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ABSTRACT 

 

The problem of applying of hardware-based reconfiguration for autonomous control systems of space 

mobile robots is concerned. The challenges associated with using space mobile robots for planetary 

exploration missions are described and a set of requirements on the design of such space-based robots is 

imposed. The functional structure of hardware-reconfigurable digital module for intellectual control of 

mobile space-based robots is proposed and further interaction between its functional modules and remote 

support center in different situations requiring reconfiguration is concerned. The procedures of self-check 

and self-testing of the hardware-reconfigurable digital module for intellectual control of mobile space-

based robots are described, which are necessary to ensure reliability of reconfiguration. The algorithms for 

self-testing of the hardware of the digital control module are researched, taking the advantage of on-line 

partial reconfiguration ability of FPGA. The means to achieve optimal testing coverage while minimizing 

the amount of additional testing hardware and testing time are considered. 

Keywords: Space-Based Robots, Remote Modification, Mobile Robot, Reconfigurable Computing, Field-

Programmable Gate Array (FPGA) 

 

1. INTRODUCTION  

 

Using space mobile robots for planetary 

exploration missions is associated with a number of 

challenges not present when using mobile robots on 

Earth. First, robots in space have many hardware 

limitations. The sensible parts have to be protected 

from dangerous radiations, which usually limits 

their processing power. In addition, the difference 

in gravity makes it a lot harder to make good 

articulations. This usually demands specific design 

and control procedures. Another more challenging 

issue is the fact that these robots in space have to 

operate with no direct human contact. They can 

receive new instructions and some software 

upgrades via satellites, but cannot be touched and 

repaired, and they have to follow the orders 

autonomously. 

Taking this in consideration, as well as long 

duration of planetary exploration missions, taking 

months and years, a specific set of requirements on 

the design of space-based robots is imposed [13], 

such as: 

 – High level of survivability ‒ ability to continue 

to carry out the mission in case of partial 

malfunction of mechanical parts, hardware or 

software, as well as in case of unpredictable 

changes of external environment parameters; 

‒ High level of adaptability (reserve) ‒ ability to 

continue to work in case of change of target 

(change of mission) or change of target acquisition 

way. 

Fulfillment of the above-mentioned requirements 

is possible if autonomous control systems of space 

mobile robots had the ability to be reconfigured 

(modified) according to new emerging tasks on 

strategic or tactical level or the changing 

circumstances. 
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One of the most important problems is to ensure 

continuous functioning of space-based robots 

during the whole duration of a mission and to 

provide possibility of switching to new missions 

after completion of current tasks by using new 

configuration of control modules. This problem can 

be solved with the help of real-time partial 

reconfiguration - an emerging technology in the 

field of hardware reconfiguration. Optimal solution 

would be reconfiguration of specific control 

modules of space-based robots in background mode 

without affecting the performance of any modules 

not taking part in reconfiguration. 

In this case, attention should be paid to ensuring 

the reliability of reconfiguration process. Current 

technological trends in this field include 

implementation of automated and automatic means 

for detection and localization of malfunctions. 

Alongside reliable reconfiguration process, it is 

necessary to ensure reliable transfer of 

configuration data for remote reconfiguration, as 

well as to transmit, systematize and store 

information on reconfiguration and status of control 

modules of space-based robotic devices in remote 

support center database. 

In the framework of research program "MARS-

500" of the Institute of Biomedical Problems of the 

Russian Academy of Sciences and European Space 

Agency the mobile robot-explorer "Turist" has been 

created with the purpose of expanding human 

capabilities in exploration of aggressive 

environments, including other planets [12]. 

Research revealed the disadvantages of the robot-

explorer "Turist" as well as other space-based 

mobile robots requiring manual remote control. 

Inability of the mobile robot to independently carry 

out interpretation of events and control operations 

necessary to reach mission goal was caused by the 

lack of universal intelligence and corresponding 

algorithms capable of taking into account all 

possible missions in advance and all possible 

situations emerging in the course of planetary 

missions. Solving this issue would only be possible 

with the implementation of the technology of 

autonomous remote modification of hardware. 

 

 

 

 

 

2. STRUCTURE OF HARDWARE-

RECONFIGURABLE DIGITAL MODULE 

FOR INTELLECTUAL CONTROL OF 

SPACE-BASED ROBOTS 

Considering the above-mentioned tasks, the 

system for intellectual control of mobile space-

based robots based on hardware-reconfigurable 

digital platform should include the following set of 

equipment: 

1) Reconfiguration controller, utilizing neural 

network classifier for identification of 

malfunctions which could occur in the process 

of remote reconfiguration of the intelligence of 

space-based robots [5];  

2) Reprogrammable hardware on the basis of 

FPGA, carrying out control on strategic, 

tactical and operational levels [16]; 

3) Reconfiguration server, located within 

remote supervision center, which is connected 

to space-based robots through the network 

infrastructure and performs remote control over 

a group of space-based robots, including 

coordinated reconfiguration of software and 

hardware. 

Specifications for remote reconfiguration of the 

intelligence of mobile space-based robots include 

the following: 

1) Automatic remote reconfiguration without 

operator participation [9]; 

2) Reconfiguration without physical 

exchange of hardware; 

3) Simplifying the process of technological 

improvement of the device;  

4) Updating the intelligence of space-based 

robots with state of the art technologies 

through its remote reconfiguration [10]. 

Functional specifications for hardware-

reconfigurable digital module for intellectual 

control of mobile space-based robots include the 

following [19]:  

1) Situational control, when each class of 

possible system states corresponds to a given 

class of possible solutions;  

2) Hierarchical structure of the intellectual 

control system, including strategic behavior 

planning level, tactical action planning level, 

operational (actuator) level and sensors;  

3) Justified selection of procedures to run for 

the solution of a given task on each 

hierarchical level; 

4) Automatic redistribution of tasks between 

mobile robots within a group of space-based 

robots. 
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System specification for hardware-reconfigurable 

digital module for intellectual control of mobile 

space-based robots include the following: 

1) Data exchange with other space-based 

robots working in a group; 

2) Reconfiguration of the intelligence should 

take into account configurations of similar 

space-based robots working in a group with the 

purpose of maintaining compatibility and 

common standards on data exchange [15]; 

3) Initiation of self-check by remote support 

center or locally [6]; 

4) Informing the remote support center about 

the state of mobile space-based Robot through 

warning and status messages; 

5) Continuous work of mobile space-based 

robots for the duration of the mission and after 

reaching the target with the purpose of 

switching to other missions with the use of new 

remotely modified intelligence [18]. 

Based on the above-mentioned specifications the 

following functional structure of hardware-

reconfigurable digital module for intellectual 

control of mobile space-based robots is proposed 

(Figure 1). 
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Fig.1. Functional Structure Of Hardware-Reconfigurable 

Digital Module For Mobile Space-Based Robots 

Intellectual Control 

 

Digital module for intellectual control of mobile 

space-based Robot provides communication 

between mobile robot and remote support center, 

carried out through standard wireless network 

interfaces. Space-based robots receive new 

configuration files from remote support center to 

perform reconfiguration of FPGA on external 

command. After reception of new configuration 

file, the integrity of obtained data is checked using 

the method of cyclic redundancy check. If integrity 

check is successful, new configuration is saved in 

the memory of the digital control module and can 

be later used for reconfiguration of FPGA. If 

integrity check fails, obtained data is discarded as 

corrupted and corresponding message is sent to 

remote support center. Besides that, the digital 

module for intellectual control of mobile space-

based robot sends to remote support center 

information about the status of mobile robot and 

relevant research data obtained during the mission. 

Communication between mobile space-based 

robots within a group is organized similarly. Space-

based robots belonging to a single group can 

exchange status information with each other, which 

allows them to carry out collective tasks and 

automatically replace each other in case one or 

several robots in a group become unable to fulfill 

their mission. 

Information about external environment is 

obtained by the digital control module with the help 

of video cameras and laser rangers mounted on the 

moving platform of space-based robot. Based on 

this information it issues commands to the moving 

platform and manipulator arm of space-based robot. 

Information obtained from sensors is processed in 

three steps. Initial set of digitalized data is 

registered in the memory of the digital control 

module and scaled accordingly for further 

processing. Next data interpretation is carried out 

which results in obtaining information about current 

position of the moving platform and manipulator 

arm of space-based robot in relation to the goal of 

the mission and potential obstacles. Results of data 

interpretation are then used by movement control 

and manipulator control algorithms to generate 

commands for operational devices necessary to 

reach current goal and avoid the obstacles. 

Movement control is carried out by issuing 

commands to the drives setting in motion the 

wheels of the moving platform of space-based 

robot. Manipulator control is carried out by issuing 

commands to the drives moving sections of the 

manipulator arm along their respective degrees of 

freedom. 

Reconfiguration of FPGA can be carried out on 

command from remote support center or 

autonomously in response to changes in mission 

objectives or external environment [15]. 

Reconfiguration can also be initiated to remove 

detected malfunctions in the functioning of space-

based robot [8]. 
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Self-check of the modules of space-based robot is 

carried out on initialization of the digital control 

module and then performed periodically during its 

runtime. In case self-check discovers a malfunction 

self-diagnosis procedure is initialized which 

includes analysis of diagnostic parameters during 

normal functioning of space-based robot (passive 

diagnosis) and self-testing based on a set of tests 

prepared for specific configuration. Determination 

of malfunction type and its localization is carried 

out with the help of neural network classifier. In 

case malfunction can be removed using available 

hardware resources of FPGA the reconfiguration 

procedure is initiated. In case malfunction is non-

reparable mobile space-based robots stops its 

current mission and sends corresponding message 

to remote support center. 

Self-check is also performed every time a new 

configuration is loaded into FPGA. If self-check is 

successful corresponding control modules of space-

based robot switch to running with new 

configuration. If self-check fails, control modules 

continue running with the last valid configuration. 

In case detected malfunction in the new 

configuration is reparable, another attempt at 

reconfiguration is performed, otherwise 

reconfiguration is cancelled and corresponding 

message is sent to remote support center. 

 

3. FUNCTIONAL PERFORMANCE OF 

HARDWARE-RECONFIGURABLE 

DIGITAL MODULE FOR 

INTELLECTUAL CONTROL OF SPACE-

BASED ROBOTS 

 

Interaction between functional modules of the 

digital module for intellectual control of mobile 

space-based robots can be described in a set of 

timing charts. 

Figure 2 represents timing charts of standard 

initialization procedure of the hardware-

reconfigurable digital module for intellectual 

control of mobile space-based robots. 

 

 
Fig.2. Timing Chart Of Standard Initialization Procedure 

Of The Digital Control Module  

 

According to standard initialization procedure 

first self-check of all functional modules is 

performed, which includes checking the states of 

error signals reporting general status of each 

functional module. If self-check is successful a 

request for configuration file is sent to remote 

support center accompanied by information about 

current status of the digital control module. 

After sending request for configuration file, the 

digital control module waits for data from remote 

support center. Along with configuration file, 

remote support center sends a set of tests for 

correctness check after loading the configuration 

into FPGA. After reception of data, its integrity is 

checked using the method of cyclic redundancy 

check. If integrity check is successful, the 

configuration file is loaded into FPGA. 

After loading the configuration into FPGA its 

correctness is checked using the corresponding set 

of tests. If correctness check is successful 

movement, control and manipulator control 

modules of space-based robots switch to running 

with new configuration. At this point, initialization 

procedure is considered complete and the digital 

control module switches to standard mission 

performance mode. 

During standard mission performance in case 

space-based robot receives new mission goals, the 

means of reaching the goal have to be changed or 

under other similar conditions FPGA configurations 

of movement control and manipulator control 

modules can be changed on command from remote 

support center. Figure 3 represents timing charts of 

FPGA reconfiguration procedure on command from 

remote support center. 
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Fig.3. Timing Chart Of FPGA Reconfiguration 

Procedure On Command From Remote Support Center 

 

During standard mission performance, 

communication between space-based robot and 

remote support center is carried out periodically in 

set time frames. Before communication is initiated 

self-check of all functional modules of space-based 

robot is performed. If self-check is successful, a 

request for configuration file is sent to remote 

support center accompanied by information about 

current status of the digital control module and 

research data obtained during the mission if it is 

included in current tasks of the mobile space-based 

robot. 

After sending request for configuration file, the 

digital control module waits for data from remote 

support center. If remote support center sends a new 

configuration file it should be accompanied by, 

corresponding command which signals the digital 

control module that it needs to run reconfiguration 

procedure. Along with configuration file, remote 

support center sends a set of tests for correctness 

check after loading the configuration into FPGA. 

After reception of data, its integrity is checked 

using the method of cyclic redundancy check. If 

integrity check is successful, the configuration file 

is loaded into FPGA. 

After loading the configuration into FPGA its 

correctness is checked using the corresponding set 

of tests. If correctness check is successful 

movement, control and manipulator control 

modules of space-based robots switch to running 

with new configuration. Presented time charts 

depict reconfiguration of both movement control 

and manipulator control modules but each module 

can also be reconfigured separately. 

Reconfiguration procedure does not affect current 

performance of the mobile space-based robot until 

the moment corresponding module switches to 

running with new configuration. 

Besides commands from remote support, center 

reconfiguration procedure can be initiated locally 

on fulfillment of specific conditions. For example if 

a malfunction is detected in FPGA of movement 

control or manipulator control modules the 

performance of space-based robot can be restored 

by loading configuration carrying the same 

functionality but utilizing spare hardware resources 

not affected by the malfunction. Figure 4 represents 

timing charts of FPGA reconfiguration procedure 

on detection of a malfunction. 

 

 
Fig. 4 Timing Chart Of FPGA Reconfiguration 

Procedure On Detection Of A Malfunction 

 

If periodical self-check detects a malfunction in 

FPGA of movement control or manipulator control 

modules self-testing procedure is carried out which 

localizes the malfunction and collects data for its 

classification. According to results of self-testing 

classification of malfunction is carried out. Based 

on classification results a decision is made whether 

malfunction can be removed by performing 

reconfiguration procedure using one of 

configuration files stored in the memory the digital 

control module. 

After loading the configuration into FPGA 

standard correctness check is carried out. If 

correctness check is successful movement, control 

and manipulator control modules of space-based 

robots switch to running with new configuration. 

 

4. SELF-CHECK AND SELF-TESTING OF 

HARDWARE-RECONFIGURABLE 

DIGITAL MODULE FOR 

INTELLECTUAL CONTROL OF SPACE-

BASED ROBOTS 

 

Self-check and self-testing are parts of automated 

control system monitoring the status of all modules 

of space-based robot, which is meant to detect, 

localize and classify malfunctions appearing in 

space-based robot, including malfunctions in the 

hardware-reconfigurable digital control module. 

Based on classification results detected 

malfunctions can be removed automatically by 

performing reconfiguration procedure. 
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Automated control system monitoring the status 

of all modules of space-based robot has hierarchical 

structure. Self-check constitutes the first and the 

lowest control level. Self-check includes a set of 

short procedures implemented in hardware and not 

affected by any changes in FPGA configuration. 

Malfunction in any module of space-based robot 

leads to generation of an error signal which is 

registered during self-check. Main purpose of self-

check is preventing the functioning of space-based 

robot with hardware malfunction, which could lead 

to further damage and bringing the mobile robot out 

of commission. Self-check is carried out on initial 

start-up of space-based robot and then periodically 

in set of time frames. 

Figure 5 represents the algorithm of self-check of 

hardware-reconfigurable digital module for 

intellectual control of space-based robots. 
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Fig.5. Algorithm of self-check of the digital control 

module 

 

Self-check procedure includes the following 

steps carried out sequentially: 

1) Self-check initialization. 

2) Power supply check - no errors signal 

means that all output voltages satisfy working 

conditions, otherwise a message about power 

supply malfunction is sent to remote support 

center. 

3) Reconfiguration control module check - no 

errors signal means that a valid configuration is 

loaded in reconfiguration control module and 

all necessary clock frequencies are being 

generated, otherwise a message about 

reconfiguration control module malfunction is 

sent to remote support center. 

4) Memory check - no errors signal means 

that all memory blocks successfully passed 

write and read checks, otherwise a message 

about memory malfunction is sent to remote 

support center. 

5) Operational device drives check - no errors 

signal means that all operational device drives 

are ready to receive commands from control 

modules, otherwise a message about 

operational device drives malfunction is sent to 

remote support center. 

6) Operational device control check - is 

divided into steps checking FPGA responsible 

to control over strategic, tactical and 

operational levels. Two FPGA are functioning 

on each level - active and reserve. Active 

FPGA receives data, performs data 

interpretation and generates commands 

according to current configuration. Reserve 

FPGA is used to load new configuration and 

receives control after successful correctness 

check, at the same time previously active 

FPGA switches to reserve mode. No errors 

signal means that a valid configuration is 

loaded in active FPGA and all necessary clock 

frequencies are being generated on both FPGA, 

otherwise self-diagnosis procedure is 

initialized for malfunctioning FPGA. Based on 

results of self-diagnosis detected malfunction 

can be classified as reparable or non-reparable. 

In case or reparable malfunction FPGA 

reconfiguration procedure is initialized to 

remove it, otherwise a message about non-

reparable malfunction in operational device 

control module is sent to remote support 

center. 

7) After conclusion of all self-check steps, 

timeout of a set duration takes place after 

which self-check procedure is initialized again. 

Self-check results only indicate the presence of a 

malfunction in corresponding module of mobile 

space-based robot without showing its exact 
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location. Self-diagnosis procedure performs 

localization and classification of malfunctions 

within hardware-reconfigurable digital module for 

intellectual control of space-based robots. Self-

diagnosis of hardware-reconfigurable digital control 

module includes passive diagnosis, self-testing and 

classification of malfunction type with the help of 

artificial neural network. 

Passive diagnosis is carried out by hardware 

control procedures implemented in current 

configuration and working independently from the 

main task performed by FPGA. Hardware control 

can detect errors in functioning of FPGA in 

working mode without usage of special tests. 

However, using only hardware control leads to 

significant complication of configuration and can 

not always provide full coverage. Including large 

amounts of complicated additional logic in a 

configuration can also reduce its overall reliability. 

Because of this passive diagnosis is used together 

with self-testing for initial localization of 

malfunctions or exclusively in case self-testing is 

impossible. 

Tests for FPGA are divided into two groups: 

manufacturer tests and user tests [3], [22]. User 

tests can also be divided into two types: 1) system 

integrator tests [2], [7], [21] and 2) field tests [1], 

[11], [20]. In the field devices carrying out crucial 

tasks (such as space devices) demand fast testing of 

hardware with minimal interruption of functioning 

of the device as a whole. 

In self-testing mode FPGA is reconfigured in 

such a way, that configuration under testing is 

decomposed into basic elements which are 

represented by configurable logic blocks of FPGA. 

To do this all connections of each block with 

external structure are cut. Then all blocks are 

checked with an exhaustive test (full coverage test 

[3]. Test signals are forwarded to all inputs of 

FPGA and connection nodes from test generator 

and output signals from each block are received by 

malfunction classifier. Both test generator and 

malfunction classifier can be implemented within 

the same FPGA using available hardware resources. 

As a result, simultaneous testing of all blocks and 

all connections is carried out. Connection here is 

defined as plurality of all metal traces, switching 

matrices and pass transistors taking part in forming 

a given connection. Pass transistor is a special 

connection transistor controlled by a block of 

configuration memory. In a logical matrix it makes 

up a programmable interconnect point (PIP). 

Connecting test generator to block outputs 

instead of block inputs not only allows 

simultaneous testing of connections together with 

blocks but also significantly lowers the amount of 

necessary connections between test generator and 

tested object. Instead of M*N connections, where 

M - number of block inputs, and N - number of 

blocks in a matrix, required number of connection 

amounts to N+Nin, where Nin - number of external 

inputs of tested object. 

To forward test signals to all blocks the outputs 

of test generator should be connected to the nodes 

Gi, i = 1, ... ,N formed after decomposition of the 

configuration in such a way that all inputs of each 

block received signals from different order of test 

generator output. Such connection is called correct. 

Only correct connection ensures full coverage of 

possible inputs for all blocks. Giving a node, a 

certain order number of test generator output is 

called assignment. Assignment task in the proposed 

architecture is not trivial since it is complicated by 

branching nodes. This means that assigning a 

number to a block input which is a branch of a 

branching node automatically assigns the same 

number to all other branches of this node which can 

lead to contradictions among inputs of other blocks. 

Contradictions make correct assignment for this 

block impossible (in a way that all inputs of the 

block had different numbers). This problem can be 

solved with the following statement. 

Statement 1. For every configuration, a correct 

assignment can always be found by using test 

generator with larger order number. 

Increasing order number by one leads to 

increasing test length two times. Upper limit for the 

necessary increase of order number can be 

estimated by reduction of assignment task to the 

known task of coloring in graph theory [14]. Tree 

edge coloring cannot be implemented here because 

in these task branches of a branching node are 

represented by different tree edges belonging to the 

same tree node and such edges should be assigned 

different colors. In the task in question, such edges 

should be assigned same colors (having the same 

assigned number). Tree node coloring task should 

be used instead, and the graph for the configuration 

where assignment is taking place should be built 

according to following rules (such graph is called 

converse): 

– Each node Gi, i = 1, . . . , N, of the initial 

configuration is assigned to a node of the converse 

graph; 
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– Between two nodes Gi and Gj of the converse 

graph an edge is formed if in initial configuration 

there is at least one block which is incidental to 

both nodes Gi and Gj . 

Since in initial configuration every node is a 

block output (branching or non-branching) or an 

external input (branching or non-branching) total 

number of nodes В0 in the converse graph is equal 

to 

  NinNB +=0                   (1) 

(Where N – number of blocks, Nin – number of 

external inputs). 

As is known [20], chromatic number [gamma] 

estimated through the number of nodes of the graph 

lies in the following range: 

  01 B≤≤ γ                (2) 

This shows that assignment task can theoretically 

lead to unacceptable increase of order number of 

the test generator (for complicated heavily 

branching configurations) due to timing constraints. 

This problem can be solved with the following 

statement. 

Statement 2. For every configuration, a correct 

assignment can always be found by introducing 

additional nodes through connection cuts. 

Using statement 2 brings an additional degree of 

freedom to the configuration allowing assignment 

of numbers to the branches of a branching node 

independently from each other. As a result, it 

allows avoiding increase the order number of the 

test generator. 

In a general case, finding the optimal solution for 

introducing additional nodes is a sequential search 

task. For its solution, an assignment algorithm [17] 

is proposed utilizing statements 1 and 2. Algorithm 

is based on the following ideas. 

Assignment starts from the nodes with the most 

branches. Otherwise, such nodes would have little 

freedom for assignment since they are connected to 

a large number of previously assigned block inputs. 

Non-branching nodes are assigned last since 

there will always be a free number to assign to them 

which was not previously used for this block. 

First block to cut connection with should be the 

one having an input with assigned number, which is 

not assigned to any other blocks connected to the 

same branching node. This number is assigned to 

disconnected branching node and the (one) cut 

block will always have a non-contradictory number. 

If there is no such singular block first blocks to 

cut connection with should be the ones with a 

number less frequently met (lowest entry number) 

since in such case it is likely less connection cuts 

will be needed. If there are several such options the 

blocks with the same, missing number should be 

chosen. For example if connections are cut with two 

blocks with assigned numbers (5, Gi, 4, 2) and (4, 

3, 5, Gi) the missing number for both blocks is 1. 

Then the branching node Gi is assigned number 1. 

Assignment algorithm includes the following 

steps: 

Step 1. Any node with the most branches, which 

is not yet assigned, is chosen. This node is assigned 

number 1, which determines the assignment n = 1 

to all its branches. 

Step 2. Next non-assigned branching node is 

chosen, if it exists (otherwise go to step 4). This 

node and all its branches are assigned n = 1. A 

check is made if there is an incidental block, which 

received the same assignment to two inputs: 

2а. If there are no such blocks then step 2 is 

repeated. 

2б. If there is such block then assigned number is 

increased by one: N = N + 1 (i.e. every time 

assignment attempts for the chosen node start from 

number 1 and end with assignment of the lowest 

number for which no incidental blocks have a pair 

of inputs assigned the same number). Assigned 

number is compared to the given maximum number 

Mgt for the order of test generator output: 

If n ≤ Mgt, then n is assigned to the chosen node 

and step 2 is repeated. 

If n > Mgt, then go to step 3. 

Step 3. Among incidental, blocks for the chosen 

node the ones with the lowest entry number are 

determined. Determined blocks are disconnected 

using a switch, which makes a new independent 

node Gn+1. The previously chosen node is assigned 

the lowest entry number and the new node Gn+1 is 

assigned order according to the algorithm. The 

number of nodes in the configuration now increased 

by one: N = N + 1. Go to step 2. 

Step 4. In an arbitrary order blocks with non-

assigned inputs are determined (i.e. search for non-

branching nodes is performed). Such inputs are 

assigned numbers not coinciding with already 

assigned inputs of the same block. Algorithm ends 

when all inputs of all blocks are assigned. 
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Results of assignment algorithm are used for 

routing test generator outputs to the object of 

testing. 

Figure 6 represents the algorithm of self-testing 

of hardware-reconfigurable digital module for 

intellectual control of space-based robots. 

 
 

Fig.6. Algorithm Of Self-Testing Of The Digital Control 

Module 

 

Self-testing of the object implemented on a 

programmable logic matrix structure consists of 

several stages. 

Stage 1. First reconfiguration. FPGA is loaded 

with configuration in decomposed structure 

described above. To do this PIP corresponding to 

switches on outputs of every block are opened and 

PIP connecting the test generator and malfunction 

classifier to resulting nodes are closed. 

It is worth mentioning that each switch should 

disconnect all branches from a given block output 

at once. Thus during routing process a switch 

should be put on the output of each block (and each 

external input) which would be common for all 

following branches (i.e. located before the first 

branching node). 

Stage 2. Testing of the object in decomposed 

mode. First configuration is tested in the following 

way: test generator forwards an exhaustive test to 

all logical blocks; output reaction is registered by 

malfunction classifier; malfunction classifier 

analyzes obtained data by comparison with the 

reference signature of the object and generates 

corresponding signal about technical state of the 

object. 

Stage 3. Second reconfiguration. FPGA is 

partially reconfigured in the following way: 

switches are closed; test generator and malfunction 

classifier remain connected. In this configuration, 

closed switches are tested since they remain in such 

state during standard functioning of the tested 

object. 

Stage 4. Testing with switches in closed state. 

Such test requires only two sets of data from the 

test generator (all zeros and all ones, or any set and 

its inversion) which can then be analyzed by 

malfunction classifier. But for that all block outputs 

should remain in high impedance mode. If specific 

logic matrix can not provide it, the problem can be 

solved through switching means. For example, 

another switch can be sequentially connected to 

switches on block outputs. In the first configuration, 

such switch would be closed and its state is tested 

on stage 2. In the second configuration, this switch 

is opened and removes tested switch on block 

output from the output signal of that block. This 

allows testing of switches on the outputs of each 

block: signal from the test generator passes through 

the tested switch in direction opposite to the one 

during standard functioning of the tested object and 

is registered by malfunction classifier. 

To reduce the load on the test generator outputs 

and shorten the length of connections between the 

test generator and the tested object it is proposed to 

implement several test generators in the logical 

matrix, each providing tests for its specific part. 

Results of passive diagnosis can be used to 

determine the parts of FPGA configuration, which 

require testing. 

 

5. RESULTS 

Functional structure of hardware-reconfigurable 

digital module for mobile space-based robots 

intellectual control is designed with capability for 

on-demand reconfiguration of hardware, which may 

be required due to switching to another mission, 

acquisition of new tasks on strategic or tactical 

level or changes in external environment. 

Reliability of reconfiguration is ensured through 

multi-step process of self-check and self-testing, 

taking the advantage of on-line partial 

reconfiguration ability of FPGA. 

Implementation of the proposed algorithm of 

self-testing of hardware-reconfigurable digital 

module for intellectual control of space-based 
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robots provides 100% detection of all standard 

malfunctions (single and multiple errors, constant 

and logical errors, short circuits and connection 

losses, but not the ones multiplying the number of 

logical block inputs) and almost all malfunctions of 

non-standard types (i.e. multiplying the number of 

logical block inputs). Using exhaustive testing 

makes it not necessary to design specialized testing 

sequences. Including the testing hardware into 

FPGA configuration does not bring additional 

latency to existing nets. Parallel testing of logical 

blocks and relatively short length of exhaustive test 

result in lower testing time. Additionally the 

complexity of testing hardware does not depend on 

complexity of the tested object itself. 

Testing of the hardware-reconfigurable digital 

module for intellectual control of mobile space-

based robots was carried out using seven sets of 

configuration files which included different types of 

malfunctions arranged arbitrarily: single constant 

error in a configuration; multiple constant errors; 

single logical error in a configuration; multiple 

logical errors; single short circuit or connection loss 

in a configuration; multiple short circuits or 

connection losses; multiplication of logical block 

inputs. Figure 7 represents the results of detection 

of malfunctions and identification of reparable 

malfunctions by the classifier. 

 
Fig.7. Detection Of Malfunctions And Identification Of 

Reparable Malfunctions 

 

Achieved results show that implementation of 

hardware-reconfigurable digital module for mobile 

space-based robots intellectual control with the 

proposed functionality of self-testing allows the 

detection of almost all hardware malfunctions that 

may occur during runtime or reconfiguration 

process and in significant amount of cases 

autonomous repair with the use of reconfiguration 

ability can be carried out. 

 

 

 

 

6. CONCLUSION 

Proposed structure of hardware-reconfigurable 

digital module for intellectual control of space-

based robots is designed to improve survivability 

and self-sufficiency of mobile space-based robots 

with the help of technologies of remote 

modification of intelligence based on 

reconfigurable hardware. Developed concept brings 

together the methods and technologies of artificial 

intelligence and capabilities of real time partial 

reconfiguration of modern FPGA as the means to 

adapt to unpredictability of external environment. 

Practical implementation of this concept proposes 

selective usage of most suitable knowledge 

processing technologies depending on specific task, 

properties of the object of control, its functional 

purpose, working conditions etc. Implementation of 

the developed technologies will contribute to the 

efficiency of space-based robots performance and 

thus to the reduction of space mission costs. 

The problem of utmost importance is the 

reliability of dynamically reconfigurable 

autonomous control system, which gives prospect 

to further development of self-check and self-

testing procedures of hardware-reconfigurable 

digital module for intellectual control of space-

based robots. In the nearest future research on 

development of intellectual malfunction classifier, 

which could allow application of partial 

reconfiguration of FPGA to restore malfunctioning 

configuration using free hardware resources is 

being envisioned.  

Practical implementation of the proposed 

hardware-reconfigurable digital module for 

intellectual control of space-based robots is being 

developed in the framework of further improvement 

of the space-based mobile robot-explorer "Turist" 

carried out by the Moscow State Institute of 

Computer Science Radio Engineering and 

Electronics. Implementation of autonomous remote 

modification of hardware would improve 

survivability and allow the mobile robot to continue 

its work in case of change of environment or 

mission goals. For this purpose the proposed 

technologies are being adapted to the use with 

specific set of on-board equipment. 
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