COMPLEXITY:

EVALUATION OF THE COMPLEXITY

OF TREE-LIKE STRUCTURES

The structure of the tree-like CCS is described

in the form of a tree of calculations [13]. A digraph G is called a tree (Remark 1), if it has no contours;

and, to separate these digraphs into a separate

class, we introduce for them a special notation G�.

To evaluate the complexity of trees, we

formulate the following axioms:

Axiom 1 (complexity of the elementary tree).

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

20

A complexity estimate for the elementary tree

with two vertices is no less than the weight of the

arc that joins them. ����C � 2, ����d � 1 ⇒ θ���� 4 γC, (11)

Axiom 2 (complexity estimate for the trees with

comparable structures).

If the trees G�C and G�d are identical in their

structure, G�C~G�d , and the total weight of arcs of

the tree G�C is greater than the total weight of arcs

of the tree G�d, a complexity estimate for the first

tree cannot be less than a complexity estimate for

the second one

� γC,�
|��e|f
��C � � γd,�

|��f|f
��C ⇒ θ���C� 4 θ���d�. (12)

Axiom 3 (on the relation between the complexity

of a tree and a subtree).

The complexity of any subtree G�′ ⊂ G� is less

than the complexity of the tree which contains it ��′ ⊆ �� ⇒ θ���′� � θ����. (13)

In accordance with the adopted axioms, two

variants of formulas are proposed for estimating

the complexity of trees, whereas each option is

made agree with the set of axioms (11)-(13):

Variant # 1 – evaluation of the tree complexity by

the total weight of the arcs

θ�C����� � � γ�
|��|f
��C ,	 (14)

Variant # 2 – evaluation of the tree complexity

while taking into account the load of the paths

θ�d����� � � � γ¡�ℙ�,K�|ℙ*|
K�C

0
��C , (15)

where & is the total number of all possible paths

from the vertices, belonging to the set of

exogenous vertices
£→ of the tree ��, to the vertices,

belonging to the set of endogenous vertices
¤← (see

the illustration in Figure 6).

Figure 6. Illustration for the formula (15)

The selection of a criterion for the complexity

evaluation of the CCS with a tree-like structure

depends on the nature of calculations [14]:

1) A CCS < is a tree-like calculation module

executed by independent computing devices. In

such cases the estimate θ�C����� is suitable: it is an

upper bound of computational complexity. On the

other hand, this estimate can be used also in the

case of distributed calculations with dependent

computing devices, but not as a complexity

estimate, but as an estimate of the overall

computing capacity of CCS; this estimate can be

used in designing the parallelization schemes: the

smaller the computing capacity, the lower is the

cost of the calculations themselves; there arises the

problem of minimizing θ�C����� on the set of

variants of the parallelization schemes.

2) The estimate θ�d����� can be applied to

the cases where CCS is a collection of computing

devices with a tree-like structure, whereas the

main computational load is not on the arithmetic

operations, but on the transmission of large

volumes of information; a complexity estimate is

proportional to the total loading of channels by the

information flows during the stable period with a

constant structure of calculations; the larger the

average amount of information per a channel, the

more loaded it is and the greater is the contribution

of this channel to the overall complexity

evaluation for the entire tree-like structure; for

such cases, formula (15) is appropriate.

7. COMPLEXITY ESTIMATE FOR THE

HIERARCHIC CCS

 The hierarchic CCSs differ from the tree-like

CCSs by that bicomponents play the part of

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

21

vertices. From the viewpoint of the graph theory,

the structure of the hierarchic CCS is a tree of

strongly connected subgraphs (SCS).

To evaluate the complexity of the trees of SCSs

(abbreviated as TSCS), it is necessary to convert

TSCS into a tree of generalized vertices, a Hertz

digraph, find the weight of the generalized arcs and

apply to the obtained result the formulas for

estimating the complexity of the trees of vertices

[15-16].

 Previously we adopted the concept that the

complexity of calculations, concentrated in an arc,

is associated with the weight of the arc, whereas

the vertices are identified with the nodes of data

distribution (data servers) (Remark 2). Extending

this assumption to TSCS, it is quite logical to

associate the complexity of an individual SCS with

the weight of a generalized arc coming from the

SCS. In the case when the SCS has several

generalized arcs coming from it, the weight of each

of them is reduced by as many times as there are

generalized arcs coming from the generalized

vertex.

On the conceptual level, to go from a tree of

SCSs to a tree of vertices, we need a method of

conversion of a tree of SCSs into a Hertz digraph,

and this will require:

1) a method of unique concretization of

SCS;

2) a method of evaluation of the SCS

complexity;

3) a method of weighing the generalized

arcs.

As a result, there will be formed a tree of

generalized vertices, the complexity of which is

evaluated according to the rules formulated earlier

in the section 6.

7.1. Method of unique concretization of SCS

We need to construct a quasi-triangular form of

the adjacency matrix X¦: X¦ � con�G�, X¦:=:G, G ⇄G, X¦:=:X, where X is the traditional non-weighted

adjacency matrix of the initial digraph G. To this

end, we turn to the method of constructing

procedural models on the basis of operator

equations.

A procedural model of construction a quasi-

triangular form X¦ of the adjacency matrix X is

verified by checking the following condition

(which is illustrated in Figure 7):

①: λ�β� ≡ {�ª@|��«I\I� � ���F, @ � 1. . β�: ® ∪I�C
¯ 	 ��«I ∪ I� � �°~ � ���F		 ∧

								∀βC � β: λ�βC� � 0, I:=:�«I , I � ��K�I�, N � 1. . ΥI�, ²¦³:=: ∪I�C
¯ 	 ��«I ∪ I�,

②: �«Ie ≺ �«If ≺. . . ≺ �«I¶: ∀N ∈ P1, β \ 1Q: ∃· � N: ∃L, ¸��� � �H�e →∘�� : H�e ∈ �«I¹º ,
 (16)

where λ�β� is a λ -predicate, ª@|��� is the

predicate equal to true, if digraph � is strongly

connected. The usage of a λ-predicate in this case

if justified by that the first condition contains one

and the same predicate twice, and it is the only one

in this condition.

(See in the appendix)
Figure 7. Illustration to the condition (16)

If a procedural model of constructing the matrix X¦ and the SCS G»^ , corresponding to this matrix

together with the tuples of outgoing arcs ^, i �1. . β , is written in the form of a conventional

algorithm, then verification of the condition (16) is

carried out as follows:

• there is formed a sufficiently representative

(Remark 3) selection of initial digraphs �: ª@|���;

• to all paragraphs of this selection the procedure

is applied of identifying the SCS, and the result

is stored in an array of tuples;

• each of the elements of the resulting array is

checked for the conditions ① and ②;

• if it appears that both two conditions are met

for each element of the array, the conclusion is

made about successful verification.

In Figure 8 there is given an example of

construction of a tree of SCSs. In this example the

digraph is split into three SCSs G � con�G»C ≺G»d ≺ G»¼�, whereas the corresponding tree has two

aggregation functors:

 χC�γC,#e..¾� ≡ χC�γ�2 → 3�, γ�2 → 5�, γ�7 →6�� and χd�γd,#	e..Â� ≡ χd�γ�3 → 1�, γ�5 →4�, γ�6 → 1�, γ�6 → 4��.

(See in the appendix)
Figure 8. Illustration to anti-lexicographic sorting of the

vector Ä

It should be noted that the SCS resulting from

the anti-lexicographic sorting of the bit strings, the

components of vector Ä , form a hierarchical

structure.

A procedural model of searching SCS is a map Dec: G → �G»^, ^, i � 1. . β� . We propose the

following procedural model for searching SCS

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

22

�F|

≜

Æ
ÇÇÇ
ÇÇÇ
ÇÈ

É: 0 Ê Ä	ÉË 4 0 Ê Ä	ÉËÌe , N � 1. . J \ 1 ⇒ λ�L� � 0 Ê J.K�C ��K ,

�«I �
Æ
ÇÇÇ
ÇÈÆ

È∀L ∈ ÉÍ..|�«Î|: λ�L� � @�FA;
· � 1 Ê Ï�0:=:�@ � 1�� ⋎ ���«K�IÑC

K�C ÒÓ
Ô ⋏

I � Ö ×� ®�H����, H����� , ����, �k�����° :
�� ∈ �«I, �� ∉ �«I

Ù∘
��C Ó

ÚÚÚ
ÚÔ , @ � 1. . β

Ó
ÚÚÚ
ÚÚÚ
ÚÔ

	

.

(17)

Consider the expression (17). The result of

calculations in the procedural model Dec is a

permutation É/1. . n1 � �ÉC, Éd, . . . , ÉÛ� of the

segment of natural numbers from 1 to n. If,

following this permutation, we also simultaneously

rearrange the rows and columns of the transposed

adjacency matrix, we obtain a quasi-triangular

form X¦, on the basis of which we find the SCS G»^,
along with a set of tuples of outgoing arcs ^, i �1. . β. The condition of comparison of the elements,

sorted in the anti-lexicographic order, is reflected

by the inequality 0 Ê Ä	ÉÜ 4 0 Ê Ä	ÉÜÌe , j � 1. . n \
1. The ending of the strings. Þ"" Êßà�Û� �n \ i Ê 1�á

in the vector Ä serves for lexicographic

numbering of vertices within the SCS, in

accordance with the numbering of the vertices in

the original digraph. Recall that the expression 0+

"bit_ string" is equal to an integer obtained from

the direct binary code recorded in the bit string

from left to right, starting from the most significant

bit.

Figure 9 shows the result of sorting, it

corresponds to the digraph in Figure 8. It is shown

how the ending of the bit strings in the vector Ä

helps building the numbers of vertices in the

framework of SCS according to ascending of

indices: for example, G»C is characterized by the

vertices �vd, vâ� rather than �vâ, vd�.

Figure 9. Illustration to the procedural model (17)

Note that, according to the above principles, to

find SCS it is not necessary in the detection

process to find the contours of the digraph, one

only needs to know the reachability matrix.

7.2. Method of searching SCS in the presence of

cutpoints in the CCS graph

In some cases, evaluation of the computational

load using the complexity estimates is made

difficult by the petal topology of CCS, when the

central place in the system is assigned to the cloud

server with the protected data, or when a separate

subsystem is formed by the cloud server, directly

connected, at the same time, with several

computing substations with a strong connected

structure and, possibly, clusters. Figure 10

illustrates in a general form a grid-system aimed at

solving a hypothetical problem with global

iterations [17]. Consider the CCS digraph in Figure

11. It is shown without the cut arc corresponding

to the global iteration cycle. The problem of

structuring in which the cloud server, along with

computing substations, is combined into a single

bicomponent, is that all three elements are

considered as a whole; the iteration cycles may

contain undesirable association of the cloud server

with the vertices belonging to computing

substations, as shown in Figure 12. The variant b)

is different in that, as a result of decomposition,

there are found two contour SCSs instead of one

component as in the variant a), these are Gã C and G»d . The working of the computing substations

corresponding to these SCSs, is now controlled by

two iterative cycles Ts1 and Ts2, and, at that, the

cutpoint CP does not lose its significance as the

coordinator of computations. In this case (Remark

4) the complexity estimate is equal to the total

complexity θ�Gã C ∪ Gã d� � θ�Gã C� Ê θ�Gã d�.

In some cases, the cloud server can be regarded

as an independent subsystem as shown in Figure

13, then the number of cutpoints increases. If the

cloud server is connected to two substations, it is

natural to assume that there are exactly two

cutpoints in the Gã ¼ subsystem, i.e., their number is

equal to the number of substations associated with

the server.

The situations, when in structuring the CCS

there appear the cutpoints in the resulting digraph,

are possible in the organizations of grid systems

within the large network information systems with

several clusters, which are geographically distant

from each other, when the backbone lines are

loaded quite heavily, being the lines of computer

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

23

communication of the general geographic scope

[18-19].

Note also that, as a cloud server, there can be,

for example, the branch server.

With regard to the problems of organization of

high-performance cloud computing, such situations

are possible, for example, when solving systems of

equations of large dimension, divided into two (or

more) blocks with one (or more) equation on the

separation boundary (the equation of conjugation

[20]). In such cases, one can find a permutation of

the rows and columns of the adjacency matrix,

applying which this matrix acquires a pseudo-

quasi-diagonal form, as shown in Figure 14.

Generally speaking, bicomponents and the

contour subgraphs may be considered strongly

connected subgraphs of different types, and, on

formal grounds, in a digraph either types can exist

simultaneously. However, a differentiated

approach to the enumeration of subgraphs (with

their subdivision into types) significantly

complicates the further formalization. It is

reasonable to equate bicomponents, in which there

are no cutpoints, with the contour subgraphs if we

use a bouquet model of decomposition. The choice

of the specific procedural model of the digraph

decomposition into SCSs depends on the specific

situation in which the complexity is evaluated by

gradual simplification of the system under study

with the further composition of the estimates of

primitive structures, going up from the lower level

of decomposition. With respect to cloud

computing, one of the factors in favor of the

method of contour subgraphs is the original

structure of connecting of cloud servers. For

example, if there are connections of the "star" type

in the scheme and the problem is set of evaluating

the stability of working of the cloud system, then

the contour subgraphs are preferred over

bicomponents.

(See in the appendix)
Figure 10. Example of a grid system with global

iterations and a cloud server

(See in the appendix)
Figure 11. Structuring of a grid system: the case of one

bicomponent

(See in the appendix)
Figure 12. Variants for decomposition of the CCS

digraph in Figure 11:

a) without taking into account a cutpoint; b) taking into

account a cutpoint

(See in the appendix)

Figure 13. The variant of structuring, when the cloud

server is represented as a contour SCS

(See in the appendix)
Figure 14. General form of the adjacency matrix for a

system of equations of large dimension with the equation

of conjugation of blocks

8. THE METHOD OF STRUCTURAL-

PARAMETRIC MINIMIZATION OF

THE CCS DIGRAPH

A CCS digraph may contain the elements that

contribute to an increase in computation time of

the complexity estimation, which adversely affects

the application of these estimates in the online

regime. Among these elements, hindering the

analysis of complexity, there are the branches of

calculations performed serially and hidden parallel

branches of calculations. In Figure 15 there are

shown: an example of the digraph (G), including

redundant elements, and the result of structural-

parametric minimization (SPM), the digraph G’.

(See in the appendix)
Figure 15. Example of a CCS digraph with redundant

elements

Transitive computational flow 2 → 4 → 5 (the

arcs are highlighted by thick lines) is replaced by

the generalized arc 2 ⇒ 5 , its parametricity is

shown in Figure 15 in the form of a question mark:

it is required to determine how it will be evaluated.

Through the generalized arc (such arcs are marked

by double lines) 2 ⇒ 5 there goes computational

flow, which is performed parallel to the

computational flow in the initial arc 2→5 of the

CCS digraph (it is marked by circles and by dotted

line connecting them): these arcs have the same

initial and end vertices. The parametricity of the

generalized arc of the digraph G’ is also shown in

the form of a question mark.

Evaluation of the complexity of parallel

computational flows should take into account the

character of their carrying out: if these flows are

processed in parallel, then the complexity

evaluation must be coordinated with the critical

line, whose complexity is maximum.

There is another important point, which is

illustrated in Figure 16: after replacing the

transitive branch by a generalized arc, a reversing

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

25

analysis of the previously analyzed structures,

there are used the accumulated knowledge with the

ready answers. The first in the list of the tested and

ready to be included into the database knowledge

there should be strongly connected digraphs of

small dimension, consisted of 2 and 3 vertices. For

them, we need to derive the complexity estimation

formulas.

The criterion ��G� (formula (9)) allows ordering

the list of strongly connected digraphs, which are

representation of the simplest topology of iterative

and cyclic calculations. We need to remove from

this list isomorphic digraphs, and, for the

remaining digraphs, to find the estimation formulas

for the complexity θ (G) in the form of absolute

predicates.

It should be noted that in the criterion ��G� the

weight of the arcs is not used and ∀G: G � G ⇒G ⇐ G\Γ. Beyond the issues of indexing of the list

elements, in this section we will use the restored G	 ⇐ 	G ∪ Γ.

Consider the codes of all possible strongly

connected digraphs with three vertices, ranking

them in the order of increasing of the

criterion	���G�: 23, 25, 27, 29, 31, 38, 39, 45, 46,

47, 54, 55, 57, 58, 59, 61, 62, 63. Due to its

uniqueness, the criterion ���G� is taken as the

basis of constructing the isomorphism diagrams for

the class of strongly connected digraphs with the

given vertex dimension |G|C. The arrows in these

diagrams go from right to left, coming to the codes

of the basic digraphs. Figure 17 shows the results

of studying the isomorphism of the above-

mentioned list of digraphs according to the

criterion ���G� , in the form of a diagram of

isomorphisms. A failure with respect to the arc

dimension |G|d is observed immediately, starting

with the code 23: there corresponds to it a digraph

with 4 arcs, whereas to the code 25 there

corresponds a digraph with three arcs. There is

clearly a violation of the principle of assigning the

invariants (9). In Figure 17, the basic codes are

marked in gray, i.e. the corresponding isomorphic

digraphs have the code ���G�, the value of which

exceeds the basic code.

(See in the appendix)
Figure 17. The codes �����	of digraphs with three

vertices and the number of arcs (below)

10. COMPLEXITY OF A DIPOLE

A dipole is a strongly connected digraph; let us

adopt for it the notation of the form G�¼�
, where the

superscript “3” is the value of the invariant

�� z G�¼��. There are two vertices and two arcs in

the dipole:

��¼� � ��, �, Γ�, � � �HC, Hd�, � � ��C, �d�,�C � �HC → Hd�, �d � �Hd → HC�, Γ � �γC:=:�C, γd:=:�d�. (18)

The dipole G�¼�
 is shown in Figure 18. It is a

mathematical description of the structure of the

simplest CCS. The dipole vertices correspond to

the blocks of the information distribution (servers),

whereas the arc, to the computing resources

(computers, clusters, cloud platforms) [21].

Figure 18. A dipole and its weighted adjacency matrix

Evaluation of the complexity of systems is

produced by a series of simplifications

implemented in the same way. In the cognitive

subtext, a series of simplifications can be

represented as a tree of recursion when calculating

the complexity estimates, as it is demonstrated in

Figure 19.

The structure of the initial state of CCS is

represented by a strongly connected digraph

G R G�¼�, bic�G� � true . It is required to estimate

the computational complexity of CCS. For this

purpose, the initial digraph undergoes gradual

decomposition. The initial state of the digraph is

assumed to be the zero stage. With regard to CCS,

it is the dipole that is the final structure in the tree

of recursive calculation of the complexity estimate.

In the process of evaluating the complexity of

large-block calculations with global iterations it is

a dipole that is a crucially important CCS. Finding

a way to transform a dipole into the disconnected

state, and simultaneously making the complexity

evaluation, one can evaluate the complexity of the

entire CCS. At that, in addition to the dipole one

must be able to evaluate the complexity of the trees

of calculations (see sect. 6).

(See in the appendix)
Figure 19. An example of tree recursion: � is the CCS

digraph in its original state; Β � 3 is the number of

γC

γd

X �
γC γd 1 2 ��¼� �

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

26

levels of hierarchy; βI , @ � 0. . Β is the width of the levels

in the tree of recursion

Returning to Figure 18, it is easy to notice the

presence of two alternatives for disconnecting a

dipole: either a break of the arc (1→2), or a break

of the arc (2→1). In CCS a break of any arc is

connected with the need to iterate with respect to

one or more variables, transmitted as a result of the

information distribution at the vertices for the

subsequent calculation in the arcs of digraph. To

resolve the alternative, it is necessary to take into

account that the arcs are a topological

representation of the computational process, and

the choice of the arc, along which the iteration is to

be performed, is determined by the complexity of

arcs and their articulation in the CCS digraph. We

should at once make a reservation that, before

calculating the overall evaluation of the

complexity of the entire CCS, the parametricities

of all arcs of the digraph, without exception,

should to be known beforehand.

Procedurally, a computing dipole can be

conveniently presented as a CCS with alternative

choice of the iteration order: either the cut of the

arc dC is a procedural realization of sect. 2, or,

conversely, the arc dd	 acts as such. Figure 20

shows a graphical interpretation of the procedural

model of a dipole as an iterative CCS. A dipole has

"input" and "output": at the input there is

performed taking off the information, the vertex vC

is marked by the sign "-", whereas the vertex vd, at

the output by the sign "+", respectively: it is the

returning of information. In this case, the dipole

can be considered as non-automorphic digraph.

��¼�~�′�¼�, ��¼� � �pHC, Hdw, p�C � �1 → 2�, �d � �2 → 1�w�,
�′�¼� � �pHd, HCw, p�C � �2 → 1�, �d � �1 → 2�w�. (19)

In the procedural block "a" there acts the

mapping wC , producing transformation of the

original information, the vector of tuples x� into a

subvector xC�d� ⊏ x�; there takes place the

refinement of the composition of the initial

approximation with respect to the reverse

calculation flow coming from the "+" -vertex of

the dipole to its "-" -vertex. The switch Sw0

changes the course of setting the initial

approximation and, thus, the order of iteration

cycles. In the "on" position, the initial information

is sent to the procedural block "a", whereas in the

"off" position, the initial information, the vector of

tuples x�, is sent to the vertex of the dipole with

the indication "-", into the procedural block "b",

where the selection of information for the vertex 2

is carried out by the mapping wd.

(See in the appendix)
Figure 20. Dipole as a procedural model of iterative

CCS

The main computational load falls on the blocks

"c" and "d". There act the maps ϕC and ϕd , the

calculations are carried out in the direction from

the vertex labeled by "-" to the vertex labeled "+"

(ϕC) and, vice versa (ϕd). In the comparators "e"

and "f", there is performed the calculation of the

predicates U�C,d��•� and, if the predicate is true,

then the calculations are finished, "Exit".

Otherwise, the information, previously obtained

from the procedural blocks "b" and "c", is passed

to the vertices of the dipole for further iterations.

On the way from the vertex to the procedural block

there are the switches Sw1 and Sw2 (the down

arrow means "the way is closed", the up one, on

the contrary, means "the way is open"). They

control the operation of the dipole; in any case,

there operate either one of the comparators or both.

It is necessary to determine how exactly the

comparators are set, there depends on it the overall

computational complexity of the dipole: it should

be minimal; an estimate of the total complexity of

the CCS digraph is built on this.

An estimate of the dipole complexity includes

two quantities:

1. Complexity of the simplification

procedure θì , as a result of which the

dipole becomes a tree (the index "s"

stands for "simplification");

2. Complexity of the arc θí , obtained as

result of simplification (the index «r»

stands for "residual", i.e. θí is the residual

complexity).

Let us formulate the axiomatics. Taking into

account that in the working of dipole there are

possible two variants of turning on the

comparators, then the axioms are also two.

Axiom 5 (complexity of the dipole with one

comparator).

The complexity of the dipole in the conditions

when only one of the computational blocks

bypasses the comparator does not exceed the total

complexity of the entire dipole as a single system,

namely,

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

27

θ z ��¼�� 4 θîí ≡ θî Ê θí . (20)

Axiom 6 (complexity of the dipole with two

comparators).

In the general case, the estimate of the dipole

complexity is calculated as a minimum of two

estimates: the complexity estimate for iterations,

resulting from the cut of the arc 1→2 and a similar

estimate for the arc 2→1

θ z ��¼�� � minpγC�1 Ê γd�, γd�1 Ê γC�w. (21)

It should be noted that in the future the formula

(21) will have to be concretized for the catalog of

typical blocks associated with the computational

methods. For the non-typical blocks it is necessary

to obtain the experimental characteristics: the

parametricities γC and γd as the functions of the

calculation accuracy and the characteristics of the

dimension of the problems being solved. In the

Figure 21 there is presented the experimental

dependence of the calculation time for the Gauss

method of solving the systems of linear algebraic

equations as a function of the dimension n of the

system and the number p of digits of the mantissa

p.

Figure 21. Dependence of the calculation time for the

system of linear algebraic equations (sec.) on the

dimension of the system and the size of the mantissa

To approximate the experimental dependence

shown in Figure 21, we used the dependence T�n, p� � αn¼pd Ê βn¼pÊγndpd Ê δndp .

Particularly, for the Gauss method we obtained the

following values: 10-10×(α � 1.88, β � 59.1, γ �10.4, δ � 184�. Similar studies were carried out

for a number of methods for solving linear

algebraic systems, the approximation coefficients

were found. The obtained data led to the

conclusion about the applicability of formula (21):

the maximum deviation in the case, when in the

dipole arcs there participated the solution of linear

algebraic systems, did not exceed 5% of the

relative error.

11. PROCEDURAL MODEL FOR

EVALUATING THE

COMPUTATIONAL COMPLEXITY OF

CCS

One of the outcome of the development of a

methodology for assessing the computational

complexity of CCS is a procedural model, which

takes into account all aspects of the developed

theory. 1. Input (recursive adapter): digraph � � ��, �, Γ�. 2. Is the digraph strongly connected? ª@|��� � 1? If "yes", then go to item

12. 3. Structural decomposition: subdivide � into SCSI , @ � 1. . β. 4. θ� � 0. 5. Cycle over SCSI, @ � 1. . β. 6. Input (recursive adapter): digraph G

= SCSi. 7. θ� � θ� Ê θ. 8. End of the cycle over i. 9. ô � ô�. 10. Output: θ. 11. Up to isomorphism, is the digraph G

present in the knowledge base of

complexity estimates (the knowledge

base is indexed by invariants of

strongly connected digraphs)? If

"Yes", then make an inquiry into the

knowledge base, obtain an estimate θ ≡ θ��� and exit the recursive

adapter with the value θ. 12. Carry out SPM of the digraph � � mınö÷÷÷÷÷÷ø���. 13. Construction of the matrix of

contours Cú���. 14. ô� � ûü�ý_��� (the largest of all

possible real numbers in the С++

language). 15. Cycle over the arcs of the matrix of

contours, @ � 1. . A. 16. Cut of the arc �′ � �\p�Iw. 17. Input (recursive adapter): G =

digraph �′ 18. Refine the complexity estimate θ � γI�1 Ê θ�.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

28

19. θ	 � 	 θ�? Is the estimate decreasing?

If "NO", then exit the cycle over i. 20. Store the estimate θ� � θ. 21. End of cycle over i. 22. Exit with the value θ � θ�.

12. CONCLUSION

A theoretical basis is developed for evaluating

the complexity of large-block cloud computing,

using the arithmetic with enhanced accuracy,

which includes the methods and procedural models

intended for designing CCSs. Currently, the work

is underway towards the further elaboration of the

complexity estimates for real-world computing

dipoles. The computational experiments are carried

out on the use of the arithmetic with enhanced

accuracy in various numerical methods with the

further approximation of the obtained results of

testing. It is planned to obtain specific expressions

for the parametricity functionals of the arcs of the

CCS digraph in solving a number of large-block

problems of mathematical modeling.

REFERENCES

[1]. Ostrovsky, G.M., 1975. Optimization of

Complex Chemical-Technological Schemes.

Moscow: Khimiya.

[2]. Ostrovsky, G.M., 1980. Decomposition of

Complex Chemical-Technological Schemes.

Moscow: Khimiya, 1980.

[3]. Hansel, K., Yu.M. Volin and G.M.

Ostrovsky, 1980. Methods of Structural

Analysis in the Problems of Studying

Chemical-Technological Schemes. Vol. 4 (89).

Moscow: NIITEKHIM.

[4]. Zykov, A.A., 2004. Fundamentals of the Graph

Theory. 3rd Ed. Moscow: Vuzovskaya Kniga,

pp: 10.

[5]. Podolsky, V.E. and S.S. Tolstykh, 2006.

Improving the Efficiency of Regional

Educational Computer Networks Using the

Elements of Structural Analysis and

Complexity Theory. Moscow:

Mashinostroenie.

[6]. Tikhonov, A.N., S.V. Mishchenko, V.E.

Podolsky and S.S. Tolstykh, 2004. Features of

Mathematical Modeling of Modern Computer

Networks in Education (Vol. 1). St. Petersburg,

pp: 78-79.

[7]. Tolstykh, S.S. et al, 2009. Constructing of the

Optimal Block-Concurrent Calculation

Modules in a Distributed Computing

Environment. In New Information Technology

and Quality Management: Proceedings of the

International Symposium, Turkey, pp: 160-162.

[8]. Fedorov, R.V., Yu.V. Osetrov and S.S.

Tolstykh, 2009. Designing the Architecture of

a Scientific Information System to Support the

Study of Structural Complexity. In V.P. Gergel

(Ed.), Microsoft Technologies in the Theory

and Practice of Programming. Conference

Materials, Nizhny Novgorod: Publishing House

of the Nizhny Novgorod State University.

[9]. Mainika, E., 1981. Optimization Algorithms on

Networks and Graphs. Moscow: Mir.

[10]. Lipaev, V.V., 2001. Providing the Software

Quality. Methods and Standards. Moscow:

SINTEG.

[11]. Klir, G., 1990. Systemology. Automation of

the Solutions of System Problems. Moscow:

Radio i Svyaz.

[12]. Casti, J.L., 1982. Large Systems.

Connectivity, Complexity and Catastrophe.

Moscow: Mir.

[13]. Savage, J.E., 1998. Computational

Complexity. Moscow: Factorial.

[14]. Razborov, A.A. About Computational

Complexity. Mathematical Education, 3: 127-

141.

[15]. Kuzyurin, N.N. and S.A. Fomin, 2007.

Efficient Algorithms and Computational

Complexity. Moscow: MIPT.

[16]. Lazdin, A.V. and O.F. Nemolochnov.

Complexity Estimate for the Graph of a

Functional Program. Scientific and Technical

Bulletin of SPbGITMO (TU), 6: 112-117.

[17]. Voevodin, V.V. and Vl.V. Voevodin, 2002.

Parallel Computing. St. Petersburg: BHV-

Petersburg.

[18]. Tarasov, A.G., 2009. Expandable Monitoring

System for a Computing Cluster.

Computational Methods and Programming, 10:

147-158.

[19]. Kutepov, V.P., D.V. Kotlyarov, V.N. Malanin

and N.A. Pankov, 2007. Environment of the

Object-Oriented Graph-Scheme Flow Parallel

Programming for Multi-Core Clusters. In

Proceedings of the Sixth International

Scientific and Practical Seminar "High-

Performance Parallel Computing on Cluster

Systems", St. Petersburg, 12-17 December

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

29

2006 (Vol. 1), St. Petersburg: St. Petersburg

State University, pp: 253-258.

[20]. Nicolis, G. and I. Prigogine, 1990. Exploring

Complexity. Moscow: Mir.

[21]. Asharina, I.V., 2009. Identifying Complexes

in the Clustered Computing Systems. In

Proceedings of the Ninth International

Conference-Workshop "High- Performance

Parallel Computing on Cluster Systems",

Vladimir.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

30

Remarks

1. In this case, a specification is appropriate:

a tree of vertices.

2. An alternative is the load on the vertices

in the form of a vertex potential. In our

opinion, such an approach may greatly

complicate the evaluation of complexity,

especially when the digraph is strongly

connected. Under such approach, any

calculations associated with the estimates

of complexity presuppose solving the

Kirchhoff system of equations.

3. The issues of completeness of the digraph

selection are not considered here, it is a

separate research topic.

4. In order not to confuse the contour SCSs

with bicomponents, we will use as

superscript not "~", but the sign "."

APPENDIX

Figure 4. An example of a digraph invariant

Figure 7. Illustration to the condition (16)

�«C

�«d �«¼

�«�; �� �∅�

C

d
¼

1 2

3

4

5

6

7

8

3 5 7 1 2 8 4 6

3

5

7

1

2

8

4

6

1

1 1

1

1

1

1

1

1

1

1

1

1

1 1

²¦

1 2

3

X �

�

1

1 1

1 1

 ����� =1111012 = 61

������ � 63, L � �logd63 Ê 1/2� � 6 ⇒ �C��� � 2� Ê 2â Ê 2� Ê 2� Ê 2C� � 1984

����� � 61 Ê 1984 � 2045

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

32

Figure 11. Structuring of a grid system: the case of one bicomponent

H�<NGC�

H��·C�

H��·d�

H�<F�� H�<NGd�

H�H�<NGC� ∪ H�<FC� ∪ H�<NGd��

H�<FC�

H�<Fd�

Bicomponent

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

33

Figure 12. Variants for decomposition of the CCS digraph in Figure 11:

a) without taking into account a cutpoint; b) taking into account a cutpoint

Figure 13. The variant of structuring, when the cloud server is represented as a contour SCS

Ts1

Ts2

�ãC �ãdCP1 CP2

�ã¼

Ts3

PTs0

�«C ≔: H�H�<NGC� ∪ H�<FC� ∪ H�<NGd��

ô��«C� �?

a)

b)

�«C � �

Ts0

CP

Ts1

Ts2

�ãC �ãd
CP

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

34

Figure 14. General form of the adjacency matrix for a system of equations of large dimension with the

equation of conjugation of blocks

Figure 15. Example of a CCS digraph with redundant elements

Figure 17. The codes �����	of digraphs with three vertices and the number of arcs (below)

 2 2 2 2 3 3 3 4 4 4 5 5 5 5 5 6 6 6

3 34 4 4 4 4 4 5 54 555 4 5 4 6

2 5

4

c f

?

d

3 1

a

b

g
e

h

1

2 5 3
?

a b

d e

h

 G’ G

Pseudo-quasi-diagonal

1st block of

equations

2st block

of

equations

– zeros

– zeros and ones

Equation of conjugation

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

35

Figure 19. An example of tree recursion: � is the CCS digraph in its original state; Β � 3 is the number of

levels of hierarchy; βI , @ � 0. . Β is the width of the levels in the tree of recursion

��¼�C,C
�C,d ��¼�C,
e

��¼�d,C
�d,d ��¼�d,
f

��¼�
�,C ��¼�

�,¯�

Zero level of

recursion, β� � 1

D
ir

ec
ti

o
n

 o
f

d
ec

o
m

p
o

si
ti

o
n

 βC � 3

βd � 3

The lower level

of recursion, the

level of dipoles, β� � 2, Β � 3

The direction of the information

collection to calculate the

complexity estimates

G

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

36

Figure 20. Dipole as a procedural model of iterative CCS

No

C�d� →
�e ��C�

1

��C� →
�e C�C�

 ü�C��•� � ���F?

Input: �

C�C� →
�f ��d�

ü�d��•�� ���F?

��d� →
�f C�d�

No Sw

Output: C

Sw2

� →
�e C�d�

– + Dipole

а

c

d

2

e

f � →
�f C�C�

Sw

b

