
Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

184

NTCCRT: A CONCURRENT CONSTRAINT FRAMEWORK

FOR SOFT REAL-TIME MUSIC INTERACTION

1MAURICIO TORO, 2CAMILO RUEDA, 3CARLOS AGÓN, 4GÉRARD ASSAYAG
1
Asstt Prof., Department of Informatics and Systems, UNIVERSIDAD EAFIT, Colombia

2
Prof., Department of Computer Science, PONTIFICIA UNIVERSIDAD JAVERIANA CALI, Colombia

3
Prof., Music Modeling Team, IRCAM, UMR 9912 CNRS, France

4
Dr., Music Modeling Team, IRCAM, UMR 9912 CNRS, France

E-mail:
1
mtorobe@eafit.edu.co,

2
crueda@cic.puj.edu.co,

3
assayag@ircam.fr,

4
carlos.agon@ircam.fr

ABSTRACT

Writing music interaction systems is not easy because their concurrent processes usually access shared

resources in a non-deterministic order, often leading to unpredictable behavior. Using Pure Data (Pure

Data) and Max/MSP, it is possible to program concurrency; however, it is difficult to synchronize processes

based on multiple criteria. Process calculi such as the Non-deterministic Timed Concurrent Constraint

(ntcc) calculus, overcome that problem by representing, declaratively, the synchronization of multiple

criteria as constraints. In this article, we propose the framework Ntccrt, as a new alternative to manage

concurrency in Pure Data and Max/MSP. Ntccrt is a real-time capable interpreter for ntcc. Using Ntccrt

binary plugins in Pure Data, we executed models for machine improvisation and signal processing. We also

analyzed two case studies: one of a machine improvisation system and one of a signal processing system.

We found out that performance of both case studies is compatible with soft real-time music interaction; it

means, a musician can interact with Ntccrt without noticeable delays during the interaction.

Keywords: Concurrent Constraint Programming (ccp), Soft Real-Time, Machine Improvisation, Signal

Processing, Music Interaction, Computer Music, Process Calculi.

1. INTRODUCTION

Music interaction systems –inherently concurrent–

can be modeled using concurrent process calculi.

Process calculi are useful to describe, formally, the

behavior of concurrent systems, and to prove

properties about the systems. Process calculi has

been applied to the modeling of ecological

systems [16, 39, 17, 38] and interactive music

systems [12, 4, 29, 27]. As an example, using the

process calculus non-deterministic timed

concurrent constraint (ntcc) [11], we can model

reactive systems with synchronous, asynchronous

or non-deterministic behavior. Ntcc and its

extensions have been used to model interactive

systems such as an audio processing [23, 36],

machine improvisation [22, 28, 15, 25, 33], and

interactive scores [2, 3, 25, 37, 31,30, 32, 34, 35].

Although there are three interpreters to simulate

the execution of ntcc, they are not suitable for soft

real-time music interaction. It means that they are

not able to interact with a musician without letting

the musician experience noticeable delays in the

interaction with the computer program.

We can also program soft real-time systems for

music interaction and signal processing using C++.

Unfortunately, C++ requires long development

time. To overcome that problem, programming

languages such as Pure Data [18] and Cycling 74's

Max/MSP [19], provide a visual programming

paradigm to program soft real-time systems and

they include several programming interfaces for

concurrent programming.

1.1 The problem

It is a well-known problem that it is not possible to

implement process synchronization of concurrent

processes written in Pure Data and Max/MSP using

a declarative approach. Although Pure Data and

Max/MSP support concurrency, it is a hard task to

trigger or halt the execution of a process based on

multiple criteria. As an example, using Pure Data or

Max/MSP, it is hard to express: “process A is going

to do an action B until a condition C is satisfied”,

when condition C is a complex condition resulting

from many other processes’ actions. Such condition

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

185

would be hard to express (and even harder to

modify afterwards) using the visual programming

paradigm; for instance, condition C can be a

conjunction of these criteria: (1) The user has

played on a certain tonality, (2) has played the

chord G7, and (3) has played the note F# among the

last four notes.

1.2 Solution using Ntccrt

Using ntcc, we can represent the complex

condition C presented above as the conjunction of

constraints (�� ∧ �� ∧ ��). Each constraint (i.e.,

mathematical condition) represents a criterion. In

addition, each criterion can be represented

declaratively. For instance, the criterion (2) can be

represented by the constraint “G7 is on the set of

played chords” (�� ∈ PlayedChordsSet).
In this article, we propose using ntcc to

manage concurrency in Pure Data and Max/MSP,

executing ntcc models on Ntccrt
1
. On Ntccrt,

ntcc models can be compiled as an binary plugin

for Pure Data or Max/MSP. Additionally, the

binary plugins can be specified, textually, using

Common Lisp or using visual programming in

OpenMusic [6]. We recommend the use of

OpenMusic. We argue that concurrent visual

programming, usually based on process calculi such

as Cordial [20], makes the power of concurrency

available for a wider range of users.

1.3 Contributions of this article

Our framework Ntccrt
2
 is composed by the

following components: (1) The ntcc interpreter

written in C++, (2) interfaces for both Common

Lisp and OpenMusic, and (3) the implementation of

two case studies.

1.4 Structure of the article

The remainder of this article is structured as

follows. Section 2, intuitively, explains the

semantics of ntcc processes and gives some

examples of simple ntcc processes modeling

music interaction. Section 3 explains related work

on ntcc interpreters and threading programming

libraries available for Pure Data and Max/MSP.

Section 4, discusses two case studies of Ntccrt to

model a music interaction and a signal processing

system. Section 5 explains the simulation results of

the case studies. Finally, Section 6 gives concluding

remarks, states limitations of this approach and

proposes future works.

1 This research was partially founded by the

REACT project, sponsored by Colciencias.

 2 http://ntccrt.sourceforge.net

2. THE NTCC CALCULUS

A family of process calculi is concurrent constraint

programming (ccp) [24], where a system is

modeled in terms of variables and constraints over

some variables. Furthermore, there are processes

reasoning about partial information (by the means

of constraints) about the system variables contained

on a common store.

Ccp is based on the idea of a constraint system.

A constraint system includes a set of (basic)

constraints and a relation (i.e., entailment relation

⊧) to deduce a constraint based on the information

supplied by other constraints. A ccp system

usually includes several constraint systems for

different variable types. There are constraint

systems for different variable types such as sets,

trees, graphs and natural numbers. A constraint

system providing arithmetic relations over natural

numbers is known as finite domain. For instance,

using a finite-domain constraint system we can

deduce the constraint pitch ≠ 60 from the

constraints pitch > 40 and pitch < 59.

We can choose an appropriate constraint system

to model any problem; however, in ccp, it is not

possible to delete nor change information

accumulated in the store. For that reason, it is

difficult to perceive a notion of discrete time, useful

to model reactive systems (e.g., machine

improvisation) communicating with an

environment.

Ntcc introduces to ccp the notion of discrete

time as a sequence of time-units. Each time-unit

starts with a store (possibly empty) supplied by the

environment, then ntcc executes all the processes

scheduled for that time-unit. In contrast to ccp, in

ntcc, variables changing values along time can be

modeled explicitly. In ntcc, we can have a

variable x taking different values on each time-unit.

To model that in ccp, we would have to create a

new variable each time we change the value of x.

As an example, a system that plays sequentially the

notes of the C major chord can be modeled in

ntcc as “in the first time-unit, let pitch = C; in the

second time-unit, let pitch = E; and in the third

time-unit, let pitch = G”. Using ccp, we would

represent it as “let pitch1 = C, let pitch2 = E, and let

pitch3 = G ”.

In what follows, we give some examples of how

the computational processes of ntcc can be used

with a FD constraint system. A summary can be

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

186

found in Table 1. The semantics of ntcc can be

found at [11].

• Using the “tell”, it is possible to add

constraints such as tell (pitch = 60),

meaning that must be equal to 60 or tell
(59 < pitch < 101), meaning that pitch is

an integer between 60 and 100.

• The “when” can be used to describe how

the system reacts to different events; for

instance, when pitch1 = C ^ pitch2 = E ^

pitch3 = G do tell (CMayor = true) is a

process reacting as soon as the pitch

sequence C, E, G has been played, adding

the constraint Cmayor = true to the store

in the current time-unit.

• Parallel composition allows us to represent

concurrent processes; for instance, tell
(pitch = 60) || when pitch = 60 do tell
(Instrument = 1) is a process telling the

store that is 62 and concurrently assigning

the instrument to one, since pitch is in

desired octave.

• The “next” is useful when we want to

model variables changing through time;

for instance, when pitch = 60 do next tell
(pitch ≠ 60) , means that if is equal to 60

in the current time-unit, it will be different

from 60 in the next time-unit.

• The “unless” is useful to model systems

reacting when a condition is not satisfied

or it cannot be deduced from the store; for

instance, unless pitch = 60 next tell
(lastpitch ≠ 60) reacts when is false or

when cannot be deduced from the store

(e.g., was not played in the current time-

unit), telling the store in the next time-unit

that lastpitch is not 60.

• The “star” (*) may be used to delay the

end of a process indefinitely, but not

forever; for instance, *tell (end = true).

• The “bang” (!) executes a certain process

in every time-unit after its execution; for

instance, !tell (C4 = 60) .

• The is used to model non-deterministic

choices. For instance, !∑ .�∈48,52,55 when

i ⊧ PlayedPitches do tell (pitch = i)

models a system where each time-unit, it

chooses a note among the notes played

previously that belongs to the C major

chord.

• Finally, a basic recursion can be defined in

ntcc with the form �� ! "
def

$% , where

q is the process name and is restricted to

call q at most once and such call must be

within the scope of a “next”. The reason of

using “next” is that ntcc does not allow

recursion within a time-unit. Recursion is

used to model iteration and recursive

definitions; for instance, using this basic

recursion, it is possible to write a function

to compute the factorial function.

Table 1: Summary of ntcc processes (a.k.a. agents)

3. RELATED WORK

In this section, we present related work about

concurrency support for Pure Data and Max/MSP,

and available interpreters for ntcc.

3.1. Concurrency in Pure Data and Max/ MSP

To program concurrent programs on Max/MSP and

Pure Data, we can use their message passing

programming libraries. We can also create binary

plugins in C++. In fact, we can use any existing

threading programming library for C++ to write

binary plugins for both, Pure Data and Max/MSP.

There is also a native programming library for

Max/MSP 7. Another way to write an binary plugin

is using the Flext library
2
. Flext provides a unique

interface to write, in the C++ language, binary

plugins dealing with both, Pure Data and

Max/MSP.

3.2 Ntcc interpreters

There are three interpreters available for ntcc:

Lman [10] used as a framework to program Lego
TM

robots, NtccSim [5] used to model and verify

properties of biological systems, and Rueda’s

interpreter [22] for music interaction.

The first attempt to execute a music interaction

ntcc model was made by the authors of Lman in

2003. They executed a ntcc model to play a

sequence of pitches with fixed durations in Lman.

Recently, in 2006, Rueda et al. executed “A

Concurrent Constraint Factor Oracle Model for

Music Improvisation” (ccfomi) on Rueda’s

2 http://grrrr.org/research/software/flext/

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

187

interpreter [22]. Both, Lman and Rueda’s

interpreter executed the model giving the expected

output; However, they were not capable of

executing music interaction systems in soft real-

time.

4. THE NTCCRT FRAMEWORK

Ntccrt is a framework to specify and execute ntcc

models capable of soft real-time music interaction.

4.1. Design of Ntccrt

The first version of Ntccrt allowed us to specify

ntcc models in C++ and execute them as stand-

alone programs. Current version offers the

possibility to specify a ntcc model on either Lisp,

Openmusic or C++. It is also possible to execute

ntcc models as a stand-alone program or as an

binary plugin object for Pure Data or Max/MSP.

In addition to its portability, Ntccrt was

carefully designed to support finite domain, finite

sets and rational trees constraint systems. Those

constraint systems can be used to represents

complex data structures (e.g., automata and graphs)

commonly used in computer music.

Ntccrt works on two modes: one for writing the

models and another one for executing those models.

4.1.1 Developing mode

To write a ntcc model in Ntccrt, the users may

write them directly in C++, using a parser that takes

Common Lisp macros or the use may build a

program in OpenMusic. Using either of these

representations, it is possible to generate a stand-

alone program or an binary plugin as shown in

Figure 1.

Figure 1: Developing mode of Ntccrt.

4.1.2 Execution mode

To execute a Ntccrt program, we can proceed in

two different ways. We can create a stand-alone

program or we can create an binary plugin for

either Pure Data or Max/MSP. An advantage of

using the binary plugins lies on using control

signals and the message passing programming

library provided by Pure Data and Max/MSP to

synchronize any object with the Ntccrt binary

plugin.

To handle musical instrument digital interface

(MIDI) streams we use the predefined functions in

Pure Data or Max/MSP to process MIDI. Then, we

connect the output of those functions to the Ntccrt

binary plugin. We also provide an interface for

Midishare [7], useful when running stand-alone

programs.

4.2 Implementation of Ntccrt

Ntccrt is written in C++ and it uses Flext to

generate the binary plugins for either Max/MSP or

Pure Data, and Gecode [26] for constraint solving

and concurrency control. Gecode is an efficient

constraint solving library, providing efficient

propagators (narrowing operators reducing the set

of possible values for some variables). The basic

principle of Ntccrt is encoding the “when”, and

“tell” processes as Gecode propagators. The other

processes are simulated by storing them into queues

for each time-unit. Although Gecode was designed

to solve combinatorial problems, Toro found out in

[27] that writing the “when” and the processes as

propagators, Gecode can manage all the

concurrency needed to represent ntcc.

In what follows, we explain the encoding of the

“tell” and the “when” processes.

• To represent the “tell”, we define a super

class Tell. For Ntccrt, we provide three

subclasses to represent these processes:

tell (a = b), tell (a ⊧ B), and tell (a > b).

Other kind of “tells” can be easily defined

by inheriting from the Tell superclass and

declaring an execute method that calls the

propagator for the constraint (e.g., a = b or

a ⊧ B).

• To represent the “when”, we define a

class When. The class When calls 2

propagators. A process when C do P is

represented by two propagators: C ↔ b (a

reified propagator for the constraint C) and

if b then P else skip (the when

propagator). The when propagator checks

the value of b. If the value of b is true, it

calls the execute method of P. Otherwise,

it does not take any action. Figure 2 shows

how to encode the process when a = c do

P using the when propagator.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

188

Figure 2: Example of the when process propagator

5. CASE STUDIES

We selected two case studies to show the relevance

of using Ntccrt binary plugins in Pure Data. First,

the machine improvisation system Ccfomi shows us

how we can use Ntccrt to interact in real-time with

a human player. Second, a signal processing

application shows us how a Ntccrt binary plugin

can send control signals to trigger signal processing

filters.

5.1 Machine Improvisation

Machine improvisation usually considers building

representations of music, either by explicit coding

of rules or applying machine learning methods. An

interactive machine improvisation system capable

of soft real-time perform two activities

concurrently: stylistic learning and stylistic

simulation.

Rueda et al. define in [22], stylistic learning as

the process of applying machine learning methods

to musical sequences in order to capture salient

musical features and organize these features into a

model and stylistic simulation as the process of

producing musical sequences stylistically consistent

with the learned material.

A machine improvisation system using ntcc is

“A Concurrent Constraint Factor Oracle Model for

Music Improvisation” (ccfomi). Ccfomi executes

both phases concurrently, it uses ntcc to

synchronize both phases of the improvisation, and

uses the factor oracle to store the information of

the learned sequences.

The factor oracle is a finite state automaton

constructed in linear time and space. It has two kind

of transitions (links). Factor links are going forward

and following them is possible to recognize at least

all the factors from a sequence. Suffix links are

going backwards and they connect repeated

patterns of the sequence. Further formal definitions

about factor oracle can be found in [1].

Following, we give a brief description of ccfomi

taken from [22]. Ccfomi is divided in three

subsystems: learning (ADD), improvisation

(IMPROV) and playing (PLAYER) running

concurrently. In addition, there is a synchronization

process (SYNC) in charge of synchronization.

Ccfomi has 3 kind of variables to represent the

partially built factor oracle automaton: Variables

fromk are the set of labels of all currently existing

factor links going forward from k. Variables Si are

suffix links from each state i and variable δk,σi gives

the state reached from k by following a factor link

labeled σi.

In our implementation of ccfomi, the variables

and are modeled as infinite rational trees [21] with

unary branching. That way, we can add new

elements to fromk and δk,σi dynamically. Rational

trees have been subject of multiple researches to

construct a constraint system based on them. Using

this constraint system is possible to post the

constraints cons(c,nil,B), cons(b,B,C), cons(a,C,D)

to model a list of three elements [a,b,c].

In what follows, we explain some ccfomi

processes. The ADD process (specified in [22]) is in

charge of building the FO by creating the factor

links and the suffix links. This process models the

learning phase.

The learning and the simulation phase must

work concurrently. In order to achieve that, it is

required that the simulation phase only takes place

once the subgraph is completely built. The SYNC

process is in charge of doing the synchronization

between the simulation and the learning phase to

preserve that property.

Synchronizing both phases is greatly simplified

by the use of constraints. When a variable has no

value, the “when” processes depending on it are

blocked. Therefore, the SYNC process is “waiting”

until go is greater or equal than one. It means that

the PLAYER process has played the note i and the

ADD process can add a new symbol to the factor

oracle. The condition Si-1 > 0 is because the first

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

189

suffix link of the factor oracle is equal to -1 and it

cannot be followed in the simulation phase.

The PLAYER (specified in [22]) process simulates a

human player. It decides, non-deterministically,

each time-unit between playing a note or not. When

running this model in Pure Data, we replace this

process by receiving an input (e.g., a MIDI input)

from the environment.

The improvisation process IMPROV starts from

state k and probabilistically, chooses whether to

output the symbol σk or to follow a backward link

Sk. A probabilistic version of this process can be

found in [15]. For this work, we have modeled

IMPROV as a simpler improvisation process than

the model in [15]. We are more interested in

showing the synchronization between the

improvisation phases, than showing how we can

control the choice among suffix links and factor

links based on a probabilistic distribution. For that

reason, choices in the IMPROV process are made

non-deterministically.

The machine improvisation system is modeled as

the PLAYER and the SYNC process running in

parallel with a process waiting until n symbols have

been played to launch the IMPROV process.

5.2 Signal processing

Ntcc was used in the past as an audio processing

framework [23]. In that work, Valencia and Rueda

showed how this modeling formalism gives a

compact and precise definition of audio stream

systems. They argued that it is possible to model an

audio system and prove temporal properties using

the temporal logic associated to ntcc. They

proposed that a ntcc model, where each time-unit

can be associated to processing the current sample

of a sequential stream. Unfortunately, in practice, it

is difficult to implement that model because it will

require to execute 44100 time-units per second to

process a 44.1 kHz audio stream. This is not

possible using Ntccrt nor using the other ntcc

interpreters neither.

Another approach to give formal semantics to

audio processing is the visual audio processing

language Faust [13]. Faust semantics are based on

an algebra of block diagrams. This gives a formal

and precise meaning to the operation.

Our approach is different from Faust's [13] and

Rueda and Valencia's [23], we use a Ntccrt binary

plugin for Pure Data or Max/MSP to synchronize

objects in charge of audio, video or MIDI

processing in Pure Data; for instance, the ntcc

binary plugin decides when triggering an object in

charge of applying a delay filter to an audio stream

and it will not allow other objects to apply a filter

on that audio stream, until the delay filter finishes

its work.

Our system is composed by a collection of n

filters and m objects (MIDI, audio or video

streams). When a filter is working on an object ,

another filter cannot work on until is done. A filter

is activated when a condition over its input is true.

That condition is easily represented by a constraint.

Our system is composed by the infinite rational

tree variables work, end and input representing lists.

Workj represents the identifiers of the filter working

on the object j. Endj represents when the object j

has finished its work. Values for endj are updated

each time-unit with information from the

environment. Inputj represents the conditions

necessary to launch filter Pj, based on information

received from the environment. Finally, waitj

represents the set of filters waiting to work on the

object . Note that workj is a reference to the

position j of the list work (same with end and

input).

In what follows, we explain the definitions of

the system. Objects are represented by IdleObject

and BusyObject. An object is idle until it, non-

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

190

deterministically, chooses a filter from the

variable. After that, it will remain busy until the

constraint endj = true can be deduced from the

store.

Filters are represented by the definitions IdleFilter,

WaitingFilter and BusyFilter. A filter is idle until it

can deduce that inputj = true. Inputj could be a

condition based on multiple criteria.

A filter is waiting when the information for

launching it can be deduced from the store, but it

has not yet control over the object mj . When it can

control the object, it calls the definition BusyFilter.

A filter is busy until it can deduce that the filter

finished working on the object associated to it.

Filter definitions can be written in OpenMusic

using the visual programming paradigm as shown

in Figure 3.

Figure 3: Using a Ntccrt binary plugin in OpenMusic.

The following definition models a situation

with two objects and four filters. The binary plugin

generated for this model can control all kind of

objects and filters, represented by objects in Pure

Data.

6. RESULTS

We executed ccfomi as an stand-alone application

over an Intel 2.8 GHz iMac using Mac OS 10.5.2

and Gecode 2.2.0. Each time-unit took an average

of 20 ms, scheduling around 880 ntcc processes

per time-unit. We simulated 300 time-units and we

executed each simulation 100 times in the tests.

Pachet argues in [14] that an improvisation

system able to learn and produce sequences in less

than 30ms is appropriate for soft real-time music

interaction. Since our implementation of ccfomi has

a response time of 20ms in average, we conclude

that it is capable of real-time interaction for a 300

(or less) time-units simulation.

For this work, we made all the test under Mac

OS X using Pure Data. Since we are using Gecode

and Flext to generate the binary plugins, they could

be easily compiled to other platforms and for

Max/MSP. This is due to Gecode and Flext

portability.

7 . CONCLUSIONS AND FUTURE WORK

We recall from the Introduction that although Pure

Data and Max/MSP support concurrency, it is a

hard task to trigger or halt the execution of a

process based on multiple criteria.

In this article, we introduce Ntccrt as a framework

to manage concurrency in Max/MSP and Pure

Data. In addition, we present two case studies, a

machine improvisation system and a signal

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

191

processing system. We executed both case studies

creating Ntccrt binary plugins for Pure Data.

We want to encourage the use of process calculi

to develop reactive systems. For that reason, this

research focuses on developing real-life case

studies with ntcc and showing that our interpreter

Ntccrt is a user-friendly tool, providing a visual

programming interface to specify ntcc models and

compiling them to efficient C++ programs capable

of real-time interaction in Pure Data.

We argue that using process calculi (such as

ntcc) to model, verify and execute reactive

systems decreases the development time and

guarantees correct process synchronization, in

contrast to the visual programming paradigm of

Max/MSP or Pure Data. We argue that using that

paradigm is difficult and time-demanding to

synchronize processes depending on complex

conditions. Using Ntccrt, we can model such

systems with a few graphical boxes in OpenMusic

or with a few lines in Common Lisp, representing

complex conditions by constraints.

7.1 Future work

One may argue that although we can

synchronize Ntccrt with an binary plugin clock

(e.g., a metronome object) provided by Max/MSP

or Pure Data, this does not solve the problem of

simulating models when the clock step is shorter

than the time necessary to compute a time-unit. To

solve this problem, Sarria proposed to develop an

interpreter for the real-time concurrent constraint

(rtcc [25]) calculus, which is an extension of

ntcc capable of modeling time-units with fixed

duration.

One may also argue that we encourage formal

verification for ntcc, but there is not an existing

tool to verify these models automatically, not even

semi-automatically. To solve this problem, Pérez

and Rueda proposed to develop a verification tool

for the probabilistic timed concurrent constraint

(pntcc [15]) calculus. Currently, they are able to

generate an input for Prism [9] based on a pntcc

model.

In the future, we would like to explore the ideas

proposed by Sarria, Pérez and Rueda. Moreover,

we want to extend our implementation to support

pntcc and rtcc, and to generate an input for

Spin [8], based on a ntcc model, for model

checking.

7.2 Limitations of Ntccrt

There is a limitation of Ntccrt. It is difficult to

implement a signal processing model because it

will require to execute 44100 time-units per second

to process a 44.1 kHz audio stream. This is not

possible using Ntccrt nor using other ntcc

interpreters neither. For this reason, we propose

using Ntccrt as a framework only to control signal

processing operation programmed in Max/MSP,

Pure Data or C++ and not as signal processing

framerwork itself.

ACKNOWLEDGMENTS

We want to thank to Arshia Cont for giving us this

idea of using Ntccrt in Pure Data and Max; Fivos

Maniatakos, Jorge Pérez and Carlos Toro-

Bermúdez for their valuable reviews on this article;

and Jean Bresson, Gustavo Gutiérrez, and the

Gecode developers for their help during the

development of Ntccrt.

REFERENCES:

[1] C. Allauzen, M. Crochemore, and M. Raffinot.

Factor oracle: A new structure for pattern

matching. In Conference on Current Trends in

Theory and Practice of Informatics, pages

295–310, 1999.

[2] A. Allomber, G. Assayag, M. Desainte-

Catherine, and C. Rueda. Concurrent constraint

models for interactive scores. In Proc. of the

3rd Sound and Music Computing Conference

(SMC), GMEM, Marseille, may 2006.

[3] A. Allombert, M. Desainte-Catherine, and

M. Toro. Modeling temporal constrains for a

system of interactive score. In G. Assayag and

C. Truchet, editors, Constraint Programming

in Music, chapter 1, pages 1–23. Wiley, 2011.

[4] J. Aranda, G. Assayag, C. Olarte, J. A. Pérez,

C. Rueda, M. Toro, and F. D. Valencia. An

overview of FORCES: an INRIA project on

declarative formalisms for emergent systems.

In P. M. Hill and D. S. Warren, editors, Logic

Programming, 25th International Conference,

ICLP 2009, Pasadena, CA, USA, July 14-17,

2009. Proceedings, volume 5649 of Lecture

Notes in Computer Science, pages 509–513.

Springer, 2009.

[5] AVISPA. Ntccsim: A simulation tool for timed

concurrent processes, 2008. Available at

http://cic.puj.edu.co/~jg/ntccSim/

[6] J. Bresson, C. Agon, and G. Assayag.

Openmusic 5: A cross-platform release of the

computer-assisted composition environment. In

10th Brazilian Symposium on Computer Music,

Belo Horizonte, MG, Brésil, 2005.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

192

[7] S. L. D. Fober, Y. Orlarey. Midishare: une

architecture logicielle pour la musique, pages

175–194. Hermes, 2004.

[8] G. J. Holzmann. The Spin Model Checker:

Primer and Reference Manual. Addison-

Wesley Professional, September 2003.

[9] M. Kwiatkowska, G. Norman, D. Parker, and

J. Sproston. Modeling and Verification of Real-

Time Systems: Formalisms and Software Tools,

chapter Verification of Real-Time Probabilistic

Systems, pages 249–288. John Wiley & Sons,

2008.

[10] P. Muñoz and A. Hurtado. Programming robot

devices with a timed concurrent constraint

programming. In Principles and Practice of

Constraint Programming - CP2004. LNCS

3258, page 803.Springer, 2004.

[11] M. Nielsen, C. Palamidessi, and F. Valencia.

Temporal concurrent constraint programming:

Denotation, logic and applications. Nordic

Journal of Computing, 1, 2002.

[12] C. Olarte, C. Rueda, G. Sarria, M. Toro, and

F. Valencia. Concurrent Constraints Models of

Music Interaction. In G. Assayag and

C. Truchet, editors, Constraint Programming

in Music, chapter 6, pages 133–153. Wiley,

Hoboken, NJ, USA., 2011.

[13] Y. Orlarey, D. Fober, and S. Letz. Syntactical

and semantical aspects of faust. Soft Comput.,

8(9):623–632, 2004.

[14] F. Pachet. Playing with virtual musicians: the

continuator in practice. IEEE music, 9:77–82,

2002.

[15] J. Pérez and C. Rueda. Non-determinism and

probabilities in timed concurrent constraint

programming. In ICLP, volume 5366 of

Lecture Notes in Computer Science, pages

677–681. Springer, 2008.

[16] A. Philippou and M. Toro. Process Ordering in

a Process Calculus for Spatially-Explicit

Ecological Models. In Proceedings of

MOKMASD’13, LNCS 8368, pages 345–361.

Springer, 2013.

[17] A. Philippou, M. Toro, and M. Antonaki.

Simulation and Verification for a Process

Calculus for Spatially-Explicit Ecological

Models. Scientific Annals of Computer Science,

23(1):119–167, 2013.

[18] M. Puckette. Pure data. In Proceedings of the

International Computer Music Conference.

San Francisco 1996, 1996.

[19] M. Puckette, T. Apel, and D. Zicarelli. Real-

time audio analysis tools for Pure Data and

MSP. In Proceedings of the International

Computer Music Conference., 1998.

[20] L. Quesada, C. Rueda, , and G. Tamura. The

visual model of cordial. In Proceedings of the

CLEI97. Valparaiso, Chile., 1997.

[21] V. Ramachandran and P. V. Hentenryck.

Incremental algorithms for constraint solving

and entailment over rational trees. In

Proceedings of the 13th Conference on

Foundations of Software Technology and

Theoretical Computer Science, pages 205–217,

London, UK, 1993. Springer-Verlag.

[22] C. Rueda, G. Assayag, and S. Dubnov. A

concurrent constraints factor oracle model for

music improvisation. In XXXII CLEI 2006,

2006.

[23] C. Rueda and F. Valencia. A temporal

concurrent constraint calculus as an audio

processing framework. In SMC 05, 2005.

[24] V. A. Saraswat. Concurrent Constraint

Programming. MIT Press, 1992.

[25] G. Sarria. Formal Models of Timed Musical

Processes. PhD thesis, Universidad del Valle,

Colombia, 2008.

[26] C. Schulte and P. J. Stuckey. Efficient

constraint propagation engines. CoRR,

abs/cs/0611009, 2006.

[27] M. Toro. Exploring the possibilities and

limitations of concurrent programming for

music interaction and graphical representations

to solve musical csp’s. Technical Report 2008-

3, Ircam, Paris (FRANCE), 2008.

[28] M. Toro. Probabilistic Extension to the Factor

Oracle Model for Music Improvisation.

Master’s thesis, Pontificia Universidad

Javeriana Cali, Colombia, 2009.

[29] M. Toro. Towards a correct and efficient

implementation of simulation and verification

tools for probabilistic ntcc. Technical report,

Pontificia Universidad Javeriana, May 2009.

[30] M. Toro. Structured interactive musical scores.

In M. V. Hermenegildo and T. Schaub, editors,

Technical Communications of the 26th

International Conference on Logic

Programming, ICLP 2010, July 16-19, 2010,

Edinburgh, Scotland, UK, volume 7 of LIPIcs,

pages 300–302. Schloss Dagstuhl - Leibniz-

Zentrum fuer Informatik, 2010.

[31] M. Toro. Structured Interactive Scores: From

a simple structural description of a music

scenario to a real-time capable implementation

with formal semantics . PhD thesis, Univeristé

de Bordeaux 1, France, 2012.

[32] M. Toro. Structured interactive music scores.

CoRR, abs/1508.05559, 2015.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

193

[33] M. Toro, C. Agón, G. Assayag, and C. Rueda.

Ntccrt: A concurrent constraint framework for

real-time interaction. In Proc. of ICMC ’09,

Montreal, Canada, 2009.

[34] M. Toro and M. Desainte-Catherine.

Concurrent constraint conditional branching

interactive scores. In Proc. of SMC ’10,

Barcelona, Spain, 2010.

[35]M. Toro, M. Desainte-Catherine, and

P. Baltazar. A model for interactive scores with

temporal constraints and conditional branching.

In Proc. of Journées d’Informatique Musical

(JIM) ’10, May 2010.

[36] M. Toro, M. Desainte-Catherine, and J. Castet.

An extension of interactive scores for music

scenarios with temporal relations for micro and

macro controls. In Proc. of Sound and Music

Computing (SMC) ’12, Copenhagen, Denmark,

July 2012.

[37]M. Toro, M. Desainte-Catherine, and C. Rueda.

Formal semantics for interactive music scores:

a framework to design, specify properties and

execute interactive scenarios. Journal of

Mathematics and Music, 8(1):93–112, 2014.

[38] M. Toro, A. Philippou, S. Arboleda, C. Vélez,

and M. Puerta. Mean-field semantics for a

Process Calculus for Spatially-Explicit

Ecological Models. Technical report,

Department of Informatics and Systems,

Universidad Eafit, 2015. Available at

http://blogs.eafit.edu.co/giditic-

software/2015/10/01/mean-field/.

[39] M. Toro, A. Philippou, C. Kassara, and

S. Sfenthourakis. Synchronous parallel

composition in a process calculus for ecological

models. In G. Ciobanu and D. Méry, editors,

Proceedings of the 11th International

Colloquium on Theoretical Aspects of

Computing - ICTAC 2014, Bucharest, Romania,

September 17-19, volume 8687 of Lecture

Notes in Computer Science, pages 424–441.

Springer, 2014.

