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ABSTRACT 
 

Writing music interaction systems is not easy because their concurrent processes usually access shared 

resources in a non-deterministic order, often leading to unpredictable behavior. Using Pure Data (Pure 

Data) and Max/MSP, it is possible to program concurrency; however, it is difficult to synchronize processes 

based on multiple criteria. Process calculi such as the Non-deterministic Timed Concurrent Constraint 

(ntcc) calculus, overcome that problem by representing, declaratively, the synchronization of multiple 

criteria as constraints. In this article, we propose the framework Ntccrt, as a new alternative to manage 

concurrency in Pure Data and Max/MSP. Ntccrt is a real-time capable interpreter for ntcc. Using Ntccrt 

binary plugins in Pure Data, we executed models for machine improvisation and signal processing. We also 

analyzed two case studies: one of a machine improvisation system and one of a signal processing system. 

We found out that performance of both case studies is compatible with soft real-time music interaction; it 

means, a musician can interact with Ntccrt without noticeable delays during the interaction. 

Keywords: Concurrent Constraint Programming (ccp), Soft Real-Time, Machine Improvisation, Signal 

Processing, Music Interaction, Computer Music, Process Calculi. 

 

1. INTRODUCTION  
 

Music interaction systems –inherently concurrent– 

can be modeled using concurrent process calculi. 

Process calculi are useful to describe, formally, the 

behavior of concurrent systems, and to prove 

properties about the systems. Process calculi has 

been applied to the modeling of   ecological 

systems [16, 39, 17, 38] and interactive music 

systems [ 12,  4, 29,  27]. As an example, using the 

process calculus non-deterministic timed 

concurrent constraint (ntcc) [11], we can model 

reactive systems with synchronous, asynchronous  

or non-deterministic behavior. Ntcc and  its 

extensions have been used to model interactive 

systems such as an audio processing [23, 36], 

machine improvisation [22, 28, 15, 25, 33], and 

interactive scores [2, 3, 25, 37, 31,30, 32, 34, 35]. 

Although there are three interpreters to simulate 

the execution of ntcc, they are not suitable for soft 

real-time music interaction. It means that they are 

not able to interact with a musician without letting 

the musician experience noticeable delays in the 

interaction with the computer program. 

We can also program soft real-time systems for 

music interaction and signal processing using C++. 

Unfortunately,  C++ requires long development 

time. To overcome that problem, programming 

languages such as Pure Data [18] and Cycling 74's 

Max/MSP [19], provide a visual programming 

paradigm to program soft real-time systems and 

they include several programming interfaces for 

concurrent programming.  

1.1  The problem 

It is a well-known problem that it is not possible to  

implement process synchronization of concurrent 

processes written in Pure Data and Max/MSP using 

a declarative approach. Although Pure Data and 

Max/MSP support concurrency, it is a hard task to 

trigger or halt the execution of a process based on 

multiple criteria. As an example, using Pure Data or 

Max/MSP, it is hard to express: “process A is going 

to do an action B until a condition C is satisfied”, 

when condition C is a complex condition resulting 

from many other processes’ actions. Such condition 
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would be hard to express (and even harder to 

modify afterwards) using the visual programming 

paradigm; for instance, condition C can be a 

conjunction of these criteria: (1) The user has 

played on a certain tonality, (2) has played the 

chord G7, and (3) has played the note F# among the 

last four notes. 

1.2  Solution using Ntccrt 

Using ntcc, we can represent the complex 

condition C presented above as the conjunction of 

constraints (�� ∧ �� ∧ ��). Each constraint (i.e., 

mathematical condition) represents a criterion. In 

addition, each criterion can be represented 

declaratively. For instance, the criterion (2) can be 

represented by the constraint “G7 is on the set of 

played chords” (�� ∈ PlayedChordsSet). 
In this article, we propose using ntcc to 

manage concurrency in Pure Data and Max/MSP, 

executing ntcc models on  Ntccrt
1
. On Ntccrt, 

ntcc models can be  compiled as an binary plugin 

for Pure Data or Max/MSP. Additionally, the 

binary plugins can be specified, textually, using 

Common Lisp or using visual programming in 

OpenMusic [6]. We recommend the use of 

OpenMusic. We argue that concurrent visual 

programming, usually based on process calculi such 

as Cordial [20], makes the power of concurrency 

available for a wider range of users. 

1.3  Contributions of this article 

Our framework Ntccrt
2
 is composed by the 

following components: (1) The ntcc interpreter 

written in C++, (2) interfaces for both Common 

Lisp and OpenMusic, and (3) the implementation of 

two case studies.  

1.4  Structure of the article 

The remainder of this article is structured as 

follows. Section 2, intuitively, explains the 

semantics of ntcc processes and gives some 

examples of simple ntcc processes modeling 

music interaction. Section 3 explains related work 

on ntcc interpreters and threading programming 

libraries available for Pure Data and Max/MSP. 

Section 4, discusses two case studies of Ntccrt to 

model a music interaction and a signal processing 

system. Section 5 explains the simulation results of 

the case studies. Finally, Section 6 gives concluding 

remarks, states limitations of this approach and 

proposes future works. 

                                                 
1  This research was partially founded by the 

REACT project, sponsored by Colciencias. 

 2  http://ntccrt.sourceforge.net 

 

2.  THE NTCC CALCULUS 
 

A family of process calculi is concurrent constraint 

programming (ccp) [24], where a system is 

modeled in terms of variables and constraints over 

some variables. Furthermore, there are processes 

reasoning about partial information (by the means 

of constraints) about the system variables contained 

on a common store.  

Ccp is based on the idea of a constraint system. 

A constraint system includes a set of (basic) 

constraints and a relation (i.e., entailment relation 

⊧) to deduce a constraint based on the information 

supplied by other constraints. A ccp system 

usually includes several constraint systems for 

different variable types. There are constraint 

systems for different variable types such as sets, 

trees, graphs and natural numbers. A constraint 

system providing arithmetic relations over natural 

numbers is known as finite domain. For instance, 

using a finite-domain  constraint system we can 

deduce the constraint pitch ≠ 60 from the 

constraints pitch > 40 and pitch < 59.  

We can choose an appropriate constraint system 

to model any problem; however, in ccp, it is not 

possible to delete nor change information 

accumulated in the store. For that reason, it is 

difficult to perceive a notion of discrete time, useful 

to model reactive systems (e.g., machine 

improvisation) communicating with an 

environment. 

Ntcc introduces to ccp the notion of discrete 

time as a sequence of time-units. Each time-unit 

starts with a store (possibly empty) supplied by the 

environment, then ntcc executes all the processes 

scheduled for that time-unit. In contrast to ccp, in 

ntcc, variables changing values along time can be 

modeled explicitly. In ntcc, we can have a 

variable x taking different values on each time-unit. 

To model that in ccp, we would have to create a 

new variable  each time we change the value of x. 

As an example, a system that plays sequentially the 

notes of the C major chord can be modeled in 

ntcc as “in the first time-unit, let pitch = C; in the 

second time-unit, let pitch = E; and in the third 

time-unit, let pitch = G”. Using ccp, we would 

represent it as “let pitch1 = C, let pitch2 = E, and let 

pitch3 = G ”. 

In what follows, we give some examples of how 

the computational processes of ntcc can be used 

with a FD constraint system. A summary can be 
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found in Table 1. The semantics of ntcc can be 

found at [11]. 

• Using the “tell”, it is possible to add 

constraints such as  tell (pitch = 60), 

meaning that  must be equal to 60 or tell 
(59 < pitch < 101), meaning that pitch is 

an integer between 60 and 100.  

• The “when” can be used to describe how 

the system reacts to different events; for 

instance, when pitch1 = C ^ pitch2 = E ^ 

pitch3 = G  do tell (CMayor = true) is a 

process reacting as soon as the pitch 

sequence C, E, G has been played, adding 

the constraint Cmayor = true to the store 

in the current time-unit. 

• Parallel composition allows us to represent 

concurrent processes; for instance, tell 
(pitch = 60)  || when pitch = 60 do tell 
(Instrument = 1) is a process telling the 

store that  is 62 and concurrently assigning 

the instrument to one, since pitch is in 

desired octave. 

• The “next” is useful when we want to 

model variables changing through time; 

for instance, when pitch = 60 do next tell 
(pitch ≠ 60 ) , means that if  is equal to 60 

in the current time-unit, it will be different 

from 60 in the next time-unit. 

• The “unless” is useful to model systems 

reacting when a condition is not satisfied 

or it cannot be deduced from the store; for 

instance, unless pitch = 60 next tell 
(lastpitch ≠ 60) reacts when  is false or 

when  cannot be deduced from the store 

(e.g.,  was not played in the current time-

unit), telling the store in the next time-unit 

that lastpitch is not 60.  

• The “star” (*) may be used to delay the 

end of a process indefinitely, but not 

forever; for instance, *tell (end = true).  

• The “bang” (!) executes a certain process 

in every time-unit after its execution; for 

instance, !tell (C4 = 60) .  

• The  is used to model non-deterministic 

choices. For instance, !∑ .�∈48,52,55 when 

i ⊧ PlayedPitches do tell (pitch = i) 

models a system where each time-unit, it 

chooses a note among the notes played 

previously that belongs to the C major 

chord. 

• Finally, a basic recursion can be defined in 

ntcc with the form �� ! "
def

$% , where 

q is the process name and  is restricted to 

call q at most once and such call must be 

within the scope of a “next”. The reason of 

using “next” is that ntcc does not allow 

recursion within a time-unit. Recursion is 

used to model iteration and recursive 

definitions; for instance, using this basic 

recursion, it is possible to write a function 

to compute the factorial function. 

Table 1: Summary of ntcc processes (a.k.a. agents) 

3.  RELATED WORK 
 

In this section, we present related work about 

concurrency support for Pure Data and Max/MSP, 

and available interpreters for ntcc. 

3.1.  Concurrency in Pure Data and Max/ MSP 

To program concurrent programs on Max/MSP and 

Pure Data, we can use their message passing 

programming libraries. We can also create binary 

plugins in C++. In fact, we can use any existing 

threading programming library for C++ to write 

binary plugins for both, Pure Data and Max/MSP. 

There is also a native programming library for 

Max/MSP 7. Another way to write an binary plugin 

is using the Flext library
2
. Flext provides a unique 

interface to write, in the C++ language, binary 

plugins dealing with both, Pure Data and 

Max/MSP. 

3.2  Ntcc interpreters 

There are three interpreters available for ntcc: 

Lman [10] used as a framework to program Lego
TM

 

robots, NtccSim [5] used to model and verify 

properties of biological systems, and Rueda’s 

interpreter [22] for music interaction.  

The first attempt to execute a music interaction 

ntcc model was made by the authors of Lman in 

2003. They executed a ntcc model to play a 

sequence of pitches with fixed durations in Lman. 

Recently, in 2006, Rueda et al. executed “A 

Concurrent Constraint Factor Oracle Model for 

Music Improvisation” (ccfomi) on Rueda’s 

                                                 
2  http://grrrr.org/research/software/flext/ 
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interpreter [22]. Both, Lman and Rueda’s 

interpreter executed the model giving the expected 

output; However, they were not capable of 

executing music interaction systems in soft real-

time. 

 

4. THE NTCCRT FRAMEWORK 
 

Ntccrt is a framework to specify and execute ntcc 

models capable of soft real-time music interaction.  

4.1.  Design of Ntccrt 

The first version of Ntccrt allowed us to specify 

ntcc models in C++ and execute them as stand-

alone programs. Current version offers the 

possibility to specify a ntcc model on either Lisp, 

Openmusic or C++. It is also possible to execute 

ntcc models as a stand-alone program or as an 

binary plugin object for Pure Data or Max/MSP. 

In addition to its portability, Ntccrt was 

carefully designed to support finite domain, finite 

sets and rational trees constraint systems. Those 

constraint systems can be used to represents 

complex data structures (e.g., automata and graphs) 

commonly used in computer music.  

Ntccrt works on two modes: one for writing the 

models and another one for executing those models.  

4.1.1  Developing mode 

To write a ntcc model in Ntccrt, the users may 

write them directly in C++, using a parser that takes 

Common Lisp macros or the use may build a 

program in OpenMusic. Using either of these 

representations, it is possible to generate a stand-

alone program or an binary plugin as shown in 

Figure 1.  

 

   

Figure 1: Developing mode of Ntccrt. 

4.1.2  Execution mode 

To execute a Ntccrt program, we can proceed in 

two different ways. We can create a stand-alone 

program or we can create an binary plugin for 

either Pure Data or Max/MSP. An advantage of 

using the binary plugins lies on using control 

signals and the message passing programming 

library provided by Pure Data and Max/MSP to 

synchronize any object with the Ntccrt binary 

plugin. 

To handle musical instrument digital interface 

(MIDI) streams we use the predefined functions in 

Pure Data or Max/MSP to process MIDI. Then, we 

connect the output of those functions to the Ntccrt 

binary plugin. We also provide an interface for 

Midishare [7], useful when running stand-alone 

programs. 

4.2  Implementation of Ntccrt 

Ntccrt is written in C++ and it uses Flext to 

generate the binary plugins for either Max/MSP or 

Pure Data, and Gecode [26] for constraint solving 

and concurrency control. Gecode is an efficient 

constraint solving library, providing efficient 

propagators (narrowing operators reducing the set 

of possible values for some variables). The basic 

principle of Ntccrt is encoding the “when”,  and 

“tell” processes as Gecode propagators. The other 

processes are simulated by storing them into queues 

for each time-unit. Although Gecode was designed 

to solve combinatorial problems, Toro found out in 

[27] that writing the “when” and the  processes as 

propagators, Gecode can manage all the 

concurrency needed to represent ntcc. 

In what follows, we explain the encoding of the 

“tell” and the “when” processes.  

• To represent the “tell”, we define a super 

class Tell. For Ntccrt, we provide three 

subclasses to represent these processes: 

tell (a = b), tell (a ⊧ B), and tell (a > b). 

Other kind of “tells” can be easily defined 

by inheriting from the Tell superclass and 

declaring an execute method that calls the 

propagator for the constraint (e.g., a = b or 

a ⊧ B). 

• To represent the “when”, we define a  

class When. The class When calls 2 

propagators. A process when C do P is 

represented by two propagators:  C ↔ b (a 

reified propagator for the constraint C) and 

if b then P else skip (the when 

propagator). The when propagator checks 

the value of b. If the value of b is true, it 

calls the execute method of P. Otherwise, 

it does not take any action. Figure 2 shows 

how to encode the process when a = c do 

P using the when propagator. 
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Figure 2: Example of the when process propagator 

 

5. CASE STUDIES 
 

We selected two case studies to show the relevance 

of using Ntccrt binary plugins in Pure Data. First, 

the machine improvisation system Ccfomi shows us 

how we can use Ntccrt to interact in real-time with 

a human player. Second, a signal processing 

application shows us how a Ntccrt binary plugin 

can send control signals to trigger signal processing 

filters. 

5.1   Machine Improvisation 

Machine improvisation usually considers building 

representations of music, either by explicit coding 

of rules or applying machine learning methods. An 

interactive machine improvisation system capable 

of soft real-time perform two activities 

concurrently: stylistic learning and stylistic 

simulation. 

Rueda et al. define in [22], stylistic learning as 

the process of applying machine learning methods 

to musical sequences in order to capture salient 

musical features and organize these features into a 

model and stylistic simulation as the process of 

producing musical sequences stylistically consistent 

with the learned material. 

A machine improvisation system using ntcc is 

“A Concurrent Constraint Factor Oracle Model for 

Music Improvisation” (ccfomi). Ccfomi executes 

both phases concurrently, it uses ntcc to 

synchronize both phases of the improvisation, and 

uses the factor oracle  to store the information of 

the learned sequences.  

The factor oracle is a finite state automaton 

constructed in linear time and space. It has two kind 

of transitions (links). Factor links are going forward 

and following them is possible to recognize at least 

all the factors from a sequence. Suffix links are 

going backwards and they connect repeated 

patterns of the sequence. Further formal definitions 

about factor oracle can be found in [1].  

Following, we give a brief description of ccfomi 

taken from [22]. Ccfomi is divided in three 

subsystems: learning (ADD), improvisation 

(IMPROV) and playing (PLAYER) running 

concurrently. In addition, there is a synchronization 

process (SYNC) in charge of synchronization. 

Ccfomi has 3 kind of variables to represent the 

partially built factor oracle automaton: Variables 

fromk  are the set of labels of all currently existing 

factor links going forward from k. Variables Si are 

suffix links from each state i and variable δk,σi gives 

the state reached from k by following a factor link 

labeled σi. 

In our implementation of ccfomi, the variables  

and  are modeled as infinite rational trees [21] with 

unary branching. That way, we can add new 

elements to fromk and δk,σi dynamically. Rational 

trees have been subject of multiple researches to 

construct a constraint system based on them. Using 

this constraint system is possible to post the 

constraints cons(c,nil,B), cons(b,B,C), cons(a,C,D) 

to model a list of three elements [a,b,c]. 

In what follows, we explain some ccfomi 

processes. The ADD process (specified in [22]) is in 

charge of building the FO by creating the factor 

links and the suffix links. This process models the 

learning phase. 

The learning and the simulation phase must 

work concurrently. In order to achieve that, it is 

required that the simulation phase only takes place 

once the subgraph is completely built. The SYNC 

process is in charge of doing the synchronization 

between the simulation and the learning phase to 

preserve that property.  

Synchronizing both phases is greatly simplified 

by the use of constraints. When a variable has no 

value, the “when” processes depending on it are 

blocked. Therefore, the SYNC process is “waiting” 

until go is greater or equal than one. It means that 

the PLAYER process has played the note i and the 

ADD process can add a new symbol to the factor 

oracle. The condition Si-1 > 0 is because the first 
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suffix link of the factor oracle is equal to -1 and it 

cannot be followed in the simulation phase.  

 

 

 

 

 

 
The PLAYER (specified in [22]) process simulates a 

human player. It decides, non-deterministically, 

each time-unit between playing a note or not. When 

running this model in Pure Data, we replace this 

process by receiving an input (e.g., a MIDI input) 

from the environment. 

The improvisation process IMPROV starts from 

state k and probabilistically, chooses whether to 

output the symbol σk or to follow a backward link 

Sk. A probabilistic version of this process can be 

found in [15]. For this work, we have modeled 

IMPROV as a simpler improvisation process than 

the model in  [15]. We are more interested in 

showing the synchronization between the 

improvisation phases, than showing how we can 

control the choice among suffix links and factor 

links based on a probabilistic distribution. For that 

reason, choices in the IMPROV process are made 

non-deterministically. 

 

 

 
The machine improvisation system is modeled as 

the PLAYER and the SYNC process running in 

parallel with a process waiting until n symbols have 

been played to launch the IMPROV process. 

 

 
 

 

5.2  Signal processing 

Ntcc was used in the past as an audio processing 

framework [23]. In that work, Valencia and Rueda 

showed how this modeling formalism gives a 

compact and precise definition of audio stream 

systems. They argued that it is possible to model an 

audio system and prove temporal properties using 

the temporal logic associated to ntcc. They 

proposed that a ntcc model, where each time-unit 

can be associated to processing the current sample 

of a sequential stream. Unfortunately, in practice, it 

is difficult to implement that model because it will 

require to execute 44100 time-units per second to 

process a 44.1 kHz audio stream. This is not 

possible using Ntccrt nor using the other ntcc 

interpreters neither. 

Another approach to give formal semantics to 

audio processing is the visual audio processing 

language Faust [13]. Faust semantics are based on 

an algebra of block diagrams. This gives a formal 

and precise meaning to the operation. 

Our approach is different from Faust's [13] and 

Rueda and Valencia's [23], we use a Ntccrt binary 

plugin for Pure Data or Max/MSP to synchronize  

objects in charge of audio, video or MIDI 

processing in Pure Data; for instance, the ntcc 

binary plugin decides when triggering an object in 

charge of applying a delay filter to an audio stream 

and it will not allow other objects to apply a filter 

on that audio stream, until the delay filter finishes 

its work. 

Our system is composed by a collection of n 

filters and m objects (MIDI, audio or video 

streams). When a filter  is working on an object , 

another filter cannot work on  until  is done. A filter  

is activated when a condition over its input is true. 

That condition is easily represented by a constraint. 

Our system is composed by the infinite rational 

tree variables work, end and input representing lists.  

Workj represents the identifiers of the filter working 

on the object j. Endj represents when the object j 

has finished its work. Values for endj  are updated 

each time-unit with information from the 

environment. Inputj represents the conditions 

necessary to launch filter Pj, based on information 

received from the environment. Finally,  waitj 

represents the set of filters waiting to work on the 

object . Note that workj  is a reference to the 

position j of the list work (same with end and 

input). 

In what follows, we explain the definitions of 

the system. Objects are represented by IdleObject 

and BusyObject. An object is idle until it, non-
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deterministically, chooses a filter from the  

variable. After that, it will remain busy until the 

constraint endj  = true can be deduced from the 

store.  

 

 
Filters are represented by the definitions IdleFilter, 

WaitingFilter and BusyFilter. A filter is idle until it 

can deduce that inputj = true. Inputj could be a 

condition based on multiple criteria.  

 

 
A filter is waiting when the information for 

launching it can be deduced from the store, but it 

has not yet control over the object mj . When it can 

control the object, it calls the definition BusyFilter.  

 

 
A filter is busy until it can deduce that the filter 

finished working on the object associated to it.  

 

 
Filter definitions can be written in OpenMusic 

using the visual programming paradigm as shown 

in Figure 3. 

 

   

Figure 3: Using a Ntccrt binary plugin in OpenMusic. 

The following definition models a situation 

with two objects and four filters. The binary plugin 

generated for this model can control all kind of 

objects and filters, represented by objects in Pure 

Data.  

6.  RESULTS 
 

We executed ccfomi as an stand-alone application 

over an Intel 2.8 GHz iMac using Mac OS 10.5.2 

and Gecode 2.2.0. Each time-unit took an average 

of 20 ms, scheduling around 880 ntcc processes 

per time-unit. We simulated 300 time-units and we 

executed each simulation 100 times in the tests. 

Pachet argues in [14] that an improvisation 

system able to learn and produce sequences in less 

than 30ms is appropriate for soft real-time music 

interaction. Since our implementation of ccfomi has 

a response time of 20ms in average, we conclude 

that it is capable of real-time interaction for a 300 

(or less) time-units simulation. 

For this work, we made all the test under Mac 

OS X using Pure Data. Since we are using Gecode 

and Flext to generate the binary plugins, they could 

be easily compiled to other platforms and for 

Max/MSP. This is due to Gecode and Flext 

portability. 

7 . CONCLUSIONS AND FUTURE WORK 
 

We recall from the Introduction that although Pure 

Data and Max/MSP support concurrency, it is a 

hard task to trigger or halt the execution of a 

process based on multiple criteria.  

In this article, we introduce Ntccrt as a framework 

to manage concurrency in Max/MSP and Pure 

Data. In addition, we present two case studies, a 

machine improvisation system and a signal 
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processing system. We executed both case studies 

creating Ntccrt binary plugins for Pure Data.  

We want to encourage the use of process calculi 

to develop reactive systems. For that reason, this 

research focuses on developing real-life case 

studies with ntcc and showing that our interpreter 

Ntccrt is a user-friendly tool, providing a visual 

programming interface to specify ntcc models and 

compiling them to efficient C++ programs capable 

of real-time interaction in Pure Data.  

We argue that using process calculi (such as 

ntcc) to model, verify and execute reactive 

systems decreases the development time and 

guarantees correct process synchronization, in 

contrast to the visual programming paradigm of 

Max/MSP or Pure Data. We argue that using that 

paradigm is difficult and time-demanding to 

synchronize processes depending on complex 

conditions. Using Ntccrt, we can model such 

systems with a few graphical boxes in OpenMusic 

or with a few lines in Common Lisp, representing 

complex conditions by constraints. 

7.1  Future work 

One may argue that although we can 

synchronize Ntccrt with an binary plugin clock 

(e.g., a metronome object) provided by Max/MSP 

or Pure Data, this does not solve the problem of 

simulating models when the clock step is shorter 

than the time necessary to compute a time-unit. To 

solve this problem, Sarria proposed to develop an 

interpreter for the real-time concurrent constraint 

(rtcc [25]) calculus, which is an extension of 

ntcc capable of modeling time-units with fixed 

duration.  

One may also argue that we encourage formal 

verification for ntcc, but there is not an existing 

tool to verify these models automatically, not even 

semi-automatically. To solve this problem, Pérez 

and Rueda proposed to develop a verification tool 

for the probabilistic timed concurrent constraint 

(pntcc [15]) calculus. Currently, they are able to 

generate an input for Prism [9] based on a pntcc 

model.  

In the future, we would like to explore the ideas 

proposed by Sarria, Pérez and Rueda. Moreover, 

we want to extend our implementation to support 

pntcc and rtcc, and to generate an input for 

Spin [8], based on a ntcc model, for model 

checking. 

7.2  Limitations of Ntccrt 

There is a limitation of Ntccrt. It is difficult to 

implement a signal processing model because it 

will require to execute 44100 time-units per second 

to process a 44.1 kHz audio stream. This is not 

possible using Ntccrt nor using other ntcc 

interpreters neither. For this reason, we propose 

using Ntccrt as a framework only to control signal 

processing operation programmed  in Max/MSP, 

Pure Data or C++ and not as signal processing 

framerwork itself. 
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