
Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

609

MULTI-CRITERIA ANALYSIS AND ADVANCED
COMPARATIVE STUDY BETWEEN AUTOMATIC

GENERATION APPROACHES IN SOFTWARE
ENGINEERING

1
 ZOUHAIR IBN BATOUTA,

2,1
 RACHID DEHBI,

1
 MOHAMMED TALEA,

 1
 OMAR HAJOUI

1Hassan II University, Faculty of Science Ben M’Sik, LTI Laboratory, MOROCCO
2Hassan II University, Faculty of Science Aïn Chock, LIAD Laboratory, MOROCCO

E-mail: zouhair.ibnbatouta@gmail.com , dehbirac@yahoo.fr, taleamohamed@yahoo.fr ,
hajouio@yahoo.fr

ABSTRACT

New development methods have emerged in recent years. These techniques are based on models and
software components, they aim to facilitate integration, automation, and generation of complex
applications, as well as mapping between different platforms based on forward and reverse engineering.
These approaches are based on Model Driven Engineering (MDE) which separates the business logic of an
application from the technology used to achieve it. This paper aims to provide a best understanding of MDE
aspects and presents a comparative study between different approaches of software development
automation and code generation, in addition a big contribution of this article is to present the forces and
weaknesses of each approach based on a multi-criteria analysis method, this is our first step to design and
implement concrete and effective solutions for automatic generation issues, Moreover, this study will also
help the professionals in decision-making by facilitating the choice of The best approach to be used
according to desired criteria and their importance. Our article goes into a global objective that aims
automating the generation.

Keywords: Model Driven Engineering (MDE), Forward Engineering, Reverse Engineering, Software

Development Automation, Code generation.

1. INTRODUCTION

Nowadays, computer applications are more
important in daily living, these applications have
become increasingly complex, and so is their
realization. In addition, Contracting Owners are
more and more demanding in terms of quality, cost
and delivery time. Another aspect that can engender
many problems, is the diversity of used platforms
for implementation [1]-[5], which require the
intervention of more and more experts in business,
functional and technical fields.

In order to facilitate application development,
software engineering has greatly improved over the
last few years, moving from procedural technology
towards the Object-oriented technology in the 70s,
and Components Oriented technology in the 90s
[2]. However, the main software engineering
problems couldn't have been overcome, namely
interoperability issues, development and migration
costs, delivery deadlines issues. Thus, it is

necessary to adopt the approach of model driven
engineering in lieu of code driven engineering [3].

Model Driven Engineering emphasizes some more
important aspects of models. Indeed, in this
approach, the model goes from a simple
contemplative vision, whose aim is to improve the
documentation and specifications, towards a
productive vision regarding final code generation
for a given platform [4].

Even-though MDE has made some significant
contributions to today's world software engineering,
there are still numerous challenges that need to be
profoundly addressed [5]. In this article we present
a detailed comparative study between different
approaches, used in the automatic applications
generation. We will start by describing model
driven engineering basic languages and standards.
After that, we will define each generation approach
apart and the standards on which it is based. Then,
we will carry out a comparative study between the
different approaches, explaining in detail the
advantages and disadvantages of each one of them.

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

610

Next, we will establish a conformity criteria
repository to test the different approaches.

2. MODEL DRIVEN ENGINEERING

2.1 Definition
Model driven engineering appeared as early as
2000 as an improvement to code driven engineering
[2]. It sets the model at the heart of the
development process in order to facilitate automatic
processing through the models reuse and
transformation. The model goes from a static and
contemplative vision to a productive vision (Figure
1) [4].

Fig. 1. Evolution From The Contemplative

Vision/Productive

Model Driven Engineering (MDE) advocates to
support the well known principle of separation of
concerns through the extensive use of models in all
the steps of the software development cycle [6]-[7]-
[8]. Indeed, it distinguishes the business layer of the
implementation platform to automate and facilitate
the transformation process. We will immediately
explain some languages and basic standards for
model driven engineering.

2.2 Basic MDE Languages And Standards

• Metamodel: or surrogate model is a model
of a model, each model must comply with
its metamodel.

• MODEL Transformation Language: it is a
language that allows model
transformation. Examples : ATL, GReAT,
JTL, Kermeta, Lx family, Object
Management Group (OMG) standard
QVT, M2M Eclipse based on QVT
standard [9]-[12].

• Model-to-text transformation languages:
allows model to code transformation.
Exemples : MOFM2T based on QVT
standard, M2T Eclipse, Epsilon
Generation Language (EGL) [10]-[12]

• Domain specific Language (DSL): allows
to create metamodels. Examples: MOF:
OMG, JMI Java API for manipulating
MOF models.[9]-[10]-[12]-[25]

• XML Metadata Interchange (XMI): the
OMG standard that allows model
conversion to XML [9]-[10]-[12].

• The Web Ontology Language (OWL)
which is a semantic markup language for
publishing and sharing ontologies on the
World Wide Web [11]-[12].

• The Common Warehouse MetaModel
(CWM): it standardizes a complete,
comprehensive metamodel that enables
data mining [12].

3. MDE APPROACHES

In this section, we will see the different methods
that exist in the MDE and allow the automatic or
semi-automatic generation of applications. These
methods are classified in three major approaches:
the generative approach, the interpretive approach
and the hybrid approach [13]-[14]-[15]. We will see
the definition and standards of each approach, as
well as the existing tools in the market that are
based on each one, after that, we will make a
comparative study and Multi-criteria analysis
between these approaches.

3.1 Generative Approach

3.1.1 Definition

The generative approach is essentially based on the
transformation of high-level abstraction models to
low-level abstraction models or possibly to the
code. This approach involves taking multiple input
models to turn them into final code through
successive transformations that may use specific
models for these transformations [13]-[14]-[15].

This method is widely used in the MDE, we can
take for example LMS Generator which is a
generation system for eLearning platforms [35]-
[36]-[38]. Figure 2 shows the different steps of this
approach, starting with high level models that can
be refined and transformed to lower-level models,
with the possibility of reverse engineering to rectify
the upstream models.

Fig 2: MDD Generative Approach

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

611

In the next section, we will explain the most used
standards for the current approach.

3.1.2 Standards

In this section, we will see three very well-known
and used standards in this approach. Namely, the
OMG MDA standard, the OPM standard and
finally the Microsoft Domain-Specific Language.

3.1.2.1 MDA standard

MDA is a software development lifecycle method
that was introduced by the Object Management
Group (OMG) in 2001. MDA is among the
essential standards used by the tools adopting the
generative approach, it is based on the separation of
concerns concept.

 The main idea behind MDA is to use models as
core development artifacts and thus be able to
separate platform specific data from the software
development process. Developing applications
without platform specific terms makes it easier and
less costly to port them to different platforms [16].
This makes easier the multi-target code generation:
write once, run everywhere; model once, generate
everywhere [17].

A. MDA development process:

The two main artifacts of MDA are models and
models transformation, we can distinguish four
important models:

• Computation Independent Model CIM: It
is the first model of the MDA approach, it
allows specifying and modeling customer
needs. Despite the importance of this
model, it is not always taken into account
by the tools using the MDA approach
[16]-[37].

• Platform-Independent Model PIM: This is
one of the major MDA models. It allows
the separation of the application business
aspect from the implementation platforms,
in order to facilitate the generation of the
application in different target platforms
with a minimal cost [16]-[37].

• Platform Specific Model PSM: This is the
second important model of the MDA
approach. It follows from the PIM
transformation. This model is related to an
execution platform, it is the closest low-
level model to code and can easily be
converted to the corresponding platform
code [16]-[37].

• Platform Description Model PDM: It
contains information for models'
transformation to a platform. Basically, it
allows the passage from PIM to PSM. This
model should normally be delivered by the
platform builder to facilitate this
transformation [16]-[37].

Figure fig3 explains the process of making an
application following the MDA standard:

 Fig 3: Transformation Process According To

MDA

Figure fig4 shows an example of models utilization
in order to realize an application:

 Fig 4: Example Of Using Models To Realize An

Application

B. MDA 4-layer architecture:

In the OMG proposed approach “MDA”, a multi
layer architecture was defined, it is called “four-
layered architecture”. It is based on the following
concepts: models, metamodels and meta-
metamodels. The layers in that architecture are
called M0, M1, M2 and M3. Each layer depends on
the layer above and represents somehow its

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

612

instance, except for the layer M0, which does not
depend on any layer, since it is the highest layer.

M0: it represents the real world, Layer M0 specifies
user objects that are instances of the UML user
model classes [17]-[18].

M1: This layer is based on elements, which
represent models. An example would be a UML
model of a software system. M1 layer is a model of
the M0 layer user data [17]-[19]-[20].

M2: It contains models of layer M1 models. M2
models are known as metamodels [17].

M3: It contains models of layer M2 models. M2
elements are known as meta-metamodels.MOF is
the standard for defining the layer M3 elements
[17]-[19].

Figure fig5 presents a 4 levels architecture for the
MDA approach:

 Fig 5: MDA 4 Levels Architecture

C. UML profiles:

A UML profile is a specification of a UML model,
it provides a generic extension mechanism for
customizing UML models for particular domains
and platforms [21]. UML Profiles are widely used
in the MDA approach, especially for PSM models
that depend on the execution platforms like J2EE or
.Net [22]. The figure fig6 shows an example of
profiles use in the MDA approach:

Fig 6: UML Profile For MDA

3.1.2.2 OPM standard

The OPM methodology (Object Process
Methodology) combines two main and important
concepts, namely the object and process. It is an
extension of the object-oriented design based on
objects. The ability to unify the object and the
process in a single model made this approach a
robust and reliable method to use [14]-[23].

This method contains two main aspects, namely
OPD diagrams (Object-Process Diagrams), which
are graphical models, and the OPL, which is the
textual writing language equivalent to these models.
Graphic models are well organized and follow a
well-defined design. They are made up of entities,
fundamental structural relations and procedural
links. The OPL is very a strong language, indeed, it
can be read by humans and at the same time it can
be interpreted by machines, consequently it is an
inter-exchangeable language [23]-[24].

Table tab1 shows the OPM method essential
entities:

Tab 1: OPM Entities

3.1.2.3 Microsoft domain-specific language

Another variant of the IDM is the DSL tools from
Microsoft that allows to create specific DSL, in
order to facilitate code generation, Microsoft DSL
[25]:

• Gives the possibility to work on a domain
specific language via a graphical designer
(serialized in a proprietary XML format).
Thus, one can define and edit those
languages.

• Allows setting designer definitions via a
proprietary XML format, this format is the
source to generate the code (without any
manual intervention), which implements
graphical modelers of the DSL.

• Includes Code Generators that take a DSL
definition and a designer producing the

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

613

code that implements the graphical editors
[25].

• Includes a framework to define code
generators based on template languages
that take an instance of a domain model
and generates code based on the template
[25].

3.2 Interpretive Approach

3.2.1 Definition

The interpretive approach is different from the
generative approach because it does not generate
the final code, it uses directly interpretable models,
so there is no need of an intermediary execution
language to interpret the application, thus the model
is considered as interpretable code. Tools based on
this approach generally combine several executable
models to launch the application, and that using an
adequate internal interpreter. In the next section, we
will see an important standard for this approach,
namely the OPG (Open Process Graph) [13]-[14]-
[15]-[27].

3.2.2 OPG standard

The Object process graph incorporates the concept
of a graph-oriented object database model. It is
mainly based on models direct interpretation over
three essential aspects; namely the process aspect
that represents the application business logic, the
user interface aspect which represents the client and
end user view, and finally the database aspect that
allows the application data storage [27].

Direct interpretation of this graph is used to start
the application without needing the intermediate
code. Tools using this approach usually have a
powerful interpreter for combining the
aforementioned three aspects, in order to perform
the application execution.

The OPG incorporates various elements of the
object-oriented approaches in order to represent the
business aspect of the application, such as classes,
methods, various relational databases elements as
well as various graphical controls required for user
interface development [27].

Figure fig6 shows a diagram explaining the OPG
process.

Fig 6: OPG Diagram

3.2.3 Executable UML

Executable UML is a software development
technique based on the concept of domain or
aspect. In Executable UML, a system is a set of
domains which represent its subject matters.
Executable UML allows to model a domain in the
level of abstraction of its subject matter, in an
independent way of any implementation concern
[28].

The obtained domain model is composed of four
elements. The first element is the domain chart,
which offers a view of the modeled domain and its
dependencies with other domains. The second one
is the class diagram, it provides the definitions of
the domain classes and their associations. The third
element is the statechart diagram, this latter
provides the following definitions for the classes or
their instances: the states, the events and the state
transitions. The last element is the action language,
this one aims to define actions or operations which
apply to model elements in order to process them
[28].

Executable UML can be used either as an
executable code or as documentation.

3.3 Hybrid Approach

A new approach has emerged combining both
generative and interpretive approaches. This
approach tries to find a balance between these two
methodologies. For example, the model interpreter
can be enriched by generated code, and that in order
to facilitate interpretation [13]-[14]-[15], without
having to generate all the application code, the
model keeps a place in the final application and can
act directly at runtime. Figure fig7 shows an
example of this combination of generated code and
models.

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

614

Fig 7: Hybrid Approach Explanatory Diagram

3.4 Tools

Table tab2 shows the commonly used generation
tools on the market and the corresponding
approaches:

Tab2: Example Of Generation Tools With Their

Approach

4. COMPARATIVE STUDY OF MDE

APPROACHES

The existence of these three approaches of
automation makes it difficult to choose among
them, the objective of this section is to make an
advanced comparative study between these three
concepts. This study will be performed in three
parts, the first containing the advantages of each
approach, the second contains the downsides and
the last contains a summary of the comparison
according to well-defined criteria.

4.1 Advantages

4.1.1 Generative approach

The generative approach is widely used in
automation, due to the fact that compared to the
interpretative approach, it generates interpretable
code depending on a given platform which has

several advantages. Among the generative method
strengths, we can name:

• Code generation to the desired platform:
Indeed the tools based on this approach are
generally used to transform the high level
models to several types of platforms as
needed.

• Separation of development environments:
This approach allows to separate the
modeling environment dedicated to the
development and model transformations,
from the execution environment dedicated
to the interpretation of the final code. This
gives developers a second degree of
freedom since they can act on the models
or on the generated code.

• Faster Execution time: The generated
code in a given platform is easier to
interpret than a model or a set of high level
models or even of higher level, since the
code level is the lowest model that can be
generated. It allows faster execution and
therefore a very significant time saving
compared to the performance of models
execution.

• Optimized applications in the side of
targeted software: Since the targeted
software of transformations is chosen from
the beginning if necessary, it helps to
better optimize the generated code in both
functions and database storage. This leads
to more reliable and better applications.

• Modernization and Reverse Engineering
easier: The software modernization is very
important, given the continuous evolution
of development and execution platforms.
Reverse engineering is the process
allowing to move from a final application
to a model or a set of specific models,
which can also be described by the word
transmodeling. Having an existing code
facilitates the transmodeling to the closest
low level models, which optimizes the
process of modernization.

• Higher models security: The models are
not exposable given that the interpreter
needs only the generated code, it allows
great protection to models that are
independent of the execution platform, and
therefore isolated to intrusion attacks.

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

615

4.1.2 Interpretive approach

The interpretive approach is also very present in the
generation and automation tools, it has several
strengths that make more and more software use it.
Among the interpretive method strengths, we can
mention:

• Simplified process: In the absence of a
final generated code, the model becomes
more important in this approach, it is
directly executed by the interpreter, and
therefore the development process
becomes reduced and simpler.

• Easy implementation and use of the
environment: The development
environment is easy to implement since
there is no multitude of generation target
areas. The tools use their own technologies
to directly interpret the different aspects of
the used models, be it business or
database.

• Reduced development time: This is due to
the minimum number of transformations
between models, the nonexistence of high-
level model transformations to low level
ones or to the code patterns which take a
considerable time.

• Directly changing the visible model in the
interpretation: This simplifies the
correction of errors and models
optimization, no need to go through a
second execution platform or the
generated code to detect coding issues.

4.1.3 Hybrid approach

The hybrid approach try to takes a bit from the
advantages of both approaches, among the hybrid
approach strengths, we can name:

• Semi generation de code: even if the
model can act directly at runtime, a
generated code is added to facilitate the
process of interpretation.

• Reasonable interpretation time: code
artifact belong to a lower layer so it reduce
the time of execution even if the model
involvement can limit a bit this faculty.

• Shorter process: the presence of both
executive models and generative code
make the process lighter since it is not
necessary to transform all the models into
code artifact.

• Reasonable development time: it is not
necessary to transform all models to code
layer which decrease the time of
realization.

4.2 Disadvantages

4.2.1 Generative approach

The generative approach uses a large number of
models and therefore more transformations are
required between high-level models and low-level
ones. This makes the development process heavier
and increases the time of applications realization.

The diversity of the possible target code generation
platforms makes the development more complex.
Developers must be experts and have global notions
about the different possible programming
languages.

4.2.2 Interpretive approach

The interpretative approach has several
disadvantages. Among them, we can name, fewer
degrees of freedom, the use of platforms set by the
generation tool provider, which makes the
effectiveness of the generated implementation
questionable since the used target tools are not
always optimal.

Another disadvantage is the execution time of the
resulting solution, which is longer because the
models are relatively more difficult to interpret than
the executable code. Another weakness of this
approach is the models security since these models
are exposable because these models are considered
as a code, and thus vulnerable to attacks. The
modernization also becomes more difficult as
reverse engineering is heavier because it is always
more challenging to go from a final solution to a
complex high level model.

4.2.3 Hybrid approach

The hybrid approach has several weaknesses,
among them:

• Limited use of platforms: the developer
must necessarily use the templates and
target languages imposed by the provider
of the solution.

• Exposed models: models are partly
exposed due to their importance in
execution and therefore more difficult to
secure.

• Slow modernization: the mixture between
the model and the code generate makes the
more difficult the transmodeling as well as
the reverse engineering.

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

616

• Longer execution time: the execution
procedure shall combine the results of
interpretation of models and those of the
generated code and as a result the
slowness in the implementation.

4.3 SWOT Analysis

In this section we present a SWOT analysis
summarizes the strengths and weaknesses of these
approaches:

Generative
Positives • Code generation to the

desired platform
• Separation of development

environments
• Faster Execution time
• Optimized applications in

the side of targeted
software

• Modernization and
Reverse Engineering
easier

• Higher models security
Negatives • large number of models

• more transformations are
required

• heavy development
process

• big time of applications
realization

• the development more
complex

• High level of expertise
required

Interpretive
Positives • Simplified process

• Easy implementation and
use of the environment

• Reduced development
time

• Directly changing the
visible model in the
interpretation

Negatives • fewer degrees of freedom
• Limited use of platforms
• target tools are not always

optimal
• Longer execution time
• More difficult

interpretation
• Models are vulnerable to

attacks
• More difficult

modernization
• Reverse engineering is

heavier
Hybrid

Positives • Semi generation de code
• Reasonable interpretation

time
• Shorter process
• Reasonable development

time
Negatives • Limited use of platforms

• Exposed models
• Slow modernization
• Longer execution time

 Tab3: SWOT Analysis

4.3 Multi-criteria comparative study:

4.3.1 Multi-criteria analysis:

After seeing the advantages and disadvantages of
each approach, we will now develop a multi-criteria
analysis between these approaches. Multi-Criteria
Decision Analysis, or MCDA, is a valuable tool
that can be applied to many complex decisions. It
can solve complex problems that Include
qualitative and/or quantitative aspects in a decision-
making process.
The score of an approach is calculated based on a
number of criteria. So far we have identified ten ;
Indeed, based on the characteristics of each of the
approaches presented in the comparative study and
the SWOT analysis presented by the front, we have
determined ten important criteria: Adaptability,
Required skills, Execution time, Development time,
Bases and standards, Generation Simplicity, Fields
of application, Integration of new generators,
Models’ Security, Reverse Engineering.

4.3.2 Multi-criteria analysis method:

To make the comparison between the approaches
using a number of criteria, there are several
possible mathematical methods. These methods can
be divided into three main families [30]-[31]-[32]-
[33]-[34]:

• Complete aggregation (top-down

approach): This approach seeks to
aggregate the n criteria to reduce them to a
single criterion.

• Partial aggregation (bottom-up

approach): This approach seeks to
compare potential actions or rankings to
each other, and to establish between them
outranking relations.

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

617

• Local and iterative aggregation: This
approach looks primarily for a starting
solution. Thereafter, we proceed to an
iterative search to find a better solution.

The table tab3 shows the different existing multi-
criteria methods sorted by family [30]-[31]-[32]-
[33]-[34]:

 Tab4: Example Of Multi-Criteria Analysis Methods

4.3.3 Weighted Sum Method (WSM):

For our analysis, we chose the Weight Sum Method
(WSM). Indeed, this method allows to find the best
possible approach by assigning a weight to each
comparison criterion, it allows to take into account
all the criteria according to their value and without
a criterion penalizing the other criteria [30]-[31]-
[32]-[33]-[34].

This method is based on five key elements:

• Potential n actions set

A={a1,a2,a3,…,an} ai, where i=1,2,…,n

• M different criteria cj where j=1,2,…,m

• Criteria weights pj for each criteria where
j=1,2,…,m

• Evaluations or judgments eij for each
action on each criteria where i=1,2,...,n,
j=1,2,…,m

• max or min ∑eij*pj for i=1,2,…,n, in our
case we need to maximize this function to
have the better solution

4.3.4 Comparison criteria and weight

We present in this chapter the ten comparison
criteria cited on which the comparative study will
be based, we notice that these criteria are based on
the characteristics of each of the approaches
presented in the comparative study and the SWOT

analysis presented by the front, we summarized all
the characteristics (strengths and weaknesses) in ten
global criteria to ensure better analysis and
optimize the comparison, these criteria are:

• C1 : Adaptability : It is the power to
adapt to different platforms

• C2 : Required skills : The larger the
required skills are, the more complex and
exploitable the approach is

• C3 : Execution time : The running time
is critical in judging of the effectiveness of
an approach.

• C4 : Development time : the more
efficient the approach is, the more the
development time is reduced

• C5 : Bases and standards : It is
paramount that the approach is based on
international standards, the more known
the standards are, the more effective the
approach is.

• C6 : Generation Simplicity: The
generation process must be as short as
possible and as effective as possible

• C7 : Fields of application: This criterion
is used to verify whether the approach is
used in different fields (web, mobile
application, cloud...) or just for a reduced
domain.

• C8 : Integration of new generators:
This criterion is very important because of
continuous progress of development
platforms, it is therefore essential that the
approach ensures the integration of
application generators to new platforms.

• C9 : Models’ Security: The more the
model is exposed, the less it is secure.

• C10 : Reverse Engineering : The
approach that facilitates reverse
engineering is favored over other
approaches, due to the fact that an
important aspect of the MDE is the
modernization of legacy applications.

These criteria are classified according to the
following order of importance:

Adaptability = Reverse engineering > Development time =
Generation Simplicity = Field of application = Integration of
new generators = models' security > Bases and standards =
Execution time = Required skills

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

618

And therefore the WSM weight accorded are as
represented in tab4 below:

Criteria Weight
Adaptability - Reverse engineering 4

Development time - Generation
Simplicity - Field of application -

Integration of new generators - models'
security

3

Bases and standards - Execution time -
Required skills

2

Tab5: Criteria Weight

4.3.5 Multi-criteria choice matrix:

The first step in applying the WSM method is the
carrying out of the multi-criteria choice matrix.
This matrix’ columns contain the approaches to be
compared and its lines contain the different criteria
with the weight assigned to each criterion according
to its importance. In cells there is the score given to
each criterion approach based on the detailed
comparative study of the approaches, that score can
have three values: 3 meaning GOOD, 2 meaning
MEDIUM and 1 meaning LOW [30]-[31]-[32]-
[33]-[34]:

• 3: means that the intended approach is
good for the given criterion.

• 2: means that the intended approach is
average for the given criterion.

• 1: means that the intended approach is low
for the given criterion.

Table TAB4 represents the resulting multi-criteria
choice matrix:

Tab6: Multi-Criteria Choice Matrix

4.3.6 Curve and comparison histogram:

Figure Fig8 shows the distribution of the three
curves representing the final scores for each
approach against the comparison criteria.

Fig8: Distribution Of Ratings Against The Criteria

The histogram in Figure Fig9 shows the final score
for each approach. The best score obtained is 2.5 /
3, it shows a net benefit to the generative approach
against the set of selected criteria and over the other
approaches, it is followed by the interpretative
approach, and the hybrid approach comes last. We
can notice that none of these approaches could
reach the perfect score 3/3 according to this
comparative approach.

Fig9: Approaches Final Notation

5. CONCLUSON

The model-driven engineering plays a very
important role in the generation of applications and
simplifying the development process. This article
has enabled us to understand all MDE aspects and
usefulness, and to see in detail the approaches,
namely the generative approach, interpretive and
hybrid with the advantages and disadvantages of
each one of them. We also carried out a detailed
comparative study of these approaches in order to
classify them according to defined criteria by using
the WSM method, we have seen that these
approaches still have many challenges, be it in the
models’ security, the detection of generation errors,
complexity of use particularly for simple and non-
complex applications. Another big challenge is the
difficulty of integrating new code generators due to
the rapid development of execution and deployment
platforms, interoperability between MDE tools
belonging to different approaches. As future work,

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

619

we will present solutions for these issues. This
work present this work gives a great contribution
also for professionals to help them choose between
different existing approaches, and this according to
their needs and criteria that matter most to them, in
addition our article goes into a global objective that
aims automating the generation.

REFRENCES:
[1] KENT, Stuart. Model driven engineering.

Integrated formal methods, Springer Berlin

Heidelberg, 2002. p. 286-298.
[2] BÉZIVIN, Jean. From object composition to

model transformation with the MDA, tools.

IEEE, 2001. p. 0350.
[3] LEVEQUE, Thomas; ESTUBLIER, Jacky;

VEGA, German. Extensibility and Modularity
for Model Driven Engineering Environments,
Engineering of Computer Based Systems,

2009. ECBS 2009. 16th Annual IEEE

International Conference and Workshop on

the. IEEE, 2009. p. 305-314.
[4] DE MIGUEL, Miguel; JOURDAN, Jean;

SALICKI, Serge. Practical Experiences in the
Application of MDA, ≪ UML≫ 2002—The

Unified Modeling Language. Springer Berlin

Heidelberg, 2002. p. 128-139.
[5] García Díaz, V., Valdez, N., Rolando, E.,

Espada, J. P., Bustelo, P. G., Cristina, B and
Montenegro Marín, C. E. (2014). A brief
introduction to model-driven engineering.
Tecnura, 18(40), 127-142.

[6] Etien, A., Muller, A., Legrand, T., and Blanc, X.
(2010, March). Combining independent
model transformations. In Proceedings of the

2010 ACM Symposium on Applied Computing
(pp. 2237-2243).

[7] Miller. J., Mukerji. J Mda guide version 1.0.1.
Technical report, Object Management Group

(OMG) (2003)
[8] Selic. B, The pragmatics of model-driven

development. IEEE Software 20(5) (2003)
19–25

[9] Czarnecki, K., & Helsen, S. (2003, October).
Classification of model transformation
approaches. In Proceedings of the 2nd

OOPSLA Workshop on Generative

Techniques in the Context of the Model

Driven Architecture (Vol. 45, No. 3, pp. 1-
17).

[10] MOF Model to Text Transformation Language,
v1.0 OMG Available Specification
(http://www.lifl.fr/~dumoulin/enseign/pje/doc
s/MTL-08-01-16.pdf)

[11] Djurić, D., Gašević, D., & Devedžić, V. (2005).
Ontology modeling and MDA. Journal of

Object technology, 4(1), 109-128.
[12] MDA® Specifications,

(http://www.omg.org/mda/specs.htm#CWM)
[13] Meijler, T. D., Nytun, J. P., Prinz, A., &

Wortmann, H. (2010). Supporting fine-
grained generative model-driven evolution.
Software & Systems Modeling, 9(3), 403-424

[14] Nikola Tankovic, Model Driven Development
Approaches: Comparison and Opportunities,
(https://www.fer.unizg.hr/_download/reposito

ry/N.Tankovic,_rad_za_KDI.pdf)
[15] Tankovic, N., Vukotic, D., & Zagar, M. (2012,

June). Rethinking model driven development:
analysis and opportunities. In Information

Technology Interfaces (ITI), Proceedings of

the ITI 2012 IEEE 34th International

Conference on (pp. 505-510).
[16] OMG. MDA Guide version 1.0.1, 2003. OMG

Document: omg/2003-06-01.
[17] Chaouni, S. B., Fredj, M., & Mouline, S.

(2011). MDA based-approach for UML
Models Complete Comparison. arXiv preprint

arXiv:1105.6128
[18] Bezivin, J. (2004, November). Model

Engineering for Software Modernization. In

WCRE (p. 4).
[19] Kleppe, A. G., Warmer, J. B., & Bast, W.

(2003). MDA explained: the model driven
architecture: practice and promise. Addison-

Wesley Professional.
[20] Atkinson, C., & Kühne, T. (2003). Model-

driven development: a metamodeling
foundation. Software, IEEE, 20(5), 36-41.

[21] Rodrigues, A. W. D. O., Guyomarc'h, F., &
Dekeyser, J. L. (2011). A modeling approach
based on uml/marte for gpu architecture.
arXiv preprint arXiv:1105.4424

[22] Fuentes-Fernández, L., & Vallecillo-Moreno, A.
(2004). An introduction to UML profiles.
UML and Model Engineering, 2

[23] Aharoni, A., & Reinhartz-Berger, I. (2008). A
domain engineering approach for situational
method engineering. In Conceptual Modeling-

ER 2008 Springer Berlin Heidelberg. (pp.
455-468).

[24] Reinhartz-Berger, I., & Dori, D. (2004). Object-
Process Methodology (OPM) vs. UML-a
Code Generation Perspective. In CAiSE

Workshops (1) (pp. 275-286).

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

620

[25] Pelechano, V., Albert, M., Muñoz, J., & Cetina,
C. (2006, October). Building Tools for Model
Driven Development. Comparing Microsoft
DSL Tools and Eclipse Modeling Plug-ins. In

DSDM.
[26] Van Deursen, A., Klint, P., & Visser, J. (2000).

Domain-Specific Languages: An Annotated
Bibliography. Sigplan Notices, 35(6), 26-36.

[27] Gold, S. A., Baker, D. M., Gusev, V., & Liang,
H. (2008). U.S. Patent No. 7,316,001.
Washington, DC: U.S. Patent and Trademark

Office
[28] Object Management Group, “Semantics of a

foundational subset for executable uml
models specification, version 1.0,” 2011.
[Online]. Available:
(http//www.omg.org/spec/FUML/)

[29] Ben Mena, S. Introduction aux méthodes
multicritères d'aide à la décision, Biotechnol.

Agro. Soc. Env. 4(2). 83-93, 2000.
[30] Olson, D. L. (2001). Comparison of three

multicriteria methods to predict known
outcomes. European Journal of operational

research, 130(3), 576-587.
[31] Schärling, Alain, Décider sur plusieurs critères,

Presses Polytechniques Romandes, 1985, 304
pages.

[32] Talbi, El-G., Méthodes d’optimisation
avancées, LIFL CNRS. [Online]. Available:
(http://www.lifl.fr/~talbi/Cours-
optimisation.pdf)

[33] Zeleny, M., Multiple criteria decision making,
McGraw-Hill, Columbia University, 1982,
563 pages.

[34] Lehoux, N., & Vallée, P. (2004). Analyse
multicritère. Ecole Polytechnique de

Montréal.
[35] Dehbi, Rachid, Talea Mohamed, and

Abderrahim Tragha. "The generation approach
of Multi-target learning management system."
Advanced Science Letters 19.8 (2013): 2326-
2330.

[36] Dehbi, R., Talea, M., & Tragha, A. (2012, July).
LMSGENERATOR: Multi-target learning
management system generator based on
generative programming and component
engineering. In Education and e-Learning
Innovations (ICEELI), IEEE, 2012

International Conference on (pp. 1-6).

[37] DESIGNED, PARTICULAR PLATFORM
USING AN EAV. MAPPING OF A
PLATFORM SPECIFIC MODEL TO A
PARTICULAR PLATFORM USING AN
EAV DESIGNED PLATFORM MODEL.
Journal of Theoretical and Applied

Information Technology, 2015, 79.1.
[38] DEHBI, Rachid; TALEA, Mohamed; TRAGHA,

Abderrahim. MDA-Based Transformation of
LMS Business Components: The Contribution
of XML Technologies and Model
Transformations. International Journal of

Enterprise Information Systems (IJEIS), 2013,
9.4: 63-84.

