
Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1

THE APPLYING OF THE HARDWARE-BASED

RECONFIGURATION

FOR AUTONOMOUS CONTROL SYSTEMS OF SPACE

MOBILE ROBOTS

1
VALERY DMITRIEVICH IVCHENKO,

2
PETR GERMANOVICH KRUG,

3
MAXIM VYACHESLAVOVICH KURAKOV,

4
EKATERINA NIKOLAEVNA MATYUKHINA,

5
SERGEY ALEKSANDROVICH PAVELYEV

1,2,3,4,5

Moscow State Institute of Computer Science

Radio Engineering and Electronics

Prospekt Vernadskogo, 78, Moscow, 119454, Russia

ABSTRACT

The problem of applying of hardware-based reconfiguration for autonomous control systems of space

mobile robots is concerned. The challenges associated with using space mobile robots for planetary

exploration missions are described and a set of requirements on the design of such space-based robots is

imposed. The functional structure of hardware-reconfigurable digital module for intellectual control of

mobile space-based robots is proposed and further interaction between its functional modules and remote

support center in different situations requiring reconfiguration is concerned. The procedures of self-check

and self-testing of the hardware-reconfigurable digital module for intellectual control of mobile space-

based robots are described, which are necessary to ensure reliability of reconfiguration. The algorithms for

self-testing of the hardware of the digital control module are researched, taking the advantage of on-line

partial reconfiguration ability of FPGA. The means to achieve optimal testing coverage while minimizing

the amount of additional testing hardware and testing time are considered.

Keywords: Space-Based Robots, Remote Modification, Mobile Robot, Reconfigurable Computing, Field-

Programmable Gate Array (FPGA)

1. INTRODUCTION

Using space mobile robots for planetary

exploration missions is associated with a number of

challenges not present when using mobile robots on

Earth. First, robots in space have many hardware

limitations. The sensible parts have to be protected

from dangerous radiations, which usually limits

their processing power. In addition, the difference

in gravity makes it a lot harder to make good

articulations. This usually demands specific design

and control procedures. Another more challenging

issue is the fact that these robots in space have to

operate with no direct human contact. They can

receive new instructions and some software

upgrades via satellites, but cannot be touched and

repaired, and they have to follow the orders

autonomously.

Taking this in consideration, as well as long

duration of planetary exploration missions, taking

months and years, a specific set of requirements on

the design of space-based robots is imposed [13],

such as:

 – High level of survivability ‒ ability to continue

to carry out the mission in case of partial

malfunction of mechanical parts, hardware or

software, as well as in case of unpredictable

changes of external environment parameters;

‒ High level of adaptability (reserve) ‒ ability to

continue to work in case of change of target

(change of mission) or change of target acquisition

way.

Fulfillment of the above-mentioned requirements

is possible if autonomous control systems of space

mobile robots had the ability to be reconfigured

(modified) according to new emerging tasks on

strategic or tactical level or the changing

circumstances.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2

One of the most important problems is to ensure

continuous functioning of space-based robots

during the whole duration of a mission and to

provide possibility of switching to new missions

after completion of current tasks by using new

configuration of control modules. This problem can

be solved with the help of real-time partial

reconfiguration - an emerging technology in the

field of hardware reconfiguration. Optimal solution

would be reconfiguration of specific control

modules of space-based robots in background mode

without affecting the performance of any modules

not taking part in reconfiguration.

In this case, attention should be paid to ensuring

the reliability of reconfiguration process. Current

technological trends in this field include

implementation of automated and automatic means

for detection and localization of malfunctions.

Alongside reliable reconfiguration process, it is

necessary to ensure reliable transfer of

configuration data for remote reconfiguration, as

well as to transmit, systematize and store

information on reconfiguration and status of control

modules of space-based robotic devices in remote

support center database.

In the framework of research program "MARS-

500" of the Institute of Biomedical Problems of the

Russian Academy of Sciences and European Space

Agency the mobile robot-explorer "Turist" has been

created with the purpose of expanding human

capabilities in exploration of aggressive

environments, including other planets [12].

Research revealed the disadvantages of the robot-

explorer "Turist" as well as other space-based

mobile robots requiring manual remote control.

Inability of the mobile robot to independently carry

out interpretation of events and control operations

necessary to reach mission goal was caused by the

lack of universal intelligence and corresponding

algorithms capable of taking into account all

possible missions in advance and all possible

situations emerging in the course of planetary

missions. Solving this issue would only be possible

with the implementation of the technology of

autonomous remote modification of hardware.

2. STRUCTURE OF HARDWARE-

RECONFIGURABLE DIGITAL MODULE

FOR INTELLECTUAL CONTROL OF

SPACE-BASED ROBOTS

Considering the above-mentioned tasks, the

system for intellectual control of mobile space-

based robots based on hardware-reconfigurable

digital platform should include the following set of

equipment:

1) Reconfiguration controller, utilizing neural

network classifier for identification of

malfunctions which could occur in the process

of remote reconfiguration of the intelligence of

space-based robots [5];

2) Reprogrammable hardware on the basis of

FPGA, carrying out control on strategic,

tactical and operational levels [16];

3) Reconfiguration server, located within

remote supervision center, which is connected

to space-based robots through the network

infrastructure and performs remote control over

a group of space-based robots, including

coordinated reconfiguration of software and

hardware.

Specifications for remote reconfiguration of the

intelligence of mobile space-based robots include

the following:

1) Automatic remote reconfiguration without

operator participation [9];

2) Reconfiguration without physical

exchange of hardware;

3) Simplifying the process of technological

improvement of the device;

4) Updating the intelligence of space-based

robots with state of the art technologies

through its remote reconfiguration [10].

Functional specifications for hardware-

reconfigurable digital module for intellectual

control of mobile space-based robots include the

following [19]:

1) Situational control, when each class of

possible system states corresponds to a given

class of possible solutions;

2) Hierarchical structure of the intellectual

control system, including strategic behavior

planning level, tactical action planning level,

operational (actuator) level and sensors;

3) Justified selection of procedures to run for

the solution of a given task on each

hierarchical level;

4) Automatic redistribution of tasks between

mobile robots within a group of space-based

robots.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3

System specification for hardware-reconfigurable

digital module for intellectual control of mobile

space-based robots include the following:

1) Data exchange with other space-based

robots working in a group;

2) Reconfiguration of the intelligence should

take into account configurations of similar

space-based robots working in a group with the

purpose of maintaining compatibility and

common standards on data exchange [15];

3) Initiation of self-check by remote support

center or locally [6];

4) Informing the remote support center about

the state of mobile space-based Robot through

warning and status messages;

5) Continuous work of mobile space-based

robots for the duration of the mission and after

reaching the target with the purpose of

switching to other missions with the use of new

remotely modified intelligence [18].

Based on the above-mentioned specifications the

following functional structure of hardware-

reconfigurable digital module for intellectual

control of mobile space-based robots is proposed

(Figure 1).

Movement control

Communication with remote support center

Data reception/

transmission

Data to/from

remote support

center

Communication between robots in a group

Data integrity

control

Data reception/

transmission

Data integrity

control

Sensor data

interpretation

Sensor data

registration

Generating

commands for

operational

devices

Data to/from

other robots in a

group

Data from

cameras and laser

rangers

Commands to

wheel drives

Manipulator control

Sensor data

interpretation

Sensor data

registration

Generating

commands for

operational

devices
Data from

cameras and laser

rangers

Commands to

manipulator

drives

Self-check and self-testing

Regular self-check

Self-diagnosis

Passive diagnosis

Self-testing

Neural network

classification

FPGA reconfiguration control

Reconfiguration

on command

from remote

support center

Reconfiguration

to remove

malfunction

Reconfiguration

to complete

standard tasks

Non-reparable

malfunction

Reparable

malfunction

Fig.1. Functional Structure Of Hardware-Reconfigurable

Digital Module For Mobile Space-Based Robots

Intellectual Control

Digital module for intellectual control of mobile

space-based Robot provides communication

between mobile robot and remote support center,

carried out through standard wireless network

interfaces. Space-based robots receive new

configuration files from remote support center to

perform reconfiguration of FPGA on external

command. After reception of new configuration

file, the integrity of obtained data is checked using

the method of cyclic redundancy check. If integrity

check is successful, new configuration is saved in

the memory of the digital control module and can

be later used for reconfiguration of FPGA. If

integrity check fails, obtained data is discarded as

corrupted and corresponding message is sent to

remote support center. Besides that, the digital

module for intellectual control of mobile space-

based robot sends to remote support center

information about the status of mobile robot and

relevant research data obtained during the mission.

Communication between mobile space-based

robots within a group is organized similarly. Space-

based robots belonging to a single group can

exchange status information with each other, which

allows them to carry out collective tasks and

automatically replace each other in case one or

several robots in a group become unable to fulfill

their mission.

Information about external environment is

obtained by the digital control module with the help

of video cameras and laser rangers mounted on the

moving platform of space-based robot. Based on

this information it issues commands to the moving

platform and manipulator arm of space-based robot.

Information obtained from sensors is processed in

three steps. Initial set of digitalized data is

registered in the memory of the digital control

module and scaled accordingly for further

processing. Next data interpretation is carried out

which results in obtaining information about current

position of the moving platform and manipulator

arm of space-based robot in relation to the goal of

the mission and potential obstacles. Results of data

interpretation are then used by movement control

and manipulator control algorithms to generate

commands for operational devices necessary to

reach current goal and avoid the obstacles.

Movement control is carried out by issuing

commands to the drives setting in motion the

wheels of the moving platform of space-based

robot. Manipulator control is carried out by issuing

commands to the drives moving sections of the

manipulator arm along their respective degrees of

freedom.

Reconfiguration of FPGA can be carried out on

command from remote support center or

autonomously in response to changes in mission

objectives or external environment [15].

Reconfiguration can also be initiated to remove

detected malfunctions in the functioning of space-

based robot [8].

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4

Self-check of the modules of space-based robot is

carried out on initialization of the digital control

module and then performed periodically during its

runtime. In case self-check discovers a malfunction

self-diagnosis procedure is initialized which

includes analysis of diagnostic parameters during

normal functioning of space-based robot (passive

diagnosis) and self-testing based on a set of tests

prepared for specific configuration. Determination

of malfunction type and its localization is carried

out with the help of neural network classifier. In

case malfunction can be removed using available

hardware resources of FPGA the reconfiguration

procedure is initiated. In case malfunction is non-

reparable mobile space-based robots stops its

current mission and sends corresponding message

to remote support center.

Self-check is also performed every time a new

configuration is loaded into FPGA. If self-check is

successful corresponding control modules of space-

based robot switch to running with new

configuration. If self-check fails, control modules

continue running with the last valid configuration.

In case detected malfunction in the new

configuration is reparable, another attempt at

reconfiguration is performed, otherwise

reconfiguration is cancelled and corresponding

message is sent to remote support center.

3. FUNCTIONAL PERFORMANCE OF

HARDWARE-RECONFIGURABLE

DIGITAL MODULE FOR

INTELLECTUAL CONTROL OF SPACE-

BASED ROBOTS

Interaction between functional modules of the

digital module for intellectual control of mobile

space-based robots can be described in a set of

timing charts.

Figure 2 represents timing charts of standard

initialization procedure of the hardware-

reconfigurable digital module for intellectual

control of mobile space-based robots.

Fig.2. Timing Chart Of Standard Initialization Procedure

Of The Digital Control Module

According to standard initialization procedure

first self-check of all functional modules is

performed, which includes checking the states of

error signals reporting general status of each

functional module. If self-check is successful a

request for configuration file is sent to remote

support center accompanied by information about

current status of the digital control module.

After sending request for configuration file, the

digital control module waits for data from remote

support center. Along with configuration file,

remote support center sends a set of tests for

correctness check after loading the configuration

into FPGA. After reception of data, its integrity is

checked using the method of cyclic redundancy

check. If integrity check is successful, the

configuration file is loaded into FPGA.

After loading the configuration into FPGA its

correctness is checked using the corresponding set

of tests. If correctness check is successful

movement, control and manipulator control

modules of space-based robots switch to running

with new configuration. At this point, initialization

procedure is considered complete and the digital

control module switches to standard mission

performance mode.

During standard mission performance in case

space-based robot receives new mission goals, the

means of reaching the goal have to be changed or

under other similar conditions FPGA configurations

of movement control and manipulator control

modules can be changed on command from remote

support center. Figure 3 represents timing charts of

FPGA reconfiguration procedure on command from

remote support center.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5

Fig.3. Timing Chart Of FPGA Reconfiguration

Procedure On Command From Remote Support Center

During standard mission performance,

communication between space-based robot and

remote support center is carried out periodically in

set time frames. Before communication is initiated

self-check of all functional modules of space-based

robot is performed. If self-check is successful, a

request for configuration file is sent to remote

support center accompanied by information about

current status of the digital control module and

research data obtained during the mission if it is

included in current tasks of the mobile space-based

robot.

After sending request for configuration file, the

digital control module waits for data from remote

support center. If remote support center sends a new

configuration file it should be accompanied by,

corresponding command which signals the digital

control module that it needs to run reconfiguration

procedure. Along with configuration file, remote

support center sends a set of tests for correctness

check after loading the configuration into FPGA.

After reception of data, its integrity is checked

using the method of cyclic redundancy check. If

integrity check is successful, the configuration file

is loaded into FPGA.

After loading the configuration into FPGA its

correctness is checked using the corresponding set

of tests. If correctness check is successful

movement, control and manipulator control

modules of space-based robots switch to running

with new configuration. Presented time charts

depict reconfiguration of both movement control

and manipulator control modules but each module

can also be reconfigured separately.

Reconfiguration procedure does not affect current

performance of the mobile space-based robot until

the moment corresponding module switches to

running with new configuration.

Besides commands from remote support, center

reconfiguration procedure can be initiated locally

on fulfillment of specific conditions. For example if

a malfunction is detected in FPGA of movement

control or manipulator control modules the

performance of space-based robot can be restored

by loading configuration carrying the same

functionality but utilizing spare hardware resources

not affected by the malfunction. Figure 4 represents

timing charts of FPGA reconfiguration procedure

on detection of a malfunction.

Fig. 4 Timing Chart Of FPGA Reconfiguration

Procedure On Detection Of A Malfunction

If periodical self-check detects a malfunction in

FPGA of movement control or manipulator control

modules self-testing procedure is carried out which

localizes the malfunction and collects data for its

classification. According to results of self-testing

classification of malfunction is carried out. Based

on classification results a decision is made whether

malfunction can be removed by performing

reconfiguration procedure using one of

configuration files stored in the memory the digital

control module.

After loading the configuration into FPGA

standard correctness check is carried out. If

correctness check is successful movement, control

and manipulator control modules of space-based

robots switch to running with new configuration.

4. SELF-CHECK AND SELF-TESTING OF

HARDWARE-RECONFIGURABLE

DIGITAL MODULE FOR

INTELLECTUAL CONTROL OF SPACE-

BASED ROBOTS

Self-check and self-testing are parts of automated

control system monitoring the status of all modules

of space-based robot, which is meant to detect,

localize and classify malfunctions appearing in

space-based robot, including malfunctions in the

hardware-reconfigurable digital control module.

Based on classification results detected

malfunctions can be removed automatically by

performing reconfiguration procedure.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6

Automated control system monitoring the status

of all modules of space-based robot has hierarchical

structure. Self-check constitutes the first and the

lowest control level. Self-check includes a set of

short procedures implemented in hardware and not

affected by any changes in FPGA configuration.

Malfunction in any module of space-based robot

leads to generation of an error signal which is

registered during self-check. Main purpose of self-

check is preventing the functioning of space-based

robot with hardware malfunction, which could lead

to further damage and bringing the mobile robot out

of commission. Self-check is carried out on initial

start-up of space-based robot and then periodically

in set of time frames.

Figure 5 represents the algorithm of self-check of

hardware-reconfigurable digital module for

intellectual control of space-based robots.

Start

Power supply check

Reconfiguration control

module check

Memory check

Operational device control

modules check

Strategic level FPGA0

check

Strategic level FPGA1

check

Tactical level FPGA0

check

Tactical level FPGA1

check

Operational level FPGA0

check

Operational level FPGA1

check

Timeout

Message – power supply

malfunction

Message – reconfiguration

control module malfunction

Message – memory malfunction

Self-diagnosis
Message – non-reparable

malfunction

Reconfiguration

Operational device

drives check

Message – operational device

drives malfunction

error

error

error

error

error

error

error

error

error

error

Non-reparable malfunction detected

Reparable malfunction detected

no errors

no errors

no errors

no errors

no errors

no errors

no errors

no errors

no errors

no errors

Fig.5. Algorithm of self-check of the digital control

module

Self-check procedure includes the following

steps carried out sequentially:

1) Self-check initialization.

2) Power supply check - no errors signal

means that all output voltages satisfy working

conditions, otherwise a message about power

supply malfunction is sent to remote support

center.

3) Reconfiguration control module check - no

errors signal means that a valid configuration is

loaded in reconfiguration control module and

all necessary clock frequencies are being

generated, otherwise a message about

reconfiguration control module malfunction is

sent to remote support center.

4) Memory check - no errors signal means

that all memory blocks successfully passed

write and read checks, otherwise a message

about memory malfunction is sent to remote

support center.

5) Operational device drives check - no errors

signal means that all operational device drives

are ready to receive commands from control

modules, otherwise a message about

operational device drives malfunction is sent to

remote support center.

6) Operational device control check - is

divided into steps checking FPGA responsible

to control over strategic, tactical and

operational levels. Two FPGA are functioning

on each level - active and reserve. Active

FPGA receives data, performs data

interpretation and generates commands

according to current configuration. Reserve

FPGA is used to load new configuration and

receives control after successful correctness

check, at the same time previously active

FPGA switches to reserve mode. No errors

signal means that a valid configuration is

loaded in active FPGA and all necessary clock

frequencies are being generated on both FPGA,

otherwise self-diagnosis procedure is

initialized for malfunctioning FPGA. Based on

results of self-diagnosis detected malfunction

can be classified as reparable or non-reparable.

In case or reparable malfunction FPGA

reconfiguration procedure is initialized to

remove it, otherwise a message about non-

reparable malfunction in operational device

control module is sent to remote support

center.

7) After conclusion of all self-check steps,

timeout of a set duration takes place after

which self-check procedure is initialized again.

Self-check results only indicate the presence of a

malfunction in corresponding module of mobile

space-based robot without showing its exact

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7

location. Self-diagnosis procedure performs

localization and classification of malfunctions

within hardware-reconfigurable digital module for

intellectual control of space-based robots. Self-

diagnosis of hardware-reconfigurable digital control

module includes passive diagnosis, self-testing and

classification of malfunction type with the help of

artificial neural network.

Passive diagnosis is carried out by hardware

control procedures implemented in current

configuration and working independently from the

main task performed by FPGA. Hardware control

can detect errors in functioning of FPGA in

working mode without usage of special tests.

However, using only hardware control leads to

significant complication of configuration and can

not always provide full coverage. Including large

amounts of complicated additional logic in a

configuration can also reduce its overall reliability.

Because of this passive diagnosis is used together

with self-testing for initial localization of

malfunctions or exclusively in case self-testing is

impossible.

Tests for FPGA are divided into two groups:

manufacturer tests and user tests [3], [22]. User

tests can also be divided into two types: 1) system

integrator tests [2], [7], [21] and 2) field tests [1],

[11], [20]. In the field devices carrying out crucial

tasks (such as space devices) demand fast testing of

hardware with minimal interruption of functioning

of the device as a whole.

In self-testing mode FPGA is reconfigured in

such a way, that configuration under testing is

decomposed into basic elements which are

represented by configurable logic blocks of FPGA.

To do this all connections of each block with

external structure are cut. Then all blocks are

checked with an exhaustive test (full coverage test

[3]. Test signals are forwarded to all inputs of

FPGA and connection nodes from test generator

and output signals from each block are received by

malfunction classifier. Both test generator and

malfunction classifier can be implemented within

the same FPGA using available hardware resources.

As a result, simultaneous testing of all blocks and

all connections is carried out. Connection here is

defined as plurality of all metal traces, switching

matrices and pass transistors taking part in forming

a given connection. Pass transistor is a special

connection transistor controlled by a block of

configuration memory. In a logical matrix it makes

up a programmable interconnect point (PIP).

Connecting test generator to block outputs

instead of block inputs not only allows

simultaneous testing of connections together with

blocks but also significantly lowers the amount of

necessary connections between test generator and

tested object. Instead of M*N connections, where

M - number of block inputs, and N - number of

blocks in a matrix, required number of connection

amounts to N+Nin, where Nin - number of external

inputs of tested object.

To forward test signals to all blocks the outputs

of test generator should be connected to the nodes

Gi, i = 1, ... ,N formed after decomposition of the

configuration in such a way that all inputs of each

block received signals from different order of test

generator output. Such connection is called correct.

Only correct connection ensures full coverage of

possible inputs for all blocks. Giving a node, a

certain order number of test generator output is

called assignment. Assignment task in the proposed

architecture is not trivial since it is complicated by

branching nodes. This means that assigning a

number to a block input which is a branch of a

branching node automatically assigns the same

number to all other branches of this node which can

lead to contradictions among inputs of other blocks.

Contradictions make correct assignment for this

block impossible (in a way that all inputs of the

block had different numbers). This problem can be

solved with the following statement.

Statement 1. For every configuration, a correct

assignment can always be found by using test

generator with larger order number.

Increasing order number by one leads to

increasing test length two times. Upper limit for the

necessary increase of order number can be

estimated by reduction of assignment task to the

known task of coloring in graph theory [14]. Tree

edge coloring cannot be implemented here because

in these task branches of a branching node are

represented by different tree edges belonging to the

same tree node and such edges should be assigned

different colors. In the task in question, such edges

should be assigned same colors (having the same

assigned number). Tree node coloring task should

be used instead, and the graph for the configuration

where assignment is taking place should be built

according to following rules (such graph is called

converse):

– Each node Gi, i = 1, . . . , N, of the initial

configuration is assigned to a node of the converse

graph;

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8

– Between two nodes Gi and Gj of the converse

graph an edge is formed if in initial configuration

there is at least one block which is incidental to

both nodes Gi and Gj .

Since in initial configuration every node is a

block output (branching or non-branching) or an

external input (branching or non-branching) total

number of nodes В0 in the converse graph is equal

to

 NinNB +=0 (1)

(Where N – number of blocks, Nin – number of

external inputs).

As is known [20], chromatic number [gamma]

estimated through the number of nodes of the graph

lies in the following range:

 01 B≤≤ γ (2)

This shows that assignment task can theoretically

lead to unacceptable increase of order number of

the test generator (for complicated heavily

branching configurations) due to timing constraints.

This problem can be solved with the following

statement.

Statement 2. For every configuration, a correct

assignment can always be found by introducing

additional nodes through connection cuts.

Using statement 2 brings an additional degree of

freedom to the configuration allowing assignment

of numbers to the branches of a branching node

independently from each other. As a result, it

allows avoiding increase the order number of the

test generator.

In a general case, finding the optimal solution for

introducing additional nodes is a sequential search

task. For its solution, an assignment algorithm [17]

is proposed utilizing statements 1 and 2. Algorithm

is based on the following ideas.

Assignment starts from the nodes with the most

branches. Otherwise, such nodes would have little

freedom for assignment since they are connected to

a large number of previously assigned block inputs.

Non-branching nodes are assigned last since

there will always be a free number to assign to them

which was not previously used for this block.

First block to cut connection with should be the

one having an input with assigned number, which is

not assigned to any other blocks connected to the

same branching node. This number is assigned to

disconnected branching node and the (one) cut

block will always have a non-contradictory number.

If there is no such singular block first blocks to

cut connection with should be the ones with a

number less frequently met (lowest entry number)

since in such case it is likely less connection cuts

will be needed. If there are several such options the

blocks with the same, missing number should be

chosen. For example if connections are cut with two

blocks with assigned numbers (5, Gi, 4, 2) and (4,

3, 5, Gi) the missing number for both blocks is 1.

Then the branching node Gi is assigned number 1.

Assignment algorithm includes the following

steps:

Step 1. Any node with the most branches, which

is not yet assigned, is chosen. This node is assigned

number 1, which determines the assignment n = 1

to all its branches.

Step 2. Next non-assigned branching node is

chosen, if it exists (otherwise go to step 4). This

node and all its branches are assigned n = 1. A

check is made if there is an incidental block, which

received the same assignment to two inputs:

2а. If there are no such blocks then step 2 is

repeated.

2б. If there is such block then assigned number is

increased by one: N = N + 1 (i.e. every time

assignment attempts for the chosen node start from

number 1 and end with assignment of the lowest

number for which no incidental blocks have a pair

of inputs assigned the same number). Assigned

number is compared to the given maximum number

Mgt for the order of test generator output:

If n ≤ Mgt, then n is assigned to the chosen node

and step 2 is repeated.

If n > Mgt, then go to step 3.

Step 3. Among incidental, blocks for the chosen

node the ones with the lowest entry number are

determined. Determined blocks are disconnected

using a switch, which makes a new independent

node Gn+1. The previously chosen node is assigned

the lowest entry number and the new node Gn+1 is

assigned order according to the algorithm. The

number of nodes in the configuration now increased

by one: N = N + 1. Go to step 2.

Step 4. In an arbitrary order blocks with non-

assigned inputs are determined (i.e. search for non-

branching nodes is performed). Such inputs are

assigned numbers not coinciding with already

assigned inputs of the same block. Algorithm ends

when all inputs of all blocks are assigned.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9

Results of assignment algorithm are used for

routing test generator outputs to the object of

testing.

Figure 6 represents the algorithm of self-testing

of hardware-reconfigurable digital module for

intellectual control of space-based robots.

Fig.6. Algorithm Of Self-Testing Of The Digital Control

Module

Self-testing of the object implemented on a

programmable logic matrix structure consists of

several stages.

Stage 1. First reconfiguration. FPGA is loaded

with configuration in decomposed structure

described above. To do this PIP corresponding to

switches on outputs of every block are opened and

PIP connecting the test generator and malfunction

classifier to resulting nodes are closed.

It is worth mentioning that each switch should

disconnect all branches from a given block output

at once. Thus during routing process a switch

should be put on the output of each block (and each

external input) which would be common for all

following branches (i.e. located before the first

branching node).

Stage 2. Testing of the object in decomposed

mode. First configuration is tested in the following

way: test generator forwards an exhaustive test to

all logical blocks; output reaction is registered by

malfunction classifier; malfunction classifier

analyzes obtained data by comparison with the

reference signature of the object and generates

corresponding signal about technical state of the

object.

Stage 3. Second reconfiguration. FPGA is

partially reconfigured in the following way:

switches are closed; test generator and malfunction

classifier remain connected. In this configuration,

closed switches are tested since they remain in such

state during standard functioning of the tested

object.

Stage 4. Testing with switches in closed state.

Such test requires only two sets of data from the

test generator (all zeros and all ones, or any set and

its inversion) which can then be analyzed by

malfunction classifier. But for that all block outputs

should remain in high impedance mode. If specific

logic matrix can not provide it, the problem can be

solved through switching means. For example,

another switch can be sequentially connected to

switches on block outputs. In the first configuration,

such switch would be closed and its state is tested

on stage 2. In the second configuration, this switch

is opened and removes tested switch on block

output from the output signal of that block. This

allows testing of switches on the outputs of each

block: signal from the test generator passes through

the tested switch in direction opposite to the one

during standard functioning of the tested object and

is registered by malfunction classifier.

To reduce the load on the test generator outputs

and shorten the length of connections between the

test generator and the tested object it is proposed to

implement several test generators in the logical

matrix, each providing tests for its specific part.

Results of passive diagnosis can be used to

determine the parts of FPGA configuration, which

require testing.

5. RESULTS

Functional structure of hardware-reconfigurable

digital module for mobile space-based robots

intellectual control is designed with capability for

on-demand reconfiguration of hardware, which may

be required due to switching to another mission,

acquisition of new tasks on strategic or tactical

level or changes in external environment.

Reliability of reconfiguration is ensured through

multi-step process of self-check and self-testing,

taking the advantage of on-line partial

reconfiguration ability of FPGA.

Implementation of the proposed algorithm of

self-testing of hardware-reconfigurable digital

module for intellectual control of space-based

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

10

robots provides 100% detection of all standard

malfunctions (single and multiple errors, constant

and logical errors, short circuits and connection

losses, but not the ones multiplying the number of

logical block inputs) and almost all malfunctions of

non-standard types (i.e. multiplying the number of

logical block inputs). Using exhaustive testing

makes it not necessary to design specialized testing

sequences. Including the testing hardware into

FPGA configuration does not bring additional

latency to existing nets. Parallel testing of logical

blocks and relatively short length of exhaustive test

result in lower testing time. Additionally the

complexity of testing hardware does not depend on

complexity of the tested object itself.

Testing of the hardware-reconfigurable digital

module for intellectual control of mobile space-

based robots was carried out using seven sets of

configuration files which included different types of

malfunctions arranged arbitrarily: single constant

error in a configuration; multiple constant errors;

single logical error in a configuration; multiple

logical errors; single short circuit or connection loss

in a configuration; multiple short circuits or

connection losses; multiplication of logical block

inputs. Figure 7 represents the results of detection

of malfunctions and identification of reparable

malfunctions by the classifier.

Fig.7. Detection Of Malfunctions And Identification Of

Reparable Malfunctions

Achieved results show that implementation of

hardware-reconfigurable digital module for mobile

space-based robots intellectual control with the

proposed functionality of self-testing allows the

detection of almost all hardware malfunctions that

may occur during runtime or reconfiguration

process and in significant amount of cases

autonomous repair with the use of reconfiguration

ability can be carried out.

6. CONCLUSION

Proposed structure of hardware-reconfigurable

digital module for intellectual control of space-

based robots is designed to improve survivability

and self-sufficiency of mobile space-based robots

with the help of technologies of remote

modification of intelligence based on

reconfigurable hardware. Developed concept brings

together the methods and technologies of artificial

intelligence and capabilities of real time partial

reconfiguration of modern FPGA as the means to

adapt to unpredictability of external environment.

Practical implementation of this concept proposes

selective usage of most suitable knowledge

processing technologies depending on specific task,

properties of the object of control, its functional

purpose, working conditions etc. Implementation of

the developed technologies will contribute to the

efficiency of space-based robots performance and

thus to the reduction of space mission costs.

The problem of utmost importance is the

reliability of dynamically reconfigurable

autonomous control system, which gives prospect

to further development of self-check and self-

testing procedures of hardware-reconfigurable

digital module for intellectual control of space-

based robots. In the nearest future research on

development of intellectual malfunction classifier,

which could allow application of partial

reconfiguration of FPGA to restore malfunctioning

configuration using free hardware resources is

being envisioned.

Practical implementation of the proposed

hardware-reconfigurable digital module for

intellectual control of space-based robots is being

developed in the framework of further improvement

of the space-based mobile robot-explorer "Turist"

carried out by the Moscow State Institute of

Computer Science Radio Engineering and

Electronics. Implementation of autonomous remote

modification of hardware would improve

survivability and allow the mobile robot to continue

its work in case of change of environment or

mission goals. For this purpose the proposed

technologies are being adapted to the use with

specific set of on-board equipment.

7. ACKNOWLEDGEMENT

The research was carried out with financial

support of the Ministry of Education and Science of

the Russian Federation in the framework of the

Agreement # 14.574.21.0102, 31.07.2014

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

11

REFERENCES:

[1]. Aitken J., Veres S., Judge M. (2014).

Adaptation of System Configuration under the

Robot Operating System. Proceedings of the

19th IFAC World Congress (pp. 4484-4492).

Cape Town, South Africa: Cape Town

International Convention Centre.

http://dx.doi.org/10.3182/20140824-6-za-

1003.02531.

[2]. Bolchini C., Miele A., Santambrogio M.D.

(2007). TMR and Partial Dynamic

Reconfiguration to mitigate SEU faults in

FPGAs. Proceedings of the 22nd IEEE

International Symposium on Defect and Fault-

Tolerance in VLSI Systems (pp. 87-95). Rome,

Italy. http://dx.doi.org/10.1109/dft.2007.25.

[3]. Brooks A., Kaupp T., Makarenko A., Williams

S., Oreback A. (2005). Towards component-

based robotics. Proceedings of the 2005

IEEE/RSJ International Conference on

Intelligent Robots and Systems (pp. 163-168).

http://dx.doi.org/10.1109/iros.2005.1545523.

[4]. Brooks R. (1989). A robot that walks; emergent

behaviors from a carefully evolved network.

Proceedings of the 1989 International

Conference on Robotics and Automation (pp.

692-696 vol. 2). Scottsdale, AZ, USA.

http://dx.doi.org/10.1109/robot.1989.100065.

[5]. Commuri S., Tadigotla V., Sliger L. (2007).

Task-based Hardware Reconfiguration in

Mobile Robots Using FPGAs. Journal of

Intelligent and Robotic Systems, 49 (2), 111-

134. http://dx.doi.org/10.1007/s10846-007-

9131-3.

[6]. Das S.R. (2005). Self-testing of cores-based

embedded systems with built-in hardware. IEE

Proceedings - Circuits, Devices and Systems,

152 (5), 539-546. http://dx.doi.org/10.1049/ip-

cds:20045050.

[7]. Duarte C., Martel G., Buzzel C. (2005). A

Common Control Language to Support

Multiple Cooperating AUVs. Proceedings of

the 14th International Symposium on

Unmanned Untethered Submersible

Technology. Lee, New Hampshire, USA:

Autonomous Undersea Systems Institute.

[8]. Dutt S., Verma V., Suthar V. (2008). Built-in-

self-test of FPGAs with provable

diagnosabilities and high diagnostic coverage

with application to online testing. IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 27 (2), 309-

326.

http://dx.doi.org/10.1109/TCAD.2007.906992.

[9]. Giger G., Kandemir M., Dzielski J. (2008).

Graphical Mission Specification and

Partitioning for Unmanned Underwater

Vehicles. Journal of Software (JSW), 3 (7), 42-

54. http://dx.doi.org/10.4304/jsw.3.7.42-54.

[10]. Gokhale M., Graham P., Wirthlin M., Johnson

D.E., Rollins N. (2006). Dynamic

reconfiguration for management of radiation-

induced faults in FPGAs. International Journal

of Embedded Systems, 2 (1/2), 28-38.

http://dx.doi.org/10.1504/ijes.2006.010162.

[11]. Hernandez C., Bermejo-Alonso J., Lopez I.,

Sanz R. (2013). Three Patterns for

Autonomous Robot Control Architecting.

Proceedings of the Fifth International

Conferences on Pervasive Patterns and

Applications PATTERNS 2013 (pp. 44-51).

Valencia, Spain.

[12]. Ivchenko V., Krug P., Matyukhina E.,

Pavelyev S. (2015). The Mars-500 Program

Space-Based Mobile Robot "Turist". Applied

Mechanics and Materials, 789-790, 742-746.

Doi: 10.4028/www.scientific.net/AMM.789-

790.742.

[13]. Ivchenko V., Krug P., Morozova T., Ostroukh

A., Pavelyev S. (2014). The Remotely

Reconfigurable Intelligence of the Space-Based

Mobile Robot. Journal of Engineering and

Applied Sciences, 9 (10), 389-395. Retrieved

from

http://medwelljournals.com/abstract/?doi=jeasc

i.2014.389.395.

[14]. Kleinehagenbrock M., Fritsch J., Sagerer G.

(2004). Supporting advanced interaction

capabilities on a mobile robot with a flexible

control system. Proceedings of the 2004

IEEE/RSJ International Conference on

Intelligent Robots and Systems (pp. 3649-3655

vol. 4). Sendai, Japan.

http://dx.doi.org/10.1109/iros.2004.1389982.

[15]. Li L., Chakrabarty K., Kajihara S.,

Swaminathan S. (2005). Three-stage

compression approach to reduce test data

volume and testing time for IP cores in SoCs.

IEE Proceedings - Computers and Digital

Techniques, 152 (6), 704-712.

http://dx.doi.org/10.1049/ip-cdt:20045150.

[16]. Menon P., Xu W., Tessier R. (2006). Design-

specific path delay testing in lookup-table-

based FPGAs. IEEE Transactions on

Computer-Aided Design of Integrated Circuits

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

12

and Systems, 25 (5), 867-877.

http://dx.doi.org/10.1109/tcad.2005.855955.

[17]. Merz T. (2004). Building a system for

autonomous aerial robotics research.

Proceedings of the 5th IFAC Symposium on

Intelligent Autonomous Vehicles. Amsterdam,

Netherlands: Elsevier.

[18]. Merz T., Rudol P., Wzorek M. (2006). Control

System Framework for Autonomous Robots

Based on Extended State Machines.

Proceedings of the 2006 International

Conference on Autonomic and Autonomous

Systems (p. 14). Silicon Valley, CA, USA.

http://dx.doi.org/10.1109/icas.2006.19.

[19]. Moubarak P., Ben-Tzvi P. (2012). Modular and

Reconfigurable Mobile Robotics. Journal of

Robotics and Autonomous Systems, 60 (12),

1648–1663.

http://dx.doi.org/10.1016/j.robot.2012.09.002.

[20]. Patil M, Abukhalil T., Sobh T. (2013).

Hardware Architecture Review of Swarm

Robotics System: Self-Reconfigurability, Self-

Reassembly, and Self-Replication. ISRN

Robotics, 2013, 1-11.

http://dx.doi.org/10.5402/2013/849606.

[21]. Sedcole P., Blodget B., Becker T., Anderson J.,

Lysaght P. (2006). Modular dynamic

reconfiguration in Virtex FPGAs. IEE

Proceedings - Computers and Digital

Techniques, 153 (3), 157-164.

http://dx.doi.org/10.1049/ip-cdt:20050176.

[22]. Sutton R. S., Barto A. G. (1998).

Reinforcement Learning: An Introduction.

Cambridge, MA: MIT Press.

http://dx.doi.org/10.1016/s0893-

6080(99)00098-2.

